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Stability Analysis of Continuous-Time Periodic Systems
Via the Harmonic Analysis

Jun Zhou, Tomomichi Hagiwara, and Mituhiko Araki

Abstract—Asymptotic stability of finite-dimensional linear contin-
uous-time periodic (FDLCP) systems is studied by the harmonic analysis.
It is first shown that stability can be examined with what we call the
harmonic Lyapunov equation. Another necessary and sufficient stability
criterion is developed via this generalized Lyapunov equation, which
reduces the stability test into that of an approximate FDLCP model
whose transition matrix can be determined explicitly. By extending the
Gerschgorin theorem to linear operators on the linear space , yet
another disc-group criterion is derived, which is only sufficient. Stability
of the lossy Mathieu equation is analyzed as a numerical example to
illustrate the results.

Index Terms—Asymptotic stability, continuous-time periodic systems,
harmonic analysis, Lyapunov equation.

I. INTRODUCTION

The research in finite-dimensional linear continuous-time periodic
(FDLCP) systems has been a focus in system analysis and synthesis
for a long time [4], [11], [13], [16]. In particular, the stability analysis
of such systems is much harder than that of linear time-invariant (LTI)
systems, and only some primitive results are available [4], [7]. Roughly
speaking, the Floquet theorem seems to be the best results at hand when

Manuscript received December 7, 2000; revised April 18, 2001 and
September 15, 2001. Recommended by Associate Editor D. E. Miller.

The authors are with the Department of Electrical Engineering,
Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan (e-mail:
zhouj@jaguar.kuee.kyoto-u.ac.jp).

Publisher Item Identifier S 0018-9286(02)02068-8.

0018–9286/02$17.00 © 2002 IEEE



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL 47, NO 2, FEBRUARY 2002 293

dealing with stability of general FDLCP systems [8], [11], in contrast
with the more general stability analysis (e.g., [3], [6], and [14]) of sam-
pled-data systems, which are also periodic [1].

This note sheds a new light on the asymptotic stability problem of
a class of general FDLCP systems. By the Floquet theorem and the
Toeplitz similarity transformation formula [15], [17], a stability crite-
rion based on what we call the harmonic Lyapunov equation is proved
in Section III. Our proof is given only through simple matrix algebra so
that the existence problem of steady-state solutions of a periodic time-
varying Lyapunov differential matrix equation is circumvented com-
pletely. The harmonic Lyapunov equation provides some theoretical
insight into the stability problem for an FDLCP system and is useful
in deriving a necessary and sufficient stability test based on approxi-
mate FDLCP modeling in Section IV. In Section V, by extending the
Gerschgorin theorem to operators on the linear spacel2, a disk-group
stability criterion is developed.

In the following, with a little abuse, we sayF (t) 2 L2[0; h] to mean
thatF is a matrix function, each element of which ish-periodic and
belongs toL2[0; h] when its domain is restricted to the interval[0; h].
Similarly for other function sets defined over[0; h]. S+ denotes the
set of all strictly positive definite self-adjoint bounded operators onl2.
Z is the set of all integers.

II. PRELIMINARIES

Consider the FDLCP autonomous system

G: _x = A(t)x (1)

whereA(t) 2 L2[0; h]. The transition matrix of (1) for the initial time
t0 is denoted by�(t; t0).

Theorem 1 (Floquet Theorem [11], [13]):Let A(t) be defined as
above. Then the transition matrix�(t; t0) is continuous with respect to
t and can be expressed as�(t; t0) = P (t; t0)e

Q(t�t ) whereP (t; t0)
is a nonsingularh-periodic matrix andQ is a constant matrix. More-
over, the system is asymptotically stable if and only if the eigenvalues
of the monodromy matrix,�(h+ t0; t0), are in the open unit disk, or
equivalently, the eigenvalues ofQ lie in the open left-half plane.

Remark 1: It is difficult to apply the Floquet theorem in general
since there exists no general computation formula for the monodromy
matrix�(h + t0; t0) except when the state matrixA(t) is of special
properties such as piecewise constant [4], [16] or commutative [11].
Also, �(h + t0; t0) can be computed by a numerical solution of the
corresponding differential equation. In this case, however, an approxi-
mation modeling error will be inevitable. To put it another way, this ap-
proach amounts to merely testing stability of some approximate model
of the given FDLCP system unless the modeling error is taken into ac-
count.

Now let us consider the Fourier series expansionA(t) =
+1
m=�1 Ame

jm! t with !h = 2�=h. The Toeplitz transformation
on A(t) [15], denoted byT fA(t)g, mapsA(t) into an infinite-di-
mensional block Toeplitz operator [15] (or to be more precise, block
Laurent operator [5], [20]) of the form

T fA(t)g :=

. ..
...

...
... . .

.

� � � A0 A�1 A�2 � � �

� � � A1 A0 A�1 � � �

� � � A2 A1 A0 � � �

..
. ...

...
...

. ..

=: A: (2)

To facilitate the statement, we introduce the set

LPCD[0; h]: = f(t) :
f(t) is piecewise continuous and
differentiable at a.e.t 2 [0; h]

where PCD stands for piecewise continuous and differentiable. We also
define the setlE := fx 2 l2: E(j0)x 2 l2g � l2 with E(j0) =
E(j')j'=0. Here

E(j') = diag[. . . ; j'�2I; j'�1I; j'0I; j'1I; j'2I; . . .]

where'k := '+k!h,' 2 [�(!h=2); (!h=2))and thej'0I-block is
at the center ofE(j'). The infinite-dimensional matrixE(j') is used
for the frequency-response-operator definition in [17]. A fact aboutlE
is thatlE is dense inl2 [17].

Lemma 1: Assume in the system (1) thatA(t) belongs to
LPCD[0; h]. Then, lE is P -invariant, P�1-invariant, P �-invariant
andP��-invariant, whereP�� := [P�1]�. P is invertible onlE and
the unique inverse ofP on lE is P�1 restricted tolE . Also, it holds
on lE � l2 that

P Q� E(j0) P�1 = A �E(j0) (3)

whereQ = diag[. . . ; Q; Q; Q; . . .] andP = T fP (t; 0)g.
Proof: A complete proof is given in [17]. Here, we give an outline

of the proof. By the Floquet theorem of [11, Th. 6.3.2], we obtain

P (t; 0)Q = A(t)P (t; 0)� _P (t; 0): (4)

By the assumption onA(t), the Fourier series expansion ofP (t; 0)
is absolutely convergent and that ofA(t) converges toA(t0) for a.e.
t0 2 [0; h]. Hence, by the Mertens theorem, it follows that:

T fA(t)P (t; 0)g = T fA(t)gT fP (t; 0)g : (5)

Again by the assumption onA(t), the first-order derivative ofP (t; 0)
is piecewise continuous and the second-order derivative ofP (t; 0)
exists a.e. in[0; h]. Thus, by [2, p. 106, Th. 3],_P (t; 0) is given by
_P (t; 0) = +1

m=�1 jm!hPme
jm! t (a.e.) through the termwise

differentiation, wherefPmg+1m=�1 is the Fourier coefficients se-
quence ofP (t; 0). Then, by [15], we are led to

T _P (t; 0) = E(j0)P � P E(j0): (6)

Now takex 2 lE . ThenT f _P (t; 0)gx 2 l2. Also, P E(j0)x 2 l2
sinceE(j0)x 2 l2 andP is bounded onl2. It follows thatE(j0)P x 2
l2, i.e.,lE is P -invariant. Similarly,lE is P�1-invariant.

Noting thatP andP�1 are also mappings onlE , it follows thatP is
invertible onlE and the unique inverse ofP on lE is nothing butP�1

restricted tolE sinceP�1P x = P P�1x = x; 8x 2 lE .
From the above arguments, applying the Toeplitz transformation on

(4) gives (3).
To see the assertion thatlE is P �-invariant, we note thatP � =

T fP �(t; 0)g and that _P �(t; 0) is piecewise continuous and�P �(t; 0)
exists a.e. in[0; h]. These imply thatT f _P �(t; 0)g = E(j0)P� �
P �E(j0). From this, the assertion follows immediately. Similarly, one
can show thatlE isP��-invariant.

To determine the set of the eigenvalues ofA � E(j0), let us define
� = f�(Q) + jm!h: m 2 Zg where�(Q) denotes the set of the
eigenvalues ofQ.

Lemma 2: Suppose in the system (1) thatA(t) belongs to
LPCD[0; h]. Then the system is asymptotically stable if and only if
the set� of the eigenvalues ofQ � E(j0) lies in the open left-half
plane. Moreover,� = �A where�A is the set of the eigenvalues of
A � E(j0).

Proof: From the Floquet theorem, the first assertion follows im-
mediately. For each� 2 �, there exists a nonzerox 2 lE such that
(Q�E(j0))x = �x. Noting thatP x 2 lE sincelE isP -invariant, it
follows from Lemma 1 that(A � E(j0))P x = P (Q� E(j0))x =
�P x. This implies that� � �A sinceP is invertible onlE . Similarly
it can be shown that�A � �.
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III. H ARMONIC LYAPUNOV EQUATION OF FDLCP SYSTEMS

In this section, we establish an infinite-dimensional Lyapunov equa-
tion for FDLCP systems. To begin with, we need some discussions on
the adjoint operator of the unbounded operatorA � E(j0) viewed on
lE , which we denote by(A�E(j0))�. SincelE is dense inl2 [17], it
is said thatA � E(j0) is densely defined onl2 [12, p. 486].

From [5, p. 290], [20], the domain of(A� E(j0))� is

D f(A�E(j0))�g

= y 2 l2: sup
0=x2l

(A� E(j0))x; y

kxkl
<1 :

However, sinceA is bounded onl2 (by the assumption thatA(t) 2
LPCD[0; h]) [17], it follows that:

D f(A�E(j0))�g

= y 2 l2: sup
0=x2l

E(j0)x; y

kxkl
<1 = D fE(j0)�g :

On the other hand, by the structure ofE(j0), it is obvious thatE(j0)
is a weighted sum of projections onl2. Hence, it follows from [12,
Ex. 7.10.1, p. 528] thatDfE(j0)�g = DfE(j0)g = lE and that the
matrix representation ofE(j0)� coincides with the usual complex con-
jugate transpose of that ofE(j0). Summarizing the above arguments,
we have verified that(A� E(j0))� is also defined onlE and that the
matrix representation of(A� E(j0))� coincides with the usual com-
plex conjugate transpose of that ofA � E(j0). Hence, again from [5,
p. 290], [20], we have

(A� E(j0))x; y = x; (A� E(j0))� y (x; y 2 lE): (7)

Now we are in a position to show the following theorem (which is not a
special case of the operator-valued Lyapunov equation in [5, Th. I.6.1],
[20] since the operatorA � E(j0) is unbounded).

Theorem 2: Suppose in the system (1) thatA(t) belongs to
LPCD[0; h]. Then the system is asymptotically stable if and only if
for anyW 2 S+, there exists a uniqueV 2 S+ satisfying

(A�E(j0))� V + V (A� E(j0)) = �W (8)

which is called the (infinite-dimensional) harmonic Lyapunov equation
densely defined onl2 (or more precisely, defined on the dense subset
lE of l2).

Before giving the proof, we give a remark about the harmonic Lya-
punov equation (8). The equation (8) should be viewed as an oper-
ator-valued Lyapunov equation densely defined onl2. This implies
that when we post-multiplyx 2 l2 on (8), x should belong tolE
to guarantee that it makes sense to deal with(A � E(j0))�V x and
V (A � E(j0))x separately and that the inner product is validated in
the sense of (7). Now we show that this is indeed the case.

This is equivalent to showing that for the solutionV of (8),V x 2 lE
for anyx 2 lE . To this end, takex 2 lE and post-multiply it on (8).
Then, sinceW , V andA are bounded onl2, it follows thatV (A �
E(j0))x 2 l2 andW x 2 l2. Now we are led to(A�E(j0))�V x 2 l2
which, in particular, implies that�E(j0)�V x 2 l2. However, since
�E(j0)� = E(j0), we can conclude thatV x 2 lE as we claimed.
The meaning of this remark is that it makes sense to consider the inner
producth(A�E(j0))�V x; yi = hV x; (A�E(j0))yi for anyx; y 2
lE sinceV x 2 lE = D((A� E(j0))�).

Proof: Now we give the proof of Theorem 2.
(Sufficiency) Suppose (8) holds for someW; V 2 S+. Let� be an

eigenvalue ofA�E(j0) with an associated eigenvectorx 2 lE � l2.
Then, post-multiplying (8) byx and taking the inner product withx, we
obtain�+ � = �(hW x; xi=hV x; xi) < 0 where the inner product
is validated from the above discussions. Then, the stability assertion
follows from Lemma 2.

(Necessity) Assume thatG is asymptotically stable. It must be
shown that for anyW 2 S+, there exists a unique operatorV 2 S+

such that (8) holds onlE . To this end, we define

e(Q; t) := diag . . . ; e(Q+j! I)t; eQt; e(Q�j! I)t; . . . (9)

where theeQt-block is at the center ofe(Q; t). Under the stability
assumption, from [4, p. 20], there exist numbersK > 0 and� > 0
such that

Re f�(Q)g < ��; keQtk � Ke��t (8 t � 0): (10)

From this, it readily follows thate(Q; t) is well-defined and uniformly
bounded onl2 overt � 0. To see this, we note thate(Q; t) is block-
diagonal, and thus

ke(Q; t)kl =l = sup
m2Z

e(Q+jm! I)t

= sup
m2Z

keQtk � Ke��t � K 8 t � 0: (11)

Next, we construct the operator

V̂ :=
1

0

e(Q; � )�Ŵ e(Q; � )d� (12)

whereŴ = P �W P 2 S+. It can be shown that̂V 2 S+ and it is a
unique solution of

Q� E(j0)
�
V̂ + V̂ Q�E(j0) = �Ŵ (13)

in the elementwise sense (that is, we regard (13) as infinitely many
simultaneous equations of finite-dimensional matrices with infinitely
many finite-dimensional matrix variables). This can be completed by
similar arguments as we do in LTI stable systems. The main diffi-
culties are that the matrices here are infinite-dimensional and order
interchanges between infinite-dimensional matrices and infinite inte-
gral( 1

0
) occurred. These order interchanges are validated sinceQ�

E(j0) ande(Q; t) are block-diagonal.
Now repeating the arguments about the adjoint ofA�E(j0) onQ�

E(j0), it follows readily that (13) can also be viewed as an operator-
valued (but with infinite-dimensional matrix representation) Lyapunov
equation onlE � l2 and thatlE is V̂ -invariant.

By pre-multiplyingP��(= [P�1]�) and post-multiplyingP�1 on
(13) and noting thatlE is P�1-invariant by Lemma 1, it follows that
on lE � l2

P�� Q� E(j0)
�
V̂ P�1 + P��V̂ Q� E(j0) P�1

= �P��Ŵ P�1:

On the other hand, sincelE isP�1-, V̂ - andP��-invariant, it is clear
thatP��V̂ P�1 x 2 lE if x 2 lE . Therefore, it can be claimed that on
lE � l2

P�� Q� E(j0)
�
P �P��V̂ P�1

+P��V̂ P�1P Q�E(j0) P�1 = �P��Ŵ P�1

whereP �P�� = I andP�1P = I are the identity operators onlE
andl2, respectively. SinceP�1(Q�E(j0))P�1 = A�E(j0) on lE
by (3) andP��(Q�E(j0))�P� = (A�E(j0))� from (3), it follows
that onlE � l2

(A�E(j0))� P��V̂ P�1 + P��V̂ P�1 (A� E(j0))

= �P��Ŵ P�1:

Finally, noting thatP��Ŵ P�1 = W , it follows that V :=
P��V̂ P�1 2 S+ is a unique solution of (8).

Theorem 2 is an operator explanation of asymptotic stability of
FDLCP systems. It has been shown [19] that the harmonic Lyapunov
equation plays a key role also in developing the trace formula for the
H2 norm of FDLCP systems. To demonstrate a further application
of the harmonic Lyapunov equation, in our following discussions we
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concentrate our attention on showing that this equation can provide us
with some more practical stability tests.

IV. STABILITY CRITERION BASED ON AN APPROXIMATE MODEL

In this section, we revisit the well-known approximate modeling
method [4], [7]. The basic idea is that if we construct an approximate
model to the original FDLCP system in some sense such that the tran-
sition matrix of this approximate model can be determined explicitly
in a closed form (so that this transition matrix knowledge can be used
in stability testing of the approximate model), then we are confronted
with such a question: under what conditions, can one guarantee the sta-
bility of the original FDLCP system by that of the approximate model?
The main difficulties in such a stability analysis method include: how
to measure the modeling error and how to assess its affect on the sta-
bility of the actual system.

Now define the approximate FDLCP model ofG by

Ga: _y = Aa(t)y (14)

which has the explicit state transition matrix�a(t; 0) =
Pa(t; 0)e

Q t. Aa(t) is the approximate state matrix andA�(t)
is the error matrix such thatA(t) = Aa(t) + A�(t). We assume
thatAa(t) andA�(t) areh-periodic. Obviously,A = A a + A�

with A a := T fAa(t)g andA� := T fA�(t)g. By the Fourier
series expansion fromL2[0; h] to l2, it is can be shown [17] that for
A�(t) 2 LPCD[0; h],

kA�kl =l = kA�(�)kL [0; h]=L [0; h]

= sup
t2[0; h)

kA�(t)k =: kA�(�)k: (15)

Based on these preparations, the following theorem gives an answer to
the question we posed.

Theorem 3: SupposeA(t) 2 LPCD[0; h] and letLa[0; h] be a
dense subset ofLPCD[0; h] in theL1[0; h]-norm sense (and hence
La[0; h] is dense inLPCD[0; h] also in theL2[0; h]-norm sense).
Then the system (1) is asymptotically stable if and only if there ex-
ists an approximateh-periodic systemGa as defined in (14) such that

1) Aa(t) 2 La[0; h];
2) Ga has the transition matrix�a(t; 0) = Pa(t; 0)e

Q t and all
the eigenvalues ofQa have negative real parts;

3) for A�(t) = A(t) � Aa(t), there exist numbersKa > 0 and
� > 0 satisfying

keQ tk � Kae
��t (8 t � 0)

supt2[0; h) kP
�1
a (t; 0)A�(t)Pa(t; 0)k < �=K2

a :

Remark 2: It is clear that numerical computation errors may appear
when the stability conditions of Theorem 3 are investigated via certain
numerical analysis tools. Apparently, this kind of numerical errors are
essentially different from the modeling errors and should be treated as
a separate problem in the application of this theorem. In other words,
we are isolating the issue of modeling errors from that of numerical
computation errors completely in the arguments of Theorem 3.

Remark 3: Theorem 3 shows from the modeling error viewpoint
that computing merely the eigenvalues of the corresponding mon-
odromy matrix of an approximate model is not sufficient, theoretically
speaking, to check whether or not an FDLCP system is stable however
high the approximation accuracy may be. Indeed, as we discussed in
Remark 1, any direct but approximate computation of the monodromy
matrix �(t0 + h; t0) is insufficient for testing stability of a general
FDLCP system unless the modeling error is taken into account. The
importance of Theorem 3 lies in that it can ensure stability provided
that the approximate model is stable enough in the sense that the
condition 3) is satisfied.

Proof: Now we give the proof of Theorem 3.
(Sufficiency) By the condition 2) and Theorem 2, for anyW a 2

S+, the harmonic Lyapunov equation

(A a �E(j0))� V a + V a (A a �E(j0)) = �W a (16)

has a unique solutionV a 2 S+. In particular, let us takeW a =
P��a P�1a 2 S+. Then, we have

V a = P��a

1

0

e(Qa; � )
�e(Qa; � )d� P�1a : (17)

On the other hand, (16) can be rewritten as

(A a +A� �E(j0))� V a + V a (A a +A� �E(j0))

= �(P��a P�1a � A��V a � V aA�): (18)

Now take0 6= x 2 lE � l2. Then by the well-known Cauchy–Schwarz
inequality, we obtain

A��P
��
a

1

0

e(Qa; � )
�e(Qa; � )d� P�1a x; x

= P �aA
�
�P

��
a

1

0

e(Qa; � )
�e(Qa; � )d�

� P�1a x; P�1a x

� kP�1a xk2l kP�1a A�P akl =l

1

0

K2
ae
�2�� d�

= kP�1a xk2l sup
t2[0;h)

kP�1a (t; 0)A�(t)Pa(t; 0)k
K2
a

2�

< 1
2
kP�1a xk2l (19)

where we used the condition 3) and followed a similar derivation as
in (15) on the operatorP�1a A�P a. Also, for any0 6= x 2 lE � l2,
P�1a x 6= 0. Summarizing the above arguments, it can be concluded that
for any0 6= x 2 lE � l2, h(P��a P�1a �A��V a�V aA�)x; xi > 0.

Finally, we confinex to be an eigenvector of the operatorA a +
A� � E(j0)(= A � E(j0)) corresponding to an eigenvalue� (note
that eigenvectors belong tolE by definition [12, p. 411]. Postmulti-
plying x on (18) and taking the inner product withx, it follows that
2Re(�)hV ax; xi < 0. Noting thatV a 2 S+, this actually says that
all the eigenvalues ofA � E(j0) have negative real parts. Thus the
systemG is asymptotically stable by Lemma 2.

(Necessity) Assuming that the system (1) is asymptotically stable,
we complete the proof in two steps.

Step 1): First we show that the condition 2) is satisfied. To see this,
it is shown that fort 2 [0; h]

lim
kA (�)k!0

k�(t; 0)� �a(t; 0)k = 0

lim
kA (�)k!0

keQ t � eQtk = 0:
(20)

From (14), we can observe that_�a(t; 0) = A(t)�a(t; 0) �
A�(t)�a(t; 0). According to the variation-of-constants formula [7],
it follows that

�a(t; 0)� �(t; 0)

= �
t

0

�(t; �)A�(�)�a(�; 0)d�

= �
t

0

�(t; �)A�(�) [�a(�; 0)� �(�; 0)] d�

�
t

0

�(t; �)A�(�)�(�; 0)d�:
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Let K̂ := sup�;t2[0;h] k�(t; � )k < 1. Then it follows that for any
t 2 [0; h]

k�a(t; 0)� �(t; 0)k � K̂
2
hkA�(�)k

+K̂kA�(�)k
t

0

k�a(�; 0)� �(�; 0)kd�: (21)

SinceLPCD[0; h] consists only of piecewise continuous functions,
kA�(�)k = supt2[0;h] kA�(t)k is well-defined regardless of the
choice of La[0; h] and Aa(t). Furthermore, by the assumption,
kA�(�)k can be made arbitrarily small by a suitable choice ofAa(t).
Noting also that�(t; 0) and�a(t; 0) are continuous, it follows from
Gronwall’s Lemma [4], [7] that

k�a(t; 0)� �(t; 0)k � K̂
2
h kA�(�)k e

KhkA (�)k (22)

which clearly says that askA�(�)k ! 0, �a(t; 0) ! �(t; 0) uni-
formly with respect tot 2 [0; h].

To show the second relation of (20), we notice from (22) that
limkA (�)k!0 �a(h; 0) = �(h; 0) which implies that the eigen-
values of�a(h; 0) tend to those of�(h; 0) askA�(�)k ! 0. Since
�a(h; 0) and�(h; 0) are nonsingular, it follows from [9, Th. 6.4.20]
that we can construct a continuous function Log(�) over the set of
�a(h; 0) corresponding to sufficiently smallkA�(�)k such that
exp(Log�a(h; 0)) = �a(h; 0). Hence, it follows immediately that:

lim
kA (�)k!0

Qa = Q (23)

which says that the condition 2) is satisfied.
Now considering_� = Qa� and _� = Q� and repeating the argu-

ments of (21) and (22) on these two equations and applying Gronwall’s
Lemma leads to the second relation of (20).

By similar arguments, it can be asserted that for anyt 2 [0; h]

lim
kA (�)k!0

��1a (t; 0)� ��1(t; 0) = 0

lim
kA (�)k!0

e�Q t � e�Qt = 0:
(24)

Step 2): Now we show that the condition 3) is satisfied. Let us define
the set

A� := Aa(t) 2 La[0; h]: sup
t2[0;h)

kA�(t)k � �

with � being a constant. Now we further denote the closure ofA�

by A� , which is well-defined sinceLa[0; h] is dense inLPCD[0; h].
Clearly,A� is bounded and closed for any fixed�. From (23) and the
strictness of the first inequality in (10), there exists a small enough
� > 0 such that for some� > �, everyAa(t) 2 A� will be �-stable
in the sense thatRef�(Qa)g < ��. Therefore, for eachAa(t) 2 A�

there exists a finite numberKa(Qa) > 0 such that

keQ tk � Ka(Qa)e
��t (8 t � 0): (25)

In the sequel, we take one such small enough�. Furthermore, note that

sup
t2[0;h]

kPa(t; 0)k = sup
t2[0;h]

k�a(t; 0)e
�Q tk

� sup
t2[0;h]

k�a(t; 0)k sup
t2[0;h]

ke�Q tk: (26)

Then, by the definition ofA� , (20) and (24), the uniform bound-
edness ofsupt2[0;h] kPa(t; 0)k over A� follows. Similarly for
supt2[0;h] kP

�1
a (t; 0)k.

To see that the condition 3) holds, we observe

� := sup
t2[0; h]

P
�1
a (t; 0)A�(t)Pa(t; 0)

� sup
t2[0; h]

P
�1
a (t; 0) sup

t2[0; h]

kA�(t)k sup
t2[0; h]

kPa(t; 0)k : (27)

By the uniform boundedness of the first and third factors in the
right-hand side of (27),� can be made arbitrarily small by taking
appropriateAa(t) 2 A� . Therefore, the proof is completed if we

show that the first requirement in the condition 3) can be satisfied with
fixedKa > 0 and� > 0 independent ofAa(t). More specifically, we
show that there existsKa > 0 such that

e
Q t � Kae

��t 8 t � 0; 8Aa(t) 2 A� � A� (28)

where� is as given in (10). However, this can be completed by sim-
ilar arguments to those in Step 1 [see also (25)] and the well-known
Heine–Borel finite-covering theorem. The details are omitted due to
the limited space. A complete proof can be found in [18].

Note that the sufficiency proof does not rely on the assumption that
La[0; h] is dense inLPCD[0; h]. This implies thatAa(t) can be any
approximate model as long asAa(t) 2 LPCD[0; h] and its transition
matrix can be determined by some approach. Indeed, [7] gave a similar
but sufficient stability test by constant approximation, which is derived
by Gronwall’s Lemma [4], [7].

In spite of a large freedom in choosingAa(t), however, trial-and-
error is needed in choosingAa(t) when one attempts to show the sta-
bility of a given FDLCP system with Theorem 3. In such a case, it
is sensible to consider the dense subsetLa[0; h] from whichAa(t) is
taken, and a reasonable candidate forLa[0; h] is the set of all piecewise
constant functions, which is denoted byLpc[0; h]. It is well-known [4],
[16] that for anyAa(t) 2 Lpc[0; h], the transition matrix�a(t; 0) can
be computed explicitly, so that the condition 3) of Theorem 3 is easy
to check. The necessity of Theorem 3 ensures that it is always possible
to find an approximate model inLpc[0; h] to satisfy the conditions by
lettingkA�(�)k ! 0 when the system is stable.

Also it should be pointed out that the sufficiency part can be verified
by using the variation-of-constants formula and Gronwall’s Lemma
after some trivial modifications on the condition 3). However, the proof
given via the harmonic Lyapunov equation is an independent alter-
native method, which explains the asymptotic stability of a class of
FDLCP systems from the operator-theoretic viewpoint instead of the
asymptotic analysis of differential equations.

V. GERSCHGORINSTABILITY CRITERION

In this section, we discuss a sufficient stability test by extending the
Gerschgorin theorem [10] to operators onl2. Now introduce the set
LCPCD[0; h] consisting of all functions that are continuous and whose
first-order derivatives are piecewise continuous over[0; h]. Obviously,
LCPCD[0; h] � LPCD[0; h] so that Lemmas 1 and 2 apply ifA(t) 2
LCPCD[0; h]. Now we show the extended Gerschgorin criterion.

Theorem 4: Suppose that then � n state matrixA(t) belongs to
LCPCD[0; h] andfAmg

+1
m=�1 is the corresponding Fourier coeffi-

cients sequence ofA(t). Then the system (1) is asymptotically stable
if the disc-groupD0 := n

k=1 D0k lies in the open left-half plane.
Here

D0k := fz 2 C: jz � a0kkj � �kg k = 1; 2; . . . ; n

with �k = n

i=1
+1
m=�1 jamkij � ja0kkj where amki is the

(k; i)th entry of the matrixAm.
Furthermore, suppose that there arem(< n) discsD0i ,D0i , . . .,

D0i such thatD00+jl!h andD000 , withD00 :=
k=i ; ...; i D0k and

D000 :=
k=i ; ...; i D0k, are disjoint for alll 2 Z . Then, the system

(1) is unstable if eitherD00 orD000 lies in the closed right-half plane.
Proof: Let � be an eigenvalue ofA � E(j0) with x 2 lE � l2

being an associated eigenvector. Then(A � E(j0))x = �x. Now
denotex = [. . . ; x�1; x0; x1; . . .]

T wherexi is a scalar, and let
jxsj = maxm2Z jxmj > 0 which can be attained at a finites since
x 2 l2. Using similar arguments to [10], one can show that the eigen-
values ofA� E(j0) lie in the region n

k=1
+1
l=�1 Dlk where

Dlk = fz 2 C: jz � a0kk + jl!hj � �kg ; l 2 Z

with k = 1; 2; . . . ; n. However, by the definition ofDlk, it follows
that for eachk, Dlk = Dmk + j(l � m)!h in the pointwise sense
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(a)

(b)

Fig. 1. Stable coefficients areas (blank:G stable; asterisk:G unstable; cross:G stable but stability ofG unknown; circle: stability ofG unknown by Gerschgorin
criterion).

(8 l; m 2 Z). Hence, if for somel 2 Z , the discs n

k=1
Dlk lie in the

open left-half plane, then so do all the other discs. This gives the first
assertion. The assumptionA(t) 2 LCPCD[0; h] ensures by Theorem 2
[2, p. 104] that the disc-group is meaningful in the sense that�k <1,
8 k = 1; 2; . . . ; n.

To see the second part, let us defineA(�; t) = D + �(A(t) � D)
with � being a constant in the interval [0, 1] andD =
diag[a011; a022; . . . ; a0nn]. It is clear that for each� 2 [0; 1],
A(�; t) 2 LCPCD[0; h]. Hence, by using Lemma 2 and following

similar arguments to those about (23), it is not hard to see that the
eigenvalues of the operatorA(�)�E(j0) are continuous with respect
to �.

Now, we define the discs

Dlk(�) = fz 2 C: jz � a0kk + jl!hj � ��kg ; l 2 Z

with k = 1; 2; . . . ; n. From this definition, it is easy to
see thatDlk(�) � Dlk, 8 � 2 [0; 1], l 2 Z and k =
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1; 2; . . . ; n. From the assumptions aboutD00 and D
00
0 , it fol-

lows readily that eitherD0(�) := +1

l=�1 k=i ; ...; i
Dlk(�)

or D
00(�) := +1

l=�1 k=i ; ...; i
Dlk(�) lies in the closed

right-half plane. On the other hand, the first assertion says that
for any � 2 [0; 1], the eigenvalues ofA(�) � E(j0) lie in
D(�) := n

k=1

+1

l=�1
Dlk(�) = D

0(�) D
00(�). Then the second

assertion follows from Lemma 2 by letting� = 1, if we show that for
any� 2 [0; 1], bothD0(�) andD00(�) contain at least one eigenvalue
of the operatorA(�) � E(j0), and thus at least one eigenvalue of
A(�) � E(j0) has nonnegative real part.

To see this, let� = 0 and note that the eigenvalues ofA(0)�E(j0)
area011 + jl!h; a022 + jl!h; . . . ; a0nn + jl!h; l 2 Z , which are
the centers of the discsDlk(�); l 2 Z , 8 � 2 [0; 1]. By the continuity
of the eigenvalues ofA(�)�E(j0) with respect to� and the fact that
D
0(�) andD00(�) are disjoint, the desired assertion follows.

VI. STABILITY TEST OF THELOSSYMATHIEU EQUATION

Now we consider the stability problem of the lossy Mathieu differ-
ential equation by using Theorem 3 and the Gerschgorin criterion. The
state matrix is given by

A(t) =
0 1

k(1� 2� cos!ht) �2�

with !h = 2 (i.e.,h = �), � = 0:06 andk and� being parameters.
First we consider to test stability ofA(t) by Theorem 3. To construct
an approximate model for each pair of the parameters(k; �), we di-
vide the periodh intoNa = 80 subintervals of the same length, during
each of whichA(t) is approximated by a constant matrix. Then, we can
easily compute the monodromy matrix�a(h; 0) by matrix exponen-
tiations, as well asQa by taking a matrix logarithm. To this constant
matrixQa, a pair of numbersKa > 0 and� > 0 can be found by
working on the Jordan canonical form ofQa := TaJaT

�1
a and the

transition matrixeQ t = Tae
J tT�1a such that the first inequality of

the condition 3) of Theorem 3 is satisfied. We further takeNc = 50

points equitably distributed on each subinterval, and compute the pe-
riodic portionPa(t; 0) on each of theseNaNc points, which is again
carried out by matrix exponentiations sinceAa(t) is piecewise constant
andQa is already known. Then the second inequality of the condition
3) is tested point-by-point on all theNaNc points. Fig. 1(a) is the com-
putation results, in which the blank area is the parameter range when
the approximate models used and the original systems are stable, the
asterisks (�s) indicate the parameter range corresponding to unstable
approximate models, while at the area marked by crosses (+s) the ap-
proximate models are stable but the condition 3) is not satisfied for the
aboveKas and�s.

We can also utilize the Gerschgorin criterion. However, since the
structure ofA(t) prevents us from applying the criterion effectively,
it is necessary to introduce a similarity transformation onA(t) so that
the “DC part” becomes diagonal. The computation results are given in
Fig. 1(b), in which the blank area is the parameter range where the orig-
inal systems are stable, while the area marked by circles (�s) indicates
the parameter range where stability of the original system is uncertain
from the extended Gerschgorin criterion, i.e., Theorem 4.

The problem if an approximate model can be found (not only exists),
in a finite number of steps, to determine if the original system is stable
or unstable, is also worth considering. It is easy to see that this needs an
instability criterion to figure out instability cases based on approximate
modeling. Unfortunately, however, this kind of criteria still remain as
open problems.

VII. CONCLUSION

In this note, the asymptotic stability problem of a class of general
FDLCP systems is studied. Through the harmonic analysis, the Lya-
punov equation is recovered in an LTI fashion as an operator-valued
Lyapunov equation densely defined on the linear spacel2, which does
help to derive a necessary and sufficient stability criterion via approx-
imate models. The latter is applicable since we can take approximate
models whose transition matrix can be explicitly computed. This latter
result can be further simplified by introducing upper bounds about the
periodic portion of the transition matrix of the approximate model so
that the stability conditions rely only on the constant portion knowl-
edge. This improved result will be reported in another paper. The Ger-
schgorin stability criterion, which is sufficient, is developed by a simple
generalization of the finite-dimensional version to operators on the
linear spacel2.

The harmonic Lyapunov equation plays a key role in developing the
trace formula for theH2 norm of FDLCP systems, which is a topic of
our current study [19] relevant to periodic systems.
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