POLITECNICO DI TORINO
Repository ISTITUZIONALE

A LOTOS Extension for the Performance Analysis of Distributed Systems

Original

A LOTOS Extension for the Performance Analysis of Distributed Systems / AJIMONE MARSAN, Marco Giuseppe;
Bianco, Andrea; Ciminiera, Luigi; Sisto, Riccardo; Valenzano, A.. - In; IEEE-ACM TRANSACTIONS ON NETWORKING.
- ISSN 1063-6692. - STAMPA. - 2:2(1994), pp. 151-165. [10.1109/90.298433]

Availability:
This version is available at: 11583/1659485 since:

Publisher:
IEEE - INST ELECTRICAL ELECTRONICS ENGINEERS INC

Published
DOI:10.1109/90.298433

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright

(Article begins on next page)

26 April 2024

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 2, NO. 2, APRIL 1994

151

A LOTOS Extension for the Performance
Analysis of Distributed Systems

Marco Ajmone Marsan, Senior Member, IEEE, Andrea Bianco, Luigi Ciminiera, Member, IEEE,
Riccardo Sisto, and Adriano Valenzano

Abstract— Performance analysis and formal correctness ver-
ification of computer communication protocols and distributed
systems have traditionally been considered as two separate fields.
However, their integration can be achieved by using formal
description techniques as paradigms for the development of
performance models. This paper presents a novel extension of
LOTOS, one of the two formal specification languages that were
standardized by ISO. The extension is specifically conceived
to integrate performance analysis and formal verification. The
extended language syntax and semantics are formally defined,
along with a mapping from extended specifications to perfor-
mance models. The mapping preserves the specified observable
behavior. Two simple examples, a stop-and-wait protocol and a
time-sharing system, are used to concretely demonstrate the new
approach and to validate it.

I. INTRODUCTION

HE design and the correct implementation of commu-
nication protocols are difficult tasks, for which many
formal models have been proposed and employed. The aim
of such models, also called formal description techniques
(FDT), is to give precise, unambiguous and complete specifi-
cations, which are mandatory in order to avoid incompatibility
among different implementations of a given protocol and to
prove correctness properties. Initially, FDT’s were based on
existing modeling paradigms, such as state machines, Petri
nets, or process algebras. More recently, ad hoc specification
languages were developed, and three of them, namely SDL [1],
LOTOS [2], and Estelle [3], became international standards.
FDTs were originally conceived to describe the protocol
behavior and functionalities in a time-independent fashion.
This is adequate when dealing with nontime-critical applica-
tions, i.e., when timing does not affect correctness, but only
performance. If this is not the case, formal models including
quantitative temporal specifications are necessary in order
to formally verify self-consistency, as well as the desired
functional properties. However, timed FDT’s are also relevant
outside the scope of time-critical systems, since they can be
used as paradigms for the construction of performance models
of protocols.

Manuscript received August 1993; revised December 1993; approved by
IEEE/ACM TRANSACTIONS ON NETWORKING Editor K. Sabnani.

M. Ajmone Marsan and A. Bianco are with the Dipartimento di Elettronica,
Politecnico di Torino, Italy.

L. Ciminiera and R. Sisto are with the Dipartimento di Automatica e
Informatica, Politecnico di Torino, Italy.

A. Valenzano is with Centro Elaborazione Numerale dei Segnali, CNR,
Torino, Italy.

1EEE Log Number 9403560.

Traditionally, formal correctness verification and perfor-
mance analysis have been two separate fields. Whereas the
validation and verification processes are based on formal
techniques, the classical approach to performance analysis is
based on human ingenuity and experience, and consists in
devising specific abstract models which can be analyzed by
simulation or by applying stochastic process theory. A key
problem of the traditional performance evaluation approach
lies in the credibility of the model: the functional equivalence
of the performance model and the actual protocol is almost
impossible to prove. This is not the case for the model used
for verification, since this is the specification of the protocol
itself. This consideration suggests that formal description tech-
niques should be used for performance analysis, besides formal
verification. Such an integration brings along many other
advantages. Among them, it makes performance prediction
possible in the early design phases, thus avoiding costly
redesign, and it facilitates the automation of the performance
analysis process.

As already noted in [4], the use of a formal description
language as a paradigm for performance modeling requires
the extension of the language with temporal and probabilis-
tic specifications. The temporal specifications are necessary
to describe the time lapse between consecutive events, and
the probabilistic specifications are necessary to describe the
selection among different possible behaviors.

Many researchers [51-[14] have considered the two types
of extension separately, the timing extension being interesting
in itself for formal verification of time-critical systems, and
the probabilistic extension being interesting for probabilistic
verification or testing, when an exhaustive validation is im-
possible. Their work gives a reasonable insight into the related
problems, but merging probabilistic and timing information for
performance modeling involves new aspects.

Pioneering work in this respect was done in the area of Petri
Nets, with the formulation of some well-known timed and
probabilistic extensions such as stochastic Petri Nets (SPN)
[15]-[17] and their offsprings [18]-[23], or Timed Petri Nets
[241-[26]. Other interesting proposals for integrating perfor-
mance analysis within the framework of formal specification
techniques were based on state machine models or formal
grammar models {27]-[30].

In the area of algebraic specification techniques, despite the
growing interest in such models, and in LOTOS in particular,
little attention was paid to the integration of performance anal-
ysis with formal specification and verification. The majority of

1063-6692/94$04.00 © 1994 IEEE

works dealing with quantitative extensions consider as a target
only the verification of time-critical systems. '

In [31], Nounou and Yemini address the problem of inte-
grating performance analysis aspects into a variant of CCS,
while [32] proposes an extension of CCS which could be used
for performance analysis. In [33], Rico and Von Bochmann
propose a method for introducing deterministic times and mass
probabilities in LOTOS, so as to obtain a corresponding semi-
Markov model which can be used for performance analysis.
Their timing model however is inspired by an old proposal
[34] which is not able to describe global timing constraints
properly.

In this paper we describe a more general extension of
LOTOS that is suitable for the construction of performance
models of communication protocols, and distributed systems.
The proposed version of extended LOTOS is derived from
a previous timed extension proposal by Bolognesi et al.
[35]-[37], but it considers some new features, such as the
introduction of random variables for the probabilistic specifi-
cation of timing, and the use of priorities and weights for the
resolution of conflicts.

The reader is assumed to be familiar with LOTOS. A
comprehensive tutorial can be found in [38].

For the sake of simplicity in the presentation, like in
[35]-[37], we only consider a subset of basic LOTOS.

II. THE EARLIER TIMED LOTOS EXTENSIONS

The first timed LOTOS extension which appeared in the
literature was due to Quemada and Fernandez [5], and was
later improved in [34]. According to this definition, action
denotations are extended with time intervals: the notation
a<tl,t2> indicates that the event represented by action
denotation a may take place only within the time interval
[t1l,t2], relative to the instant when a becomes locally
enabled according to the LOTOS semantics. In this context,
the word “‘locally’’ means that the constraints deriving from
synchronizations with other parallel processes are not taken
into account. As a consequence, parallel processes have inde-
pendent timing specifications, and synchronizations may take
place only if the absolute time intervals associated with a
given synchronization event in the various parallel processes
involved in the synchronization overlap.

The extension by Bolognesi, Lucidi and Trigila [35]-[37]
tries to overcome one of the main problems in the earlier pro-
posals, i.e., the inability to express global timing constraints.
In the earlier proposals, if two parallel processes that must
synchronize at gate g are both ready for an interaction at
g, the delay associated with the synchronization at g cannot
be specified directly, but is a consequence of the two local
timing specifications. This makes it difficult to understand how
global timing is affected by local timing. In {35]-{37] temporal
specifications are given in terms of time intervals, but they are
associated with gates rather than with action denotations. The
syntactic construct timer g<tl,t2> in B indicates that
in expression B the time interval <t1,t2> is assigned to
gate g. The process described by B may execute an action at
gate g only when the age of the action at gate g lies in the

[EEE/ACM TRANSACTIONS ON NETWORKING, VOL. 2, NO. 2, APRIL 1994

interval <t 1, £ 2>, the age of an action prefix being defined as
the cumulative amount of time during which the action prefix
event has been continuously enabled. Note that g may be a
gate at which several subprocesses of B synchronize, in which
case the temporal specification assumes a global significance
over all the subprocesses in B, and the interval indicates how
long it takes from the last subprocess getting ready at g until
the interaction takes place.

The t imer construct defined in [35] can be used to describe
not only global but also local temporal constraints of the kind
introduced in [5]. For example, in

(timer g < t1,t2>in B) |[g]|
(timer g < t3,t4 > in B')

B and B’ are characterized by separate local temporal con-
straints on g.

In the following we shall call T-LOTOS the timed LOTOS
extension defined in [37], as suggested by the authors.

IIl. THE NOVEL LOTOS EXTENSION

The LOTOS extension proposed here is based on the T-
LOTOS timed extension [37]. However, in contrast with [37],
which permits the specification of both global and local timing,
we only admit the use of timer operators (including the
extensions that will be introduced) with a global scope.

One first reason for this requirement is that in [37] the
cascade of several t imer operators is equivalent to a timer
operator whose time interval is the intersection of the time
intervals of the single operators, but, as will be clear in the fol-
lowing, the introduction of our probabilistic characterizations
makes it impossible to conveniently define a similar meaning
for the same operator combination. A second reason is that
with this requirement each timed event is controlled by a single
timer operator, and the assignment of timings is clear and easy
to understand. Obviously, such clarity and linearity is obtained
at the expense of a reduced compositionality in the language.
This means, for example, that if we have separately written
two parts of a specification and we want to combine them,
we have to revise the assignment of timing and probabilistic
characterizations for what concerns the gates at which the
two parts interact. This point, which may be considered as
a drawback, is indeed also an advantage, because it allows
the user to freely decide how to combine the timing and
probabilistic characterizations, and avoids errors due to the
difficulty of understanding how global timing is affected by
local timing.

A. Presynchronization Timer

The definition of T-LOTOS enables the specifier to directly
express situations in which the processes interacting at a
gate, after reaching a consensus on the synchronization, must
wait for a given time before actually being committed in the
synchronization. During this time interval, it is possible for
each one of the processes involved in the synchronization to
execute another action, thus aborting the synchronization.

In some cases, instead, it may be useful to be able to express
situations in which the commitment is instantaneous, but a

AJMONE MARSAN et al.: A LOTOS EXTENSION OF DISTRIBUTED SYSTEMS

certain time is necessary to perform common operations. Only
after this time has elapsed, the involved processes are free
to execute other actions. For example, let us consider the
expression
(R!1{]R) |[get]| prepare; get; stop
where each R is an instance of a receiver process defined as
R := get; ELABORATE [] timeout; stop and the
right hand side of the expression represents a provider process,
which prepares a message (event prepare) for the receiver
processes. If R does not time out before (event timeout), it
can get a message (event get) and then elaborate it (process
ELABORATE). If we assume that the transfer of the message
from the provider to one of the receivers takes time, we can
assign such time to gate get, but we must require that it
elapses affer the commitment at get, otherwise a receiver
could time out while receiving the message.
This different kind of timed synchronization can simply
be expressed in terms of the basic synchronization intro-
duced in [37], by splitting the synchronization into a pre-
synchronization event, which is an interaction with null delay,
followed by the timed synchronization. For the example pre-
sented above, the timed expression would be:
hide h in timer h<0, 0>, get< tl,t2>
in (R ||l R) | [(h,get] | prepare; h;
get; stop where R :=h; get; ELABO-
RATE [] timeout; stop

where we have used the shorthand
timer X,Y in B = timer
X intimer Y in B

Since the modifications necessary to implement this new
kind of synchronization may be extensive, and may complicate
the specification significantly, resulting in reduced readability,
it seems useful to introduce a new timer operator, whose
semantics can be expressed in terms of the original timer
operator semantics. We chose to define the new operator as a
macro expansion operator, which will be indicated by the new
keyword p_timer, and will be assigned the same syntax as
the t imer operator. The macro expansion rule therefore is

p-timer g<tl,t2> inB = hide gl in

timer gl1<0,0>, g<tl,t2> in B’
where g1 is a new unique identifier and B’ is the same as B
with all occurrences of action prefix g; replaced by g1; g;,
and all occurrences of g in synchronization operators replaced
by g1, g, the same replacement being recursively applied to
all the processes directly or indirectly instantiated in B.

B. Probabilistic Extension

In T-LOTOS, the temporal properties of a system are
described using the t imer construct which assigns to a gate
g a time interval within which any action at g must be
executed. We introduce random variables to describe the time
lapse according to the same temporal specification, but in a
probabilistic way. For each random variable it is necessary to
define:

o a time interval which is the domain of the random

variable;

153

« a probability density function of the random variable.

The first item is the time interval associated with the cor-
responding gate as in T-LOTOS, while the second item is
an additional information which should be assigned to each
time interval. Whenever an event becomes enabled, a random
variable instance is extracted from the probability density
function, and its value represents the actual delay of the event;
the instance value lies in the domain of the random variable,
as required by T-LOTOS semantics.

This characterization describes probabilistic time lapse in
an explicit way, and probabilistic selection in an implicit way,
because, according to T-LOTOS semantics, the action whose
associated delay is shortest, is actually selected for execution
when several actions are competing. Nevertheless, the explicit
definition of a selection criterion is sometimes mandatory,
e.g.. to solve a conflict between enabled events with the same
deterministic delay, or a conflict between events associated
with delays described as random variables when the instances
of the random variables are identical. For this purpose, we
introduce a priority (ranging from pynin to Pmax) and a weight
(ranging from Wpin 0 Wmax) associated with each event.
When a choice between enabled events with the same delay
must be made, the priority and the weight are orderly used to
solve the conflict: first of all, the priorities are examined, and
a deterministic decision is taken; if the conflict is not solved
(i.e., two or more enabled events have the same priority),
the enabled events are assigned probabilities proportional to
their weights, and a random choice is made according to this
probability assignment.

Priorities and weights are assigned to gates just as time
intervals are assigned to gates in [37]. The resulting syntactic
extension to the t imer operator is the following:

timer a<tl, t2, pdf (), priority,
welight> in B

where

* a is a gate;

e £1,t2 (£2 > t1) describe the domain of the random

variable representing the delay associated with the gate;

« pdf () is a function [t 1, £2] — [0, o0] that describes the

characteristic of the pdf (.ftt12 pdf(z)dz = 1) of the same
random variable;

« priority is the priority used to solve conflicts in a

deterministic way;

« weight is the weight used to solve in a probabilistic

way the conflicts not solved by priorities;

+ B is a behavior expression.

When values are not explicitly defined, default values are
assigned to the extremes of the time interval, to the pdf type,
to the priority and weight for a gate. The default time interval
is <0, 0>, so that the default timing is a deterministic null

delay; the default pdf is uniform over the defined time interval;
Pmazx T Pmin

the default priority is 5

, and the default weight is

Wnar + Wmin

2
With respect to the T-LOTOS proposal, the probabilistic
extensions do not alter the possible behaviors of the speci-

154

fication, but only make it possible to specify how likely the
various behaviors are to occur. The semantics expressed in [37]
are therefore still valid for the purpose of verification and, in
general, when the probabilistic aspect is not of interest.

The probabilistic extension defined here can be applied to
the pre-synchronization timer operator as well. The extension
can be reasonably defined in the following way (“holes” in the
parameter list represent default values):

p-timer g<tl,t2, pdf (), prior-
ity,weight> in B = hide gl in timer
gl<0,0,,priority,weight>, g<tl,t2,
pdf(),,>in B’
Indeed, the priority and the weight are to be used to solve con-
flicts, which may arise only during pre-synchronization, i.e.,
with gate g1, whereas the pdf is needed only to characterize
the interaction at g.

The probabilistic extension that we are introducing is sub-
stantially different from the existing proposals of probabilistic
process algebras [12]-{14]. The main difference is that in
[12]-[14] only mass probabilities associated with choice op-
erators are considered, because the extension is conceived
mainly for probabilistic testing, while we needed a more pow-
erful model, including a probabilistic description of continuous
time, for performance evaluation. Another important remark is
that, according to the classification of probabilistic extensions
made in [14], our proposal can be categorized as a generative
model, i.e. it characterizes in a probabilistic way not only
the internal choices of the system, but also the interactions
with its environment (e.g., the system inputs). This feature
is required for obtaining complete performance evaluation
models, but it is not needed for probabilistic testing. Our
probabilistic extension is also more general than the generative
model proposed in [33] for LOTOS because the latter is based
on deterministic times and mass probabilities associated with
choice operators.

C. Time-Independent Probabilistic Choices

Expressing the probabilistic characterization of a nonde-
terministic choice by assigning specific time distributions to
the various alternatives is satisfactory in some situations, but
it may lead to difficulties when the timing information is
naturally independent of the selection criterion. For example,
suppose that we must model a communication channel with
a given failure rate and with a given distribution of the
transmission time. Since the distribution of the transmission
time is fixed, the failure rate must be obtained by properly
specifying a fictitious time distribution for the channel failure
event. This surely results in a poorly readable model, and
may induce errors in the cases in which the derivation of the
fictitious distribution is not straightforward.

The introduction of presynchronization (the p_timer op-
erator) helps in solving this difficulty: if the initial events
representing the various alternatives are subject to p_timer
operators (or if they are characterized by identical determin-
istic times), their priorities and weights determine a choice
which is independent of the delay assignments. For example,
the expression

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 2, NO. 2, APRIL 1994

p-timer out <5,10, ,1,998> in timer

loss< 0,0, ,1,2> in CHwhere CH :=

inp; (out; CH [] loss CH)
describes a channel CH which is characterized by a transmis-
sion time uniformly distributed over the interval [5,10] and an
error rate of 0.2%. The p_timer operator assigned to gate
out introduces a new hidden event with null delay, so that
the weights 998 and 2 are actually used to probabilistically
select between the two branches of the choice.

D. Memory Timers

When modeling communication protocols and distributed
systems, it is important to be able to describe different typical
scenarios. In general, a system in a given state can be consid-
ered as a set of parallel activities requiring some (residual) time
to complete. In T-LOTOS, each activity is a gate interaction,
and a timer operator is used to express the time it takes from
the instant it is enabled until the instant it completes. The age
associated with actions and interactions represents the amount
of time the activity has already spent, i.e., the amount of work
already performed by the activity.

The simplest scenario is a memoryless one, in which the
occurrence of any event has the effect of restarting all the
parallel activities in the system. In practice, if more than one
event is enabled, the one which takes place first causes the
work performed by the other activities up to that instant to be
lost. This scenario corresponds to rather uncommon situations,
since normally in distributed systems each process keeps its
memory when events occur in other concurrent processes.

The timer operator introduced in [37] enables the user
to model a more realistic scenario, i.e., one in which the
occurrence of an event does not restart all the activities:
concurrent activities not synchronized with the one(s) having
produced the event remain enabled after the state change
and are not restarted, which means that the work they have
already performed (i.e., their age) is not lost. Only the work
performed by the other activities, which are disabled by the
event occurrence, is lost: they will be restarted when they
become enabled again. For example, this scenario applies
to a protocol machine which, at a given time, is composed
of two alternative activities representing the reception of an
acknowledgment and a timeout, plus a third activity, running
in parallel without synchronization with respect to the others,
representing the transmission of another message. If the ac-
knowledgment reception activity completes, the transmission
activity continues to be enabled and is not restarted, whereas
the timeout activity is no more enabled, and will be restarted
when it is enabled again.

Even if this kind of behavior is useful in modeling a great
variety of real systems, another typical scenario exists in
distributed systems, which is not included in the timed model
proposed in [37], but it is equally important. This scenario
is one in which the occurrence of an event does not restart
any activity, except the one associated with the event which
has just taken place. Moreover, even if an activity which was
enabled is no longer enabled in the new system state, the work
it has previously performed is not lost: when the activity is

AJMONE MARSAN er al.: A LOTOS EXTENSION OF DISTRIBUTED SYSTEMS

155

TABLE 1
THE SyNTAX OF ET-LOTOS BEHAVIOR EXPESSIONS
Operator Syntax
action prefix a; B
choice Bl [] BZ
parallel composition Bl |[G]| B2

requirement:

istimedy(B1) = istimed (B2) = false Vg € G

timer

timer a<tl,t2,pdf(),priority,weight> in B

requirement: istimedy(B) = false

pre-synchronization timer

p-timer a<tl,t2,pdf(),priority,weight> in B

requirement: istimedy(B) = false

memory timer

m_timer a<tl,t2,pdf(),priority,weight> in B

requirement: tstimedy(B) = false

process instantiation P[G]

where P is a process name

hiding
relabelling

hide G in B
B[G/H]

requirement: H and G are gate lists of the same length

enabled again later, it will resume its work from the point
at which it was interrupted. For example, let us consider a
server which serves one request at a time, with a preemption
mechanism to serve immediately urgent requests. A state of the
server can be modelled by means of two alternative activities,
one representing the completion of the current request, and
the other representing the occurrence of an urgent request. If
this second activity completes, the former is disabled, but the
work it has already performed must not be lost, because it has
to be resumed when the urgent request has been served. Only
the activity representing the arrival of an urgent request is to
be restarted in this case.

In order to model this different kind of situations within
the framework of timed LOTOS, it is necessary for the timed
model proposed in [37] to be enhanced, and this can be done
by introducing a new timer operator, whose semantics is
defined according to the new timed behavior.

We shall call this new operator a memory timer operator,
and we shall assign it a syntax similar to the one used for
the timer operator in [37], incorporating the extensions
introduced in the previous sections. The expression

m_timer a<tl, t2, pdf (), priority,

weight> in B
means that, in expression B, an interaction at gate a can take
place when the total amount of time during which event a
has been enabled since the last event at a reaches the value
extracted from the probability density function pdf () (in the
range [t1.t2]). Note that the enabling time that is considered
here is not necessarily continuous, but it may be the sum of
several enabling intervals, since the age accumulated during
an enabling period is not lost if the event is disabled by the
occurrence of another alternative event. Note also that different
interactions at the same gate contribute to the same enabling
age. For example, the expression

m_timer tx<10,50, ,1,> in m_timer

main<1000,1000, ,2,> in T where T :=

get; (tx; T []) main; tx; T)
models a protocol entity which iteratively takes a message
(event get), and then transmits it (event t x). Every 1000 time

units of transmission time, the entity executes a maintainence
operation (event main), after which it resumes transmission
of the interrupted message. The m_timer at main is needed
because the timer counting the 1000 time units must remem-
ber its value from one transmission to the other, while the
m_timer at tx is needed because, after the maintainence,
the transmission must be restarted from the point at which it
was interrupted. Note that here we have exploited the fact that
the enabling age for the two occurrences of tx is the same.
Would this feature not be required, it is sufficient to split a gate
into several distinct gates. Event main has been assigned a
priority higher than that of txbecause, if the maintainence
time comes exactly when a transmission time has elapsed, we
want the maintainence to be made before going to the next
transmission.

With the introduction of the memory timer operator,
the semantics of the LOTOS extension defined in [37]
is no longer sufficient for describing the functional (non-
probabilistic) properties of a specification, but it must be
extended accordingly. The formal definition of both the syntax
and the semantics of our LOTOS extension, that we call
Extended Timed LOTOS (ET-LOTOS), is given in the next
section.

E. Formal Definition of Extended Timed LOTOS

1) Syntax and Macro Expansions: Table I defines the syn-
tax of behavior expressions in ET-LOTOS. In the table, a
denotes a gate, B, B1, and B2 denote behavior expressions, G
and H denote gate lists, whereas t1, t2, pdf (), priority,
and weight denote the parameters of timer operators, as
defined in the previous section. Any one of such parameters
can be omitted, thus taking the default value.

The structure of a specification remains as it is in basic
LOTOS.

The boolean function istimedy() is used to formally define
the restrictions concerning the composition of timer operators.
istimedy(B) takes value rrue for behavior expressions B
already containing some timing specifications referred to gate

156

TABLE 1
THE DEFINITION OF THE FUNCTION istimnedgy()
Beh istimedgy(Beh)
a; B istimedy(B)
B1([])B2 istimedy(B1) OR istimedg(B2)
B1| [G) B2 istimedy(B1) OR istimedy(B2)
timer g<X> in B true
timer a<X> in B istimedy(B) ifa#g
m_timer g<X> in B true
m_timer a<X> in B istimedg(B) ifa#g
P[G] istimedg(B[G/H]) given P [H]
:=B

hide G in B false ifgeaG
hide G in B istimedg(B) ifggaG
B[gl..gn/hl..hn] istimedg(B) ifgd {g1..gn}
Blgl..gn/hl..hn] istimedp;(B) ifg=gi

X = tl,t2,pdf () ,priority,weight
gl..gn and hl..hn are gate lists.

g. The timer operators referred to gate g and the parallel
operators having g as a synchronization gate can be applied
only to behavior expressions B for which istimedy(B) is false.
This function is defined formally in Table II.
The following macro expansion rules apply:
1) timer a<X>, b<¥Y> in B =
timer a<X> in timer b<¥> in B
2) p-timer g<tl,t2,pdf(),priority,weight>
in B =
hide gl in timer gl1<0,0, ,priority,
weight>, g<t1,t2,pdf(), ,> in B’
where B’ is the same as B with all occurrences of
g; replaced by gl; g; and all occurrences of g
in synchronization operators or process instantiations
replaced by g1, g. The same replacement must be recur-
sively applied to all the processes directly or indirectly
instantiated in B.

2) Semantics: The semantics of ET-LOTOS can be divided
into two parts: a functional part and a probabilistic part. The
former defines the possible behaviors of ET-LOTOS specifi-
cations, and is analogous to T-LOTOS semantics, whereas the
latter defines in a probabilistic way how the system selects
among its different possible behaviors.

The functional semantics can be defined in operational style,
using the same formalism introduced in [37] for T-LOTOS, by
means of the axioms and inference rules reported in Table I11.
Two kinds of transitions are defined: action transitions, rep-
resenting the occurrence of events, and aging transitions,
representing the time lapse. Action and aging transitions can
be interleaved in any way, but it is always possible to merge
successive aging transitions into a single one, thus describing,
in the general case, a trace as a sequence of actions, possibly
with a delay between consecutive actions, or, equivalently, as
a sequence of actions occurring at nondecreasing time instants.

As in [37], we assign to each action denotation an age
7, which is syntactically represented as a superscript, and
represents the cumulative amount of time during which the
corresponding event has been continuously enabled. Moreover,
the notation B — a” — B’ means that an event a with
age 7 can take place in the process defined by expression

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 2, NO. 2, APRIL 1994

B, thus making B transform into B’. We have introduced
also a second age parameter, 7, which is associated with
every occurrence of memory timer operators. The expression
m_timera<x> in B specifies that gate a was enabled in
B for a total of 7 time units since the last occurrence of an
event at a. This parameter enables us to represent the total
amount of work that was performed at a given gate. The
action denotations and memory timer operators that appear
in ET-LOTOS specifications have no superscript, according to
ET-LOTOS syntax, but an implicit age parameter equal to 0
is assigned to each of them. Thus, for example, an occurrence
of a;B in a specification is to be interpreted as a% B in the
application of the rules of Table III.

Function age,() has the same meaning as in [37], and is
defined in Table IV.

The formal definition of the functional semantics of ET-
LOTOS opens the possibility of applying the formal veri-
fication techniques for assessing correctness properties and
equivalence relations.

The probabilistic part of the semantics of ET-LOTOS was
already defined in almost formal terms in Section III-B, where
the operational interpretation of the timer parameters pdf (),
priority, and weight is explained. Such a definition
is sufficient for the purpose of building and interpreting
performance models of the specified systems.

IV. A GENERAL FRAMEWORK FOR PERFORMANCE MODELING

In this section we describe a general environment for the
construction of performance evaluation models. The mapping
of ET-LOTOS specifications onto performance models of this
type is described in the next section.

The model is based on a state machine. Focusing our
attention on the case in which the state space is finite, we
can identify the following entities in the model:

a set S of states, S = {s;|1 < i < M};

a (normally finite) set T of transitions, T' = {t;[1 < j <
N}; transitions are divided into two classes: transitions
without memory (U C T') and transitions with memory
V¢ Ty

a mapping E : § — P(T) (P denoting the power set
operation), which defines, for each state s;, the set of
transitions enabled in that state, F(s;);

a new-state partial function N : § x T — S, such that
N(s;,t;) is the state reached by firing transition ¢; when
in state s;. The function is defined only for the pairs
(si,t;) such that t; € E(s;);

a mapping Q : S x T — P(T) which defines, for each
pair s;,t; such that t, € E(s;), the set Q(si,tx) of
transitions whose associated delay must be resampled as
a consequence of firing ¢ in state s;;

a set D of random variables, D = {d;|1 < j < N}, d;
representing the delay associated with transition £;;

a set R of variables, R = {ri;|]l < i< M,1 <3<
N}, r;; representing the residual delay associated with
transition ¢; in state s;;

a set P of priorities P = {p;|1 < j < N}, p; being the
priority assigned to transition £;;

AJMONE MARSAN et al.: A LOTOS EXTENSION OF DISTRIBUTED SYSTEMS

157

TABLE IIT
EXTENDED TIMED LOTOS FUNCTIONAL SEMANTICS (X=t1,t2,pdf () ,priority,weight)

ACTION TRANSITIONS
al)
a";:B—a” — B
a2)
Bl —a" — B1’
B1[]B2 —a” — B1’
a3) symmetric of rule a2)
ad)
Bl—a"™! 5 B1’,B2—a"™ - B2',2a€G
B1|[G] B2 —amin(v1.72) _, Bl | [G] |B2’

a5)
Bl—a” —Bl'.agG
B1|(G]) B2 —aT — B1’ | [G] |B2

a6) symmetric of rule aS)
a7)
B—a” - B, t1<7<t2

timer a<X> in B—a” — timer a<X> in B’

a8)
B—-b" —B’,b#a

timer a<X> in B—b” — timer a<X> in B’

a9)
B—a” — B ,t1 << t2

m_timer”a<X> in B—a”T — m.timer®a<X> in B’

al0)
B—b" = B’,b#a

m_timer7a<X> in B—Db” — m_timer7a<X> in B’

all)
B—hi” — B’,P[hl..hn]:=Bis a proc. def.
P(gl..gn] —gi” = B’ [gl..gn/hl..hn]

al2)
B—a" —»B’,agG
hide G in B—a”™ — hide G in B’

al3)
B—a” = B’',a€G
hide G in B— 1" — hide G in B’

ald)
B—a” - B'.a¢gH
B[G/H] —a™ — B’ [G/H]}

als)
B—hi” — B’
B{gl..gn/hl..hn] —gi”™ — B’ [gl..gn/hl.

.hn]

AGING TRANSITIONS (t,¢' > 0)

t1)

a";B=t=>a"t4B

t4)

Bl=t=>B1’,B2=t=> B2’
B1[]B2 =t=>B1l’ []1B2’

t5)
Bl =t=>Bl1',B2=1t=> B2’
Bl|([G]|B2 =t=>B1l'|[G] B2’

t6)
B=1t=>B’,agea(B) +t < t2
timer a< X > in B=¢=>timer a< X > in B’

t7)
B=t=>B’,n+t<t2,agea(B) >0
m_timer"a<X> in B=t=>m_timer’tta<xX> in B’

t8)
B=t=>B’,agea(B) = —o0
m_timer7a<X> in B=1%=> m_timer7a<X> in B’

19)
B=¢t=>B’,P[H]:=B is a proc. def.
P[G] =t => B’ [G/H]

t10)
B=t=>B’
hide G in B=t=>hide G in B’

tll)
B=t=>B"'
B[G/H] =t => B’ [G/H]

« aset W of weights W = {w;|1 < j < N}, w; being the

weight assigned to transition ;.

The evolution of the system consists in state changes and
in the elapsing of time. Each state change corresponds to a
transition and is instantaneous.

When the system is in state s;, each transition ¢; has an
associated residual delay r;;. If there exists a transition ¢

enabled in state s; (i.e., tx € E(s;)) whose residual delay in
state 4, 7, is such that vy < 74;Vj|t; € E(s;),j # k then
tr occurs when its associated delay r;; has elapsed, and its
occurrence determines the next system state [= N (i, ;).

If two or more residual delays in the set of enabled transi-
tions assume the same minimum value, the priorities and the
weights are used to establish which transition occurs, exactly

158

TABLE IV

THE DEFINITION OF THE FUNCTION ageq()
Beh ageq(Beh)
a™;B T
b™:B —o0, a#b
B1[}B2 maz{ageqa(B1), ageq(B2)}
Bl | [a] | B2 min{ageq(B1), ageq(B2)}
B1 | [b] | B2 max{age,(Bl), age.(B2)}, a#b
timer b<X> in B ageq(B)
m_timer” b<X> in B ageq(B)
P [q] ageq (B[G/H]), givenP[H] :=B
hide G in B ageq(B), agG
hide G in B -, a€G
B [G/H] ageq(B), agH
B [gl..gn/h1..hn| ageni(B), a=gi

as priorities and weights are used in ET-LOTOS to determine
the next event when two or more events are ready to occur.

The residual delays r; of the new set of enabled transitions
in state ! are computed as follows:

« for all the transitions without memory

a) Ty — Tik, if the transition ¢; (j # k) was enabled
in state s;, is still enabled in state s;, and the delay
of t; must not be restarted as a consequence of the
firing of ¢;. This is the computation of the residual
delay before the occurrence of the transition;

b) d}, where dj represents a new instance of the

random variable d;, if the transition was disabled

in state s; and is enabled in state s;, or if j = k&

and transition #j, is enabled in state s;, or if the

transition was enabled in state s;, is still enabled
in state s;, and the delay of ¢; must be restarted

as a consequence of the firing of t;

¢) —oc, if the transition is not enabled in state s;.
« for all the transitions with memory

a) 7i; — Tik, if the transition ¢; (J # k) was enabled
in state s;. Again this is the way the residual
time before the occurrence of the transition is
computed;

b) if the transition was disabled in state s;, it keeps
its associated residual delay value;

c) dj for the transition £z which has just occurred,
where d}, represents a new instance of the random
variable dj.

We can express the semantics of the model in a formal way
by using the operational style. The global state of the system
is defined by the (N + 1)-tuple (s;, 741, ..., 7in), Where s; € S
is a state, and 7;; is the actual residual delay of transition £;
in state s;.

We use the notation (8;, 751, ..., Tin) —t; = (81,711, .o, TIN)
to express the fact that transition {; may occur in state
(84,71, -, Tin), leading to the new state (51,711, ..., 71), and
similarly (8;,751,...,TiN) = T => (84,7}, ..., Tix) tO €xpress
the fact that a time 7 may elapse, so determining the state
change from (8;, 71, .., Tin) 10 (8i,Tiq, ooy TN)-

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 2, NO. 2, APRIL 1994

Then, the semantics of the model can be expressed by the
following rules.
1) If there exists a value ¢ such that ¢ < ri; Vjlt; € E(s;),
then (8;,7i1, .., Tin) =t => (84,7, -, Tin)» With
ro_ T —tift; € E(s,)
Tij = {'I"z‘]’ otherwise (1)
2) If there exists a tx € E(s;) such that r; = 0, then
(8i,Ti1y s TiN) — tk — (85,700, TiN), With 81 =
N(s;,tr) and
rij if t; € E(si) N E(s) — Q(site), § # K
—o0 ift; & E(s1)
d; otherwise

Ty =

€3]
for j|lt; € U, and

dsifj=k
= {rgj otherwise 3
for jlt; € V.

If there exist several #; satisfying the condition expressed
in rule 2, first priorities are used, and transitions t; € Ep(s;)
are selected, where E,(s;) = {tx € T|(px > p; or rij >
0)Vj # k} N E(s;). Finally, if Ep(s;) still contains more than
one transitions, transition t; is chosen with probability

Wk

S S— @
Eerp(s,) We

V. MAPPING ET-LOTOS SPECIFICATIONS
ONTO PERFORMANCE MODELS

The performance model described above is based on a
finite-state transition system. The main requirement for being
able to map an ET-LOTOS specification onto it is therefore
the existence of a finite transition system equivalent to the
specification.

Since LOTOS is characterized by an expressive power
which is the same as that of Turing machines, only a restricted
class of LOTOS specifications can be modeled by means of
a finite state transition system. Unfortunately, membership
in this class was proved undecidable in [39]. It is however
possible to state a set of sufficient conditions for the existence
of a finite transition system equivalent to a given specifica-
tion. Such conditions were formulated in different ways in
(39]-[41]. As we are considering only a subset of LOTOS,
the two following conditions are sufficient:

1) Every recursion is guardedly well defined.

2) Every sub-expression of the form A| [G] | B is such that
all the derivations of A and B do not contain A| [G] | B
as a sub-expression.

In the following we define the mapping from ET-LOTOS

specifications to performance models. We omit the proof that
observational equivalence is preserved for lack of space.

A. Mapping LOTOS Events onto Performance
Model Transitions

In the performance model we have defined, each transition
represents a possible event which is distinguished from the

AJMONE MARSAN et al.: A LOTOS EXTENSION OF DISTRIBUTED SYSTEMS

others mainly by the fact that it is aged independently of
the others. In order to correctly map LOTOS events onto
performance model transitions, it is necessary that two events
at the same gate be mapped onto the same transition only if
they share the same age, and be mapped onto distinguished
transitions if they are aged independently of each other.

In order to apply these concepts, we need to uniquely iden-
tify any LOTOS entity which is assigned a distinguishable age.
For this purpose, we introduce extended action denotations
and extended m_t imer operators.

First of all, since the various occurrences of action deno-
tations in a LOTOS text are aged independently, we extend
each one of them with a different identifier, thus ensuring that
each extended action denotation is unique within the LOTOS
text. For example, if we use integer indexes as extensions, the
expression (a; b; stop [] b; stop) becomes

(a(l): b(2); stop []1 b(3); stop)

and the two occurrences of b which were undistinguishable
are now uniquely identified.
The same can be done for the different occurrences of the
m_timer operators in the LOTOS text.
Since LOTOS offers the possibility of instantiating more
copies of the same process, and the ages of action denotations
in the various copies are distinguished, unicity of identifiers
within the LOTOS text is not sufficient. We further extend
action denotations with a second component which uniquely
identifies the parallel control flow to which the action denota-
tion belongs. For example, the expression
Pla,b] | [b]| P[a,b] where P[a,b] :=
(a; b; stop)

would be expanded as
(a(1,0);b(2,0);stop)
(a(l,1):;b(2,1);stop)

| [bl1]

where the two control flows introduced by the parallel operator
are identified by 0 and 1.

Obviously, a combined use of recursion and parallel oper-
ators may generate an infinite number of different extended
action denotations, since it may generate an infinite number of
parallel control flows. However, this kind of use of recursion
is forbidden by the conditions assuring that the LOTOS
specification has a finite transition system.

As regards interactions, each one is uniquely identified by
the extensions associated with the action denotations offered
by the interacting processes. For example, the interaction
generated by the above expression can be uniquely identified
as b((2,0),(2,1)).

From a formal point of view, let us indicate an extended
action denotation by g(), where g is a gate and ¢ is an
identifier which uniquely identifies the related event. The
semantic rules of the language can be extended accordingly, in
order to express precisely how extensions are generated and
combined. The new axioms and inference rules are exactly
the same as before, with the addition of extensions. We
indicate by B — a(i)” — B'the fact that B can generate
event a” with extension ¢ and become B’ . Table V reports the
extended semantic rules (aging transitions remain unchanged).

159

The notation (%1,42) is used to denote an extension which is
the concatenation of the two identifiers 71, 2. Note that the
parallel control flows which are active in a system state can
be represented as the leaves of a flow tree, and each one is
uniquely identified by the concatenation of the binary digits
representing the path starting from the tree root and ending
in it.

All the action (or interaction) denotations referring to the
same m_t imer operator occurrence have the same extension,
as they are indistinguishable according to the ET-LOTOS
semantics (they have a common age).

The extended action denotations formally defined in
Table V are such that they can be mapped one-to-one onto
performance model transitions.

B. Definition of a Labeled Transition System

In the definition of the mapping from ET-LOTOS onto
the corresponding performance model we take advantage of
the uncoupling of timing information with respect to untimed
behavior information, which is enforced by the semantics
formulation, composed of two independent sets of transitions.

As regards the untimed behavior part, we first define a
labelled transition system (LTS) which encompasses all the
information related to this part (action transitions). If we
neglect in action transitions (Table V) all the age parameters
and related requirements, we get a set of inference rules (that
we shall call untimed action transitions) which is substantially
the same as that of basic LOTOS. Indeed, in this new system,
the timer and m_timer operators do not affect the set of
possible derivations of a behavior expression. The LTS that has
to be considered is then essentially the same as the standard
one, the only difference being that arcs must be labelled by
extended action denotations instead of being labelled by gate
identifiers. This is needed in order to be able to properly assign
ages when time is superimposed onto the untimed structure.

From a formal point of view, the LTS of a behavior
expression B is defined as a 4-tuple < S, G, T, sg >, where

» S is the set of the LTS states. The states are in one to one

correspondence with the behavior expressions derivable
from B, according to untimed action transitions.

« G is the LTS alphabet. It is a set of extended action

denotations.

« T={(E,g,E)E-g— E' g€G}

e sp € S is the initial state, labelled B.

Different techniques were proposed to build an LTS from
a LOTOS specification, and here we use the constructive
technique proposed in [41], which offers some interesting
advantages over direct inductive application of inference rules,
such as lower computational complexity and applicability to
a wider class of specifications. The algorithm for building the
LTS of a behavior expression B works as follows:

1) Start with S =%, G =0, T = §, and add B = s¢ to
S. Note that every state of S is identified here by its
associated behavior expression.

2) For every new state B; just added to S, find the direct
derivations of B; according to untimed action transitions,
ie., the set H(B;) = {(Bi.g.B))|Bi—g — "'}

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 2, NO. 2, APRIL 1994

TABLE V
ACTION TRANSITIONS EXTENDED WITH IDENTIFIERS

al)
a(1)Ti—a(?)” — 8

a2)
Bl — a(i)™ — B1’
B1[}B2 — a(i)™ — B1'
ad)
Bl —a(:1)™! - B1’,B2— a(i2)™ — B2’,a €G
Bl| [G] |B2 — a(il,i2)mn(v1,72) B1’ | [G] |B2’
a5)

Bl—a(i)" > Bl’,a &G
B1l}[G]IB2 —a(i,0)" — B1’ | [G] |B2
a6)

B2 —a(i)" = B2',agG
B1/{G] B2 —a(:,1)” — B1| [G] |B2’
a7)

B—a(i)T =B ,t1<7<¢t2
timer a<X> in B-— a(i)” — timer a<x> in B’

a8)

B—Db” =+ B’,b#a
timer a<X> in B—Db" — timer a<X> in B’

a9)
B—a(i)" - B, t1<np<t2
m_timer(j)7a< X > in B—a(j)” — m_timer(j)®a<x> in B’

al0)

B—Db(i)" = B’.b#a
m_timer(j)7a<X> in B —b(i)"— > m_timer(j)7a<x> in B’
all)
B—hi(¢)" — B’,P[hl..hn]:=Bis a proc. def.
P[gl..gn] —gi(i)” —» B’ [gl..gn/hl..hn]
al2)

B—a(i)" - B",agsG
hide G in B— a(#)™ — hide G in B’
al3)

B—a(i)” - B',a€G
hide G in B— 1" — hide G in B’
al4)
B—a(i)" > B',a¢H
B(G/H] — a(#)™ — B’ [G/H]
al5)

B—hi(i)” — B’
Bf{gl..gn/hl..hn] —gi(¢{)” — B’ [gl..gn/hl..hn]

where the derivation relation refers to untimed action
transitions.

For each element (B;, g, B) of H(B;), add it to T and,
if B is not yet included in S, add B} to S, and, if g is
not yet included in G, add g to G.

If in step 3 some new state was added to S, go to step
2, otherwise stop.

The direct derivations H(B;) of a behavior expression B;
can be computed by recursively applying the inference rules
of the language (untimed action transitions).

3)

4)

C. Mapping Definition

Given an ET-LOTOS specification, an LTS can be built
from it as indicated in the previous section. Moreover, due
to the syntactic requirements imposed on the language, and
to the default timing and probabilistic assumptions, each
LTS alphabet element has a corresponding unique timer or
m_timer operator. The performance model corresponding to
an ET-LOTOS specification is then defined in the following
way:

» The performance model states are in one-to-one corre-
spondence with the LTS states. We shall use the notation
¥(B) to denote the performance model state correspond-
ing to the LTS state labelled B.

* The performance model transitions are in one-to-one
correspondence with the LTS alphabet elements (i.e.,
extended action denotations). We shall use the notation
T(e) to indicate the performance model transition corre-
sponding to the LTS alphabet element e. As each LTS
alphabet element has an associated timer or m_timer
operator, the same applies to the performance model tran-
sitions. Transitions with memory are those corresponding

to m_t imer operators, while transitions without memory
are those corresponding to t imer operators.

+ The performance model random variable d; is described
by the pdf associated with the timer or m_timer
operator which corresponds to transition ;.

* The priorities and weights assigned to transitions are the
values assigned to the corresponding t imer orm_timer
operators.

* The mappings E and N are defined by the LTS structure:

E(si) = {tel=7(s:) = T7'(tx) = B} (9)
N(si,t) = £(B') 6)

where B’ is such that Z~1(s;) — T~1(tx) — B'.

« The mapping Q(s;,tx) can be determined considering
that a transition ¢; belongs to Q(s;,tx) iff the following
relations hold:

M) = (T (t:))” — B’ a
Z—l(si) — (T_l(tk))n ~ B" — (T—l(ti))o ~ B" @)

The first one, states that ¢; is enabled in state s; with an
age T, while the second states that if ¢, is executed, the
new system state (B”) is such that ¢; is again enabled but
with null age.

VI. PERFORMANCE MODEL EVALUATION

The description of the dynamic behavior of the performance
model into which an ET-LOTOS specification can be mapped
provides sufficient details for the implementation of a sim-
ulator that can be instrumental for the computation of the
performance indexes of interest. Of course, the extensions to
the original timer constructs are such that the performance

AJMONE MARSAN et al.: A LOTOS EXTENSION OF DISTRIBUTED SYSTEMS

analysis can be obtained independently of any restriction on
the probabilistic characterization of the temporal specification.
It may however be interesting to discuss under what conditions
an analytical approach to performance evaluation is possible
and convenient.

First of all, it is important to note that by an analytical
approach we mean the study of the stochastic model generated
from the ET-LOTOS specification by numerical methods,
since the complexity of even the simplest toy examples imme-
diately rules out the possibility of any closed-form solution.

Obviously, the use of exponential distributions for the
characterization of the random variables associated with the
action timers allows the mapping of the ET-LOTOS specifi-
cation onto a continuous-time Markov chain. This opens the
possibility of using the numerical tools developed in many
years of lively research in the field of efficient numerical
techniques for the steady-state solution of Markovian models.
The present state of the art in this field is such that models
comprising few hundred thousand states can be analyzed with
acceptable time and space complexity.

The adoption of probability distributions formed by ade-
quately combining exponential stages also leads to Markovian
models, but in this case the number of states of the Markov
chain is much larger than the number of states of the ET-
LOTOS specification. Similarly, by introducing some (tight)
restrictions on the use of general distributions in combination
with a majority of exponentially distributed timers would lead
to semi-Markov models, that in principle can be analyzed, but
at very high cost.

In summary, this means that a numerical approach to the
analysis of the performance model derived from an ET-
LOTOS specification seems feasible only in the case of
exponential timing and ‘‘reasonable’’ state space sizes. In
all other instances, simulation is probably more convenient.
This statement should not be interpreted as a claim that the
simulation of extraordinarily large models is simple, regardless
of the timing specifications; on the contrary, the model size
makes obtaining reliable performance estimates extremely
difficult, but no simple alternative is known.

VII. EXAMPLES

In this section we present two simple application examples:
the first one is a version of the stop-and-wait protocol (the
example that is always used in the literature), while the second
one describes the behavior of a time-sharing system composed
of a host and two terminals. The stop-and-wait protocol model
provides an application example of the performance evaluation
approach based on a continuous-time Markov chain and makes
a model validation possible (by comparison with results found
in the literature), while the time sharing system model is
presented to describe a possible use of memory timers.

A. A Stop-and-Wait Protocol

We consider a stop-and-wait protocol with one bit frame
numbering, and the timeout mechanism at the transmitter. The
ET-LOTOS specification of the protocol is reported in Fig. 1.

161

Specification stopwait[tf0,tf1,ra0,ral,rf0ta0,rfltal,
timeout):noexit

behavior

timer tf0 < O, infty, exp(13.47), , >,

tfl < 0, infty, exp(13.47), , > in

timer timeout < 0, infty, exp(1000), , > in
timer rfOta0 < 0, infty, exp(120.14), , >,
rfltal < 0, infty, exp(120.14), , > in
p_timer ra0 < 0, infty, exp(106.7), , >,
ral < 0, infty, exp(106.7), , > in

TX([tf0,tf1,ra0,ral timeout]}
I[tf0,tf1,ra0,ral timeout]t

(TIMER([tfO,tf1 timeout] I[tf0,tf1]
CHItf0,tf1,rf0ta0,rf1tal ra0,ral])

where
process TX[tf0,tf1,ra0,ral timeout]:noexit :=
tf0; WA[tf0,tf1,ra0,ral timeout]

where

process WA[tf0,tf1,ra0,ral timeout}:noexit :=
timeout; TX[tf0,tf1,ra0,ral timeout]}

[] ra0; TX[tf1,tf0,ral,ra0,timeout}

[1 ral; WA[tfO,tf1,ra0,ral timeout]

endproc

endproc

process TIMER([start0,start1 timeout]:noexit :=
start0; SET_TIMER(start0,start1 timeout]
{] startl; SET_TIMER[start0,start1 timeout]

where

process SET_TIMER[start0,start] timeout]:noexit :=
start0; SET_TIMER[startO,start1,timeout]

[] startl; SET_TIMER[start0,start] timeout]

(1 timeout; TIMER[startQ,start1,timeout]

endproc

endproc

process CH[tf0,tf1,rfOta0,rf1tal ra0,ral J:noexit:=
CHI1[tf0,tf1,rf0ta0,rf1tal] I[rfOta0,rf1tal]l
CH1[rf0ta0,rf1tal ra0,ral]

where

process CHI[t0,t1,10,r1]:noexit :=
hide ok, err in

timer ok < 0, 0, , , 95> in
timer err < 0, 0, , , 5> in

t0; (ok; r0; CH1[t0,t1,10,r1]
[1 err; CHI[10,t1,r0,r1])

[1 t1; (ok; rl; CH1[t0,t1,r0,r1]
[] err; CH1[t0,t1,r0,r1])
endproc

endproc

endspec

Fig. 1. The ET-LOTOS specification of the stop-and-wait protocol.

The protocol behavior is modeled by three parallel pro-
cesses: a transmitter TX, a communication channel CH, which
acts also as the receiver, and a TIMER, which models the
timeout mechanism of the protocol.

Gates t £0 and t £1 represent the transmission of a frame
with sequence number 0 and 1 respectively; gates r£0ta0
and rfltal represent the propagation and the reception of
a frame, and the corresponding acknowledgment transmission
at the receiver; gates ra0 and ral represent the acknowledg-
ment propagation and reception; gate t imeout represents the
timeout expiration at the transmitter.

162

The notation exp (x) indicates an exponential pdf with
mean value x, while the notation infty indicates the value
oo. Default values of timer parameters are simply indicated
by ‘‘holes’” in the parameter list. For example, gate t£0 is
extended with an exponential pdf with mean value 13.47 and
default priority and weight.

Frame transmission is described by the interaction of
process TX with processes CH and TIMER at gates tf0
and t £1. After the frame transmission, TX instantiates the WA
(Wait for Acknowledgment) process, which discards the acks
referring to out of order frames (i.e. interactions offered at
gate raO while waiting for an acknowledgment at gate ral
or vice versa), until a correct ack is received or the timeout
occurs. If a correct ack is received, process TX is restarted,
but now gate t£1 takes the place of gate t£0 (and vice
versa), and the same holds for gates ra0 and ral, so as
to obtain the correct frame numbering. If a timeout occurs
(i.e. an interaction at gate timeout takes place) before the
correct acknowledgment is received, process TX is restarted
without inverting the gates, since the same frame will be
transmitted again.

Process TIMER models a timer which is set whenever a
frame is transmitted (an interaction at gate t £0 or gate tf1
takes place), and expires after an exponentially distributed
time, if not reset by a new frame transmission. The choice
of an exponential distribution comes only from the need
to make a markovian analysis possible. Should performance
analysis be done by simulation, any distribution could be
used.

Process CH is composed of two parallel processes CH1 (0)
and CH1 (1), each one representing a unidirectional channel:
one conveys frames, while the other conveys acknowledg-
ments. After a frame or ack transmission (t0 or t1), the
channel can lose a frame with probability 0.05 (event err)
or successfully propagate it (event ok) and offer it at the
corresponding gate (r0O or rl). If an error occurs on the
channel, the timeout action takes place at the transmitter
because no other interaction can occur. The two unidirectional
channels are connected in such a way that, if a frame reaches
the receiver end, process CH1 (0) interacts at gate r£0ta0
with process CH1 (1), this event representing both frame
reception at one unidirectional channel and ack transmission
at the other one.

Note the use of a pre-synchronized timer for gates ra0 and
ral to prevent action t imeout from taking place before the
incorrect pending acknowledgment is discarded. This behavior
must be excluded in order to avoid a possible deadlock.

The use of our extension allows a direct specification of the
5% channel error probability, simply using appropriate weights
for gates err and ok, because both gates are extended with
deterministic 0 time.

Note that, due to the exponential pdf on gates rfaOta0
and ra0, a timeout can occur also if the frame and ack
transmissions take place without channel error but the process
is so slow that the timeout expires. This is a realistic scenario
that we can describe using the proposed extension. Moreover,
we claim that the use of global timers greatly improves the
readability of the specification.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 2, NO. 2, APRIL 1994

The performance model is composed of 30 states and 68
transitions. The model is not reported here because the diagram
is slightly complex. All the probability density functions of
the random times are exponential, so as to allow a markovian
analysis.

In [17], a model of the stop-and-wait protocol with expo-
nentially distributed times is analyzed. In order to compare the
results obtained with our approach with the ones reported in
[17], the same numerical values for the protocol parameters
must be used. However, as the two models are slightly
different, our model parameters do not map one-to-one onto
corresponding parameters used in [17], and this difference
must be taken into account. In [17] one transition is used to
describe the frame transmission and propagation times, and a
separate transition is used for the frame reception time (the
same is true for the ack); in our model instead we describe as
three separate actions

* the frame transmission;
+ the frame propagation, reception and ack transmission,
« the ack propagation and reception.

A proper interpretation of the values used in [17] gives for

our model the following corresponding values:

» a frame transmission time (gates tf0 and tf1l) with
mean value equal to 13.47 ms;

« a frame propagation, reception, and ack transmission time
(gates rfOta0l and rfltal) with mean value 120.14
ms;

» an ack propagation and reception time (gates ra0 and
ral) with mean 106.7 ms;

« a timeout with mean 1000 ms.

The error probability on the channel is 0.05 in both models.
The Markovian analysis with numerical techniques gives
a protocol throughput equal to 2.79 messages/s, quite close
to the value 2.75 reported in [17]. The difference in the
numerical values is due to the different ways in which the error
probability on the channel is described: in [17], an exponential
distribution is used to induce the error probability, while we
describe it explicitly via a probabilistic choice. Moreover, in
our model a more realistic timeout scenario is used: whenever
a frame is transmitted, a timeout is set, given that even in the
case of a correct transmission the timeout may expire, while
in [17] a timeout is set only if an error occurs on the channel.

B. A Time-Sharing System Model

We consider a system consisting of a host that serves two
terminals. In order to keep the example really simple, we
describe a dumb host, serving a terminal for a fixed time, even
if the terminal does not require any service. The ET-LOTOS
specification of the model is reported in Fig. 2.

The system behavior is modeled by the two processes named
HOST and TERMS. They are synchronized at gates t1 and
t 2, each one representing a terminal receiving some service
from the host. Gates startl and start2 are used to model
the time between successive requests of service of the two
terminals (uniformly distributed), while gate int op represents
internal actions executed by the host at each service cycle.
Gate switch represents the host switching, and its timing

AJMONE MARSAN et al.: A LOTOS EXTENSION OF DISTRIBUTED SYSTEMS

Specification host_term[t1,t2,startl,start2,intop,switch]:
noexit

Behavior

m_timer tl < 0, 100, ,,>,122<0,2,,,>in
timer intop < 0, 200, , , > in

timer switch < 20, 20, , , ,> in

timer startl < 0, infty, exp(10), , >,

start2 < 0, infty, exp(10), , > in

HOSTIt1,t2,intop,switch] [{t1,12]] TERMS{t1,2 startl,start2]
where

process TERMS|t1,t2,start1,start2]:noexit := TERM([t1,start1]
I TERM[t2,start2]
endproc

process TERM[t,start]:noexit :=
start; BUSY/{t,start}
endproc

process BUSY({t,start]:noexit :=
t; BUSY[tstart] [] t; TERM[t,start]
endproc

process HOSTIt1,t2,intop,switch]:noexit :
intop; PHASE1[t1,t2,intop,switch]
endproc

process PHASE1[t1,t2,intop,switch]:exit :=
tl; PHASE2[t1,t2,intop,switch]

[] switch; PHASE2{t1,t2,intop,switch]
endproc

process PHASE2[t1,12,intop,switch]:exit :
t2; HOSTI(t1,t2,intop,switch]

[1 switch; HOST][t1,t2,intop,switch]
endproc

endspec

Fig. 2. The ET-LOTOS specification of the time-sharing system.

describes the fixed time slice of 20 time units, assigned to
each terminal by the host.

The TERMS process consists of two interleaved TERM pro-
cesses, each one describing one terminal. Each terminal exe-
cutes internal operations before asking service (event start);
then it receives service, remaining in the BUSY state until the
service is provided by the HOST process via an interaction
at gate t1 (t2). Finally, the terminal can either immediately
issue a new service request, or go back to the initial state.

The HOST process first executes internal operations (gate
intop), then it provides a service to the first terminal,
activating process PHASE1. The interaction at gate t1 occurs
if the first terminal is busy and if the required service is shorter
than the host switching time. Otherwise, after 20 time units the
host switches (event switch) and activates process PHASEZ2,
to provide service to the second terminal. Finally, the service
cycle terminates and process HOST is activated again.

We give in Fig. 3 the diagram of the performance model
derived from the specification. Transitions are labeled with
the corresponding gates, while priorities and weights are not
specified, because default values are used. The states are
numbered from 1 to 12 (1 is the starting state). Gate identifiers
t1 and t2 had to be extended as described in Section V-A.

163

Fig. 3.

The model for the time-sharing system example.

Four host ‘‘cycles’’ are easily identifiable in the diagram:
we have four cycles because the two terminals can be in four
different states while the host is working (no terminal requiring
service, terminal 1 or 2 requiring service, both terminals
requiring service). For example, cycle 1-3-7 describes the host
working while no terminal is requiring service, whereas cycle
2-5-9 refers to a situation where terminal 2 is requiring service
and so on. The transitions between these ‘‘groups’’ of states
are caused by a new terminal requiring service (i.e. actions
startl and start2) or a terminal service completion (i.e.
actions t1 and t2), when the terminal does not immediately
require a new service.

The most interesting aspect of this example is the use of
memory timers on gates t1 and t2. The memory timers
ensure that, if the requested service cannot be completely
satisfied within a service time, the work already done by the
host is not lost; the next time the same terminal is being
serviced, only the residual work is considered. This kind of
behavior is very common and the memory timer extension
helps in maintaining the LOTOS specification compact and
readable.

VIII. CONCLUSIONS

“Extended Timed LOTOS” (ET-LOTOS) is a new extension
of LOTOS which incorporates both timing and probabilistic
specifications. ET-LOTOS maintains the same formal structure
of LOTOS, and can therefore be similarly used to formally
verify distributed systems, including those with time-critical
features. The extension is downward compatible, in the sense
that by neglecting extensions one gets a standard LOTOS
specification describing the system features not related to time
or probability. ET-LOTOS can be mapped onto a performance
model which preserves the same observational behavior and is
open to direct application of different performance evaluation
techniques. The choice about which specific technique it is
possible and convenient to use depends on the kind of timing
and probabilistic characterizations used in the specification.
The extensions introduced in the language enable the user to
properly and easily specify the most common scenarios in
distributed systems, including some which were not provided
for in previous timed extensions of LOTOS.

1

[2

31

[4]

[5)

(61

7]

(8]

91

[10]

(11}

(12)

(13]

(141

(15)

[16]
{171
(18]

[19]

{20

[21}

{22)

(23]

[24]

[25]

[26]

REFERENCES

CCITT/SGX/WP3-1, “Specification and Description Language SDL,”
CCITT Recommendations Z.100-Z.104, 1988.

1S 8807: Information Processing Systems, Open Systems Interconnection,
LOTOS - A Formal Description Technique Based on the Temporal
Ordering of Observational Behaviour, 1SO, 1989.

180, IS 9074, Information Processing Systems - Open Systems Intercon-
nection: Estelle: a Formal Description technique Based on an Extended
Finite State Transition Model, 1SO, 1989.

G. Von Bochmann and J. Vaucher, “Adding Performance Aspects to
Specification Languages,” in Protocol Specification, Testing and Veri-
fication VIII, S. Aggarwal and K. Sabnani, Eds. New York: Elsevier
Science, 1988.

J. Quemada, and A. Fernandez, “Introduction of quantitative relative
time into LOTOS,” in Protocol Specification, Testing, and Verification
VII, H. Rudin, and C. H. West, Eds. New York: Elsevier Science, 1987.
G. M. Reed, and A. W. Roscoe, “A timed model for communicating
sequential processes,” Proc. 13th ICALP, LNCS 226, Springer-Verlag,
1986, pp. 314-321.

R. Gerth, and A. Boucher, “A timed failures model for extended
communicating processes,” Proc. 14th ICALP, LNCS 267, Springer-
Verlag, 1987, pp. 95-114.

F. Moller, and C. Tofts, “A temporal calculus of communicating
systems,” Lecture Notes in Computer Science 458, Springer-Verlag,
1990, pp. 401-415.

W. Yi, “Real-time behaviour of asynchronous agents,” Lecture Notes in
Computer Science 458, Springer-Verlag, 1990, pp. 502-520.

N. F. Maxemchuk, and K. Sabnani, “Probabilistic verification of com-
munication protocols,” in Protocol Specification, Testing, and Verifica-
tion VII, H. Rudin, and C.H. West, Eds. New York: Elsevier Science,
1987.

D. D. Dimitrijevic, and M. S. Chen, “An integrated algorithm for
probabilistic protocol verification and evaluation,” in Proc. IEEE IN-
FOCOM’89, Ottawa, Ont., Canada, Apr. 1989.

A. Giacalone, C. Jou, and S. A. Smolka, “Algebraic reasoning for
probabilistic concurrent systems,” in Proc. IFIP TC2 Working Conf.
Programming Concepts and Methods, 1989.

K.J. Larsen and A. Skou, “Bisimulation through probabilistic testing,”
in Proc. 16th ACM Symp. Principles Programming Languages, 1989.
R. Van Glabbeek, S. A. Smolka, B. Steffen, and C. M. N. Tofts,
“Reactive, generative, and stratified models of probabilistic processes,”
in Proc. S5th IEEE Int. Symp. Logic Comput. Sci., 1990.

F. J. W. Symons, “Introduction to numerical petri nets, a general graph-
ical model of concurrent processing systems,” Australian Telecommun.
Res., vol. 14, no. 1, pp. 28-33, Jan. 1980.

G. Florin and S. Natkin, “Les Reseaux de Petri Stochastiques,” Tech-
nique et Science Informatiques, vol. 4, no. 1, Feb. 1985.

M. K. Molloy, “Performance analysis using stochastic Petri Nets,” I[EEE
Trans. Comput., vol. 31, pp. 913-917, Sept. 1982.

M. Ajmone Marsan, G. Balbo, and G. Conte, “A class of generalized
stochastic Petri Nets for the performance analysis of multiprocessor
systems,” ACM Trans. Comput. Syst., vol. 2, May 1984.

M. Ajmone Marsan, G. Balbo, G. Chiola, and G. Conte, “Generalized
stochastic Petri Nets revisited: Random switches and priorities,” in Proc.
Int. Workshop Petri Nets Perform. Models, IEEE-CS Press, Madison,
WI, pp. 44-53, Aug. 1987.

M. Ajmone Marsan, G. Balbo, A. Bobbio, G. Chiola, G. Conte, and
A. Cumani, “The effect of execution policies on the semantics and
analysis of stochastic Petri Nets,” IEEE Trans. Software Eng., vol. 15,
pp- 832-846, July 1989.

J.B. Dugan, K.S. Trivedi, R.M. Geist, and V.F. Nicola, “Extended Sto-
chastic Petri Nets: Applications and analysis,” in Proc. PERFORMANCE
*84, Pars, France, Dec. 1984.

M. Ajmone Marsan and G. Chiola, “On Petri Nets with deterministic
and exponentially distributed firing times,” in Advances in Petri Nets
'87 G. Rozenberg, Ed. New York: Springer-Verlag, LNCS, vol. 266,
1987, pp. 132-145.

J. F. Meyer, A. Movaghar, and W. H. Sanders, “Stochastic activity
networks: Structure, behavior, and application,” in Proc. Int. Workshop
Timed Petri Nets, IEEE-CS Press, Torino, Italy, July, 1985.

R. R. Razouk, and C. V. Phelps, “Performance analysis using timed Petri
Nets,” in Proc. Int. Conf. Parallel Processing, Aug. 1984, pp. 126-129.
M. A. Holliday, and M. K. Vernon, “A generalized timed Petri Net
model for performance analysis,” in Proc. Int. Workshop Timed Petri
Nets, IEEE-CS Press, Torino, Italy, July, 1985.

W. M. Zuberek, “M-timed Petri Nets, priorities, preemptions, and
performance evaluation of systems,” in Advances in Petri Nets '85,
G.Rozenberg, Ed. New York: LNCS no. 222, Springer Verlag, 1986.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 2, NO. 2, APRIL 1994

[27]

[28]

29
[30]

31]

[32]

[33]

[34]

[35]

[36]
371

[38]

[39]

{40]

[41]

H. Rudin, “An improved algorithm for estimating protocol perfor-
mance,” in Protocol Specification, Testing and Verification IV, Y. Yemini,
R. Storm, and S. Yemini, Eds. New York: Elsevier Science, 1985.

P. S. Kiritzinger, “Analyzing the time efficiency of a communication
protocol,” in Protocol Specification, Testing and Verification 1V, Y.
Yemini, R. Storm, and S. Yemini, Eds. New York: Elsevier Science,
1985.

P. S. Kritzinger, “A performance model of the OSI communication
architecture,” IEEE Trans. Commun., vol. COM-34, June 1986.

F. J. Lin, and M. T. Liu, “An integrated approach to verification
and performance analysis of communication protocols,” in Protocol
Specification, Testing and Verification VIII, S. Aggarwal and K. Sabnani,
Eds. New York: Elsevier Science, 1988.

N. Nounou, and Y. Yemini, “Algebraic specification-based performance
analysis of communication protocols,” in Protocol Specification, Testing
and Verification IV, Y. Yemini, R. Storm, and S. Yemini, Eds. New
York: Elsevier Science, 1985.

H. Hansson, and B. Jonsson, “A calculus for communicating systems
with time and probabilities,” in Proc. IEEE 11th Real-Time Systems
Symp., 1990.

N. Rico, and G. Von Bochmann, “Performance description and anal-
ysis for distributed systems using a variant of LOTOS,” in Protocol
Specification, Testing and Verification XI, B. Jonsson, J. Parrow and B.
Pehrson, Eds. New York: Elsevier Science, 1991.

J. Quemada, A. Azcorra, and D. Frutos, “A timed calculus for LOTOS,”
in Proc. FORTE'89 2nd Int. Conf. Formal Description Techniques
Distrib. Syst. Commun. Protocols, Vancouver, B.C., Canada, Dec. 1989.
T. Bolognesi, F. Lucidi, and S. Trigila, “From timed Petri Nets to
timed LOTOS,” in Protocol Specification, Testing and Verification X,
L. Logrippo, R.L. Probert, H. Ural, Eds. New York: Elsevier Science,
1990.

, “New Proposals for Timed-Interaction LOTOS,” Fondazione
Ugo Bordoni, Italy, Rep. FUB: 5B5590, 1990.

T. Bolognesi and F. Lucidi, “LOTOS-like process algebras with urgent
or timed interactions,” in Proc. of FORTE 91: 4th Int. Conf. Formal
Dscription Techniques, K. Parker and G. Rose, Eds. New York:
Elsevier Science, 1992.

T. Bolognesi and E. Brinksma, “Introduction to the ISO specification
language LOTOS,” Comput. Networks ISDN Syst., vol.14, pp. 25-59,
1987.

A. Fantechi, S. Gnesi, and G. Mazzarini, “How much expressive
are LOTOS behaviour expressions?,” in Proc. of FORTE 90: 3rd Int.
Conf. on Formal Dscription Techniques, J. Quemada, J. Manas, and E.
Vasquez, Eds. New York: Elsevier Science, 1991.

H. Garavel and E. Najm, “TILT: From LOTOS to labelled transition
systems,” in The formal description technique LOTOS, P. H. J. Van Eijk,
C. A. Vissers, and M. Diaz, Eds. New York: Elsevier Science, 1989.

A. Valenzano, R. Sisto, and L. Ciminiera, “An Abstract Execution Model
for Basic LOTOS,” IEE Software Eng. J., vol. 5, no. 6, pp. 311-318,
1990.

Marco Ajmone Marsan (SM’86) was born in
Torino, Italy, in 1951. He holds a Dr. Ing. degree in
Electronic Engineering from Politecnico di Torino,
and a Master of Science from the University of
California, Los Angeles.

He is a Full Professor at the Electronics
Department of Politecnico di Torino, in Italy. From
November 1975 to October 1987 he was at the
Electronics Department of Politecnico di Torino,
first as a Researcher, then as an Associate Professor.
From November 1987 to October 1990 he was a

Full Professor at the Computer Science Department of the University of Milan,
in Italy. During the summers of 1980 and 1981 he was with the Research
in Distributed Processing Group, Computer Science Department, UCLA. His
current interests are in the fields of performance evaluation of communication
networks and computer systems, Petri nets and queueing theory.

Dr. Ajmone Marsan has coauthored about 150 joumnal and conference
papers in the areas of Communications and Computer Science, as well as
the book Performance Models of Multiprocessor Systems (Cambridge, MA,
M.LT. Press). He received the best paper award at the Third International
Conference on Distributed Computing Systems in Miami, FL, in 1982. His
e-mail address is ajmone@polito.it.

AJMONE MARSAN et al.: A LOTOS EXTENSION OF DISTRIBUTED SYSTEMS

Andrea Biance is a Ph.D. student in the Electron-
ics Department at Politecnico di Torino, Italy. He
received the B.S. degree in 1986 from Politecnico
di Torino.

In 1993 he spent a one-year at the Hewlett-
Packard Laboratories, Palo Alto, CA, researching
ATM congestion control issues. His research in-
terests are in the fields of all-optical networks,
ATM congestion control, and formal description
techniques. His e-mail address is bianco@polito.it.

Luigi Ciminiera (M’80) received the Electronic
Engineering degree from the Politecnico di Torino,
Italy, in 1977.

He is currently Professor of Computer Engineer-
ing at Politecnico di Torino. Formerly, he has also
been, in different positions, with the University
of Bari and L’Aquila, Italy. He authored several
technical papers and co-authored two books on
microprocessors and industrial computer networks.
His research interests include computer arithmetic,
computer graphics and computer networks and pro-
tocols. His e-mail address is ciminiera@polito.it

165

Riccardo Sisto received the Electronic Engineering
degree in 1987, and received the Ph.D degree in
computer engineering in 1992, both from Politec-
nico di Torino, Torino, Italy.

Since 1991 he has been working at Politecnico
di Torino, in the Computer Science Department.
His current research interests are in the areas of
computer networks, communication protocol en-
gineering, and formal description techniques for
parallel and distributed systems. His e-mail address
is sisto@polito.it.

Adriano Valenzano was born in Turin, Italy, on
August 11, 1955. He received in Electronic Engi-
neering degree from the Polytechnic of Turin in
1980.

From 1980 to 1983 he joined the Department
of Computer Engineering of the Polytechnic of
Turin, where he was engaged in research on parallel
processing, special purpose parallel processors and
microprocessor-based local area networks under the
Computer Science Program of the Italian National
Research Council (CNR). Since 1983 he has been a
Researcher at the Italian National Research Council and in 1991 be became
Director of Research. He is currently with Centro Elaborazione Numerale dei
Segnali (CENS) where he is responsible for researches concerning distributed
systems, local area networks and communication protocols. His current
research interests are in the areas of computer networks, formal description
techniques, communication protocols and distributed systems.

Dr. Valenzano has authored more than 80 technical papers and co-authored
two books on Advanced Microprocessor Architectures and MAP and TOP
Communications: Standards and Applications. His e-mail address is valen-
zano@polito.it.

