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Abstract
We present a scheduling protocol, called Time-Shift
scheduling, to forward data packets from multiple input
flows to a single output channel. Each input flow is guar-
anteed a predetermined forwarding rate and an upper bound
on packet delay. The protocol is an improvement over ex-
isting protocols because it satisfies the properties of low
delay, fairness, and efficiency, while existing protocols
fail to satisfy at least one of these properties. In Time-
Shift scheduling, each flow is assigned an increasing
timestamp, and the packet chosen for transmission is
taken from the flow with the least timestamp. The proto-
col features the novel technique of time shifting, in which
the scheduler's real-time clock is adjusted to prevent flow
timestamps from increasing faster than the real-time
clock. This bounds the difference between any pair of flow
timestamps, thus ensuring the fair scheduling of flows.

1. Introduction
Consider a computer network with point-to-point

communication channels. Each output channel of a com-
puter is equipped with a scheduler. The input to the
scheduler is a set of flows, where each flow is a sequence
of data packets received from some input channel of the
computer. When an output channel becomes idle, the task
of its scheduler is to determine which received packet
should be the next one to forward over the channel.

A particular type of scheduling protocols, which we call
guaranteed-rate schedulers, forward data packets from each
flow at a designated rate. Examples of these scheduling
protocols can be found in [24]. In all these protocols, the
source of a flow finds a network path that leads to its de-
sired destination. Then, the source notifies each scheduler
in the path about its desired forwarding rate. Each sched-
uler determines if it has enough available bandwidth in its
output channel to forward the data packets from the new
flow. The new flow is accepted if and only if all sched-
ulers in the path accept the new flow.

Due to the reservation of bandwidth, the network can
provide service guarantees to each flow, such as end-to-end
packet delays, provided the rate of the flow does not ex-

ceed the agreed-upon rate. These service guarantees are of
particular importance to real-time applications, such as in-
teractive audio and video [11].

The desirable properties of guaranteed-rate schedulers are
the following.

1. Rate-dependent delay: Let r be an input flow of a
scheduler, and the reserved rate of r be R.r bits/sec.
Assume r is also the sole input to a constant rate server
that forwards the bits of each packet of r at a precise rate
of R.r bits/sec. The delay of each packet of r through
the scheduler should be at most the delay of the same
packet through the constant rate server.

2. Efficiency: The time to enqueue a received packet or to
dequeue a packet for transmission is O(log(N)), where N
is the number of input flows of the scheduler.

3. Fairness: A flow should not be "punished" if it tem-
porarily exceeds its reserved rate to take advantage of
unused bandwidth in the channel. In addition, the un-
used bandwidth should be shared among the flows in
proportion to their reserved rates.

The rate-dependent delay property guarantees to each
flow that the upper bound on its packet delay depends
solely on its reserved rate, and not on other factors, such
as the number of flows sharing the scheduler or the rate
reserved by other flows. The efficiency property is desir-
able due to the high bandwidth requirements expected from
future applications of guaranteed-rate scheduling.

The fairness property is desirable, because it may be
normal for some flows to violate their reserved packet
rate. Examples of such flows are file transfers and multi-
resolution video [18]. The sources of these flows may re-
serve enough forwarding rate from the network to receive
a minimum quality of service. If the source of a flow de-
tects that additional bandwidth is available, then it gener-
ates data packets at a rate higher than that which it re-
served, in order to take advantage of the unused bandwidth.
If the source detects that no additional bandwidth is avail-
able, it reduces its sending rate. (There are several tech-
niques by which a source can detect if additional band-
width is available, see for example [16] and [21]). Thus,
because some flows may be of adjustable rate, the sched-



uler should share the unused bandwidth in a fair manner
among all flows that currently have packets queued in the
scheduler.

Some scheduling protocols are inadequate for adjustable
rate flows because they are not work-conserving [10] [13]
[17]. That is, they serve each flow at exactly the rate it
has reserved, and will not forward additional packets of the
flow even if the outgoing channel is idle. These sched-
ulers do not allow adjustable rate flows to take advantage
of any additional bandwidth, and thus do not satisfy the
fairness property.

Other scheduling protocols assign a timestamp to each
packet, and packets are forwarded in increasing timestamp
order. These protocols are work conserving, that is, the
output channel is never idle as long as its packet queue is
non-empty. However, some of these schedulers are unfair
[23], in the sense that they "punish" a flow if it sends data
packets at a rate higher than its reserved rate. Other sched-
ulers are fair [14] [20], but they are either inefficient or do
not have rate-dependent delay.

In this paper, we introduce a new scheduling protocol,
called Time-Shift scheduling. The protocol is based on
packet timestamps, is work-conserving, and satisfies all
the desirable properties mentioned above. Time-shift
scheduling is based on the novel technique of time-shift-
ing, in which the scheduler's real-time clock is periodi-
cally adjusted to prevent packet timestamps from increas-
ing faster than the real-time clock. This ensures fairness
by placing an upper bound on the difference between the
timestamps of any pair of flows.

Notation: we use quantifications of the form

(min u : 0 ≤ u ≤ 2 : u2)

to denote the minimum of 02, 12, and 22 . If the range of
the dummy variable u is omitted, all values in the type of
u are included.

2. Flow Timestamps
In this section, we consider the scheduling protocols of

Virtual Clock [23], Weighted Fair Queuing [16] [19] [20],
and Self-Clocking Fair Queuing [14], and discuss their
strengths and weaknesses. In these protocols, a timestamp
is assigned to each received data packet, and packets are
forwarded in increasing timestamp order.

We have shown in [4] that assigning a timestamp to a
packet when it becomes the head of the queue of its flow
is cleaner and more efficient than assigning it a timestamp
when it is received. The former technique is called flow
timestamps, since only one timestamp is maintained per
flow. Thus, we base Time-Shift scheduling on flow
timestamps. To maintain a single timestamp paradigm
throughout the paper, the flow timestamp versions of the
above protocols are discussed.

A flow is an infinite sequence of data packets received
by a scheduler. A scheduler receives data packets from N
distinct flows. For each flow, the scheduler stores the re-
ceived packets in a separate FIFO queue. We say that a
flow is active if its queue in the scheduler is non-empty.

We adopt the following notation, where p is a packet
from flow r.

• queue.r queue of received packets from flow r.
• R.r forwarding rate in bits/sec. reserved for flow r.
• L.r packet length (in bits) of the head of queue.r.
• F.r timestamp of flow r.
• L.p packet length (in bits) of packet p.
• F.p value of F.r when p is the head of queue.r.
• Lmax upper bound on packet length for all flows.
•  C capacity in bits/sec. of the output channel

Whenever the output channel becomes idle, the sched-
uler chooses a packet from those it has received, and for-
wards the packet to the output channel. The goal of the
scheduler is to forward the packets of each flow r at an av-
erage rate of at least R.r. Since all N flows share the out-
put channel, the following constraint is necessary.

R. r
r=0

N−1
∑   ≤  C (1)

Assume a packet p from flow r is received. Before the
packet is appended to queue.r, the scheduler checks if r is
active. If it is not active, it updates F.r as follows.

F.r := max(g.p, F.r) + L.p/R.r

In this assignment, g.p is some quantity related to packet
p. The value chosen for g.p varies from one scheduling
protocol to another.

When the output channel becomes idle, the scheduler
chooses among the active flows the one with the smallest
timestamp. Let r be this flow. Then, the next packet from
flow r is removed from queue.r and forwarded to the out-
put channel. If flow r remains active, its flow timestamp
is updated as follows.

F.r := F.r + L.r/R.r

We next consider the case of Virtual Clock scheduling,
which is defined by choosing g.p as the arrival time of p
to the scheduler. Virtual Clock has the property of rate-
dependent delay, as proven in [4] [22]. In particular, the
exit time of p is at most F.p + Lmax/C. The scheduler is
also efficient, requiring only O(log(N)) operations to en-
queue or dequeue a packet. However, the scheduler is un-
fair, as illustrated by the following example.

A scheduler has two flows, r and s, each with a reserved
rate of 1 Kbit/sec., a packet size of 1 Kbit, and an output
channel bandwidth of 2 Kbit/sec.. Consider the following
events.

From time 0 up to time 100 sec., packets from flow r
arrive at a rate of 2 packets/sec., and no packet is received
from flow s. Thus, at time 100, all packets from r are
forwarded to the output channel, F.r = 200, and F.s = 0.

Next, from time 100 sec. up to time 200 sec., packets
from both flows are received at the rate of 2 packets/sec..
Note that, when the next packet from flow s is received,
F.s = 101. Also, when the next packet from flow r is re-
ceived, F.r = 201. Since F.r is much larger than F.s, no
packet from r is forwarded to the output channel until 100
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Figure 1: flow timestamps drift away from the clock.

packets from s are forwarded, i.e., until time 150 sec.. In
effect, r is denied service for 50 sec. because it previously
took advantage of bandwidth unused by s.

This unfairness does not occur in the Weighted Fair
Queuing protocol. Furthermore, the bound on packet de-
lay is similar to that of Virtual Clock, and thus it also
satisfies the rate-dependent delay property. In Weighted
Fair Queuing, the timestamp of a packet is the time at
which the packet would exit a virtual server. The input to
the virtual server are the same input flows of the sched-
uler, and the virtual server shares its unused bandwidth
among all active flows in proportion to their reserved
rates. The value of g.p is complicated and takes O(N) time
to compute.

The high complexity of Weighted Fair Queuing led to
the introduction of Self-Clocking Fair Queuing. In this
scheduler, g.p = F.q, where q is the packet being sent over
the output channel at the time p is received. The time to
enqueue or dequeue a packet is O(log(N)).

This protocol is fair in the following sense. For any
pair of active flows r and s,

| F.r - F.s | ≤ max(L.r/R.r, L.s/R.s)

In this way, no flow can have a timestamp that is signifi-
cantly greater than the timestamp of other flows. Thus, a
flow that takes advantage of free bandwidth cannot be pun-
ished. On the other hand, in Virtual Clock scheduling, |
F.r - F.s | is unbounded.

Unfortunately, the delay of packets increases as follows.
Let the scheduler have 91 flows, each with a packet size
of 1 Kbit. Let flow 0 have a rate of 100 bits/sec., and
flows 1 through 90 have a rate of 10 bits/sec.. Let the
output channel's bandwidth be 1 Kbit/sec.. Assume that
one packet from each of flows 1 through 90 arrive at time
0. The timestamp of each of these packets is 100. Next,
when the first of these packets is being forwarded, a
packet from flow 0 arrives. The timestamp of this packet
is 110. This packet must wait until all 90 packets with
timestamp 100 exit the scheduler before itself may exit.
Hence, the delay of this packet is 90 seconds, as opposed
to a delay of only 10 seconds that it would incur in
Virtual Clock or Weighted Fair Queuing scheduling.

Note that the delay of flow 0 is related the rate of the
other flows. If the 90 flows with a rate of 10 bits/sec. are
replaced by 900 flows with a rate of 1 bit/sec., the delay
of flow 0 increases by a factor of 10.

We conclude that each of the three scheduling protocols
discussed satisfy only two of the three desired properties.
In the next section, we present a scheduling protocol that
satisfies all three properties.

3. Time-Shift Scheduling
We next present the intuition behind Time-Shift

scheduling, followed by its formal definition. Its delay and
fairness properties are given in later sections.

From its definition, F.r can be viewed, intuitively, as
the time at which the packet at the head of the queue of
flow r should be forwarded. That is, it should be forwarded
L.r/R.r seconds later than the forwarding time of the pre-
vious packet from the same flow. Thus, we may define
the "ideal arrival time" of the packet at the head of the
queue of flow r as follows.

I.r = F.r - L.r/R.r

That is, if the packet should be forwarded at time F.r, and
the flow is abiding by its reserved rate R.r, then, ideally,
the packet should be received at time I.r.

Consider Figure 1, in which flows 0 through 2 are ac-
tive, and the dashed line on the left indicates the current
value of the real-time clock. The flow timestamp F.r is an
indicator of how much service has been given to flow r. If
F.r >> clock, then packets from flow r have been for-
warded at a rate greater than R.r. This could occur if the
flow is trying to take advantage of unused bandwidth. In
the figure, all three flows have their flow timestamp sig-
nificantly greater than the current value of the clock.

Assume an additional flow, flow 3, has been inactive
for some time, but becomes active once again. Assume
g.p is the arrival time of packet p. Then, when flow 3 be-
comes active, its flow timestamp is updated as follows.

F.3 := max(clock, F.3) + L.3/R.3

Thus, F.3 = clock + L.3/R.3, which is significantly
smaller than the flow timestamps of the other active
flows. This implies that only packets from flow 3 are
forwarded until F.3 reaches a value greater than the flow
timestamps of the other flows.

To remedy this, F.3 should be given a value as close as
possible to F.0, F.1, and F.2. Since F.3 is derived from
the real-time clock, the clock should be close to F.0, F.1
and F.2. To do this, either we increase the value of the
real-time clock, or we reduce the value of each flow times-
tamp by an equal amount.  We take the former approach,
because the latter requires O(N) time.

The remaining question is how much to advance the
clock. If the clock is advanced beyond the minimum of
the ideal arrival times, then the flow that becomes active
has a timestamp larger than the timestamps of the active
flows, and may be delayed excessively by these flows. If
the clock is advanced to a value smaller than the mini-
mum of the ideal arrival times, then the flow that be-
comes active has a timestamp smaller than the times-
tamps of the active flows, and it may unfairly delay the



process Time-Shift scheduler

inputs
ch_idle : is the output channel is idle?
R.r : rate of flow r

variables
r :  0 ≤ r < N
queue.r : packet queue of flow r
L.r : length of packet at head of queue.r
F.r : timestamp of flow r
p : data packet
L.p : length of packet p
ShiftClock : adjustable real-time clock

begin
  receive p from any r →

if queue.r = empty →
ShiftClock := max(ShiftClock, Imin);
F.r := max(ShiftClock, F.r) + L.p/R.r

 queue.r ≠ empty → skip
fi;
queue.r := append(queue.r, p)

  ch_idle ∧ (∃ s : : queue.s ≠ empty)   →
r := least_ts(F);
p := head(queue.r);
send p to output channel;
queue.r := tail(queue.r);
if queue.r ≠ empty

→ F.r := F.r + L.r/R.r

 (∀ s : : queue.s = empty)
→ ShiftClock := max(ShiftClock, F.r)

 (∃ s : : queue.s ≠ empty) ∧ queue.r = empty
→ skip

f i
end

Figure 2: Time-Shift scheduler

active flows. Thus, we choose to advance the clock to the
minimum of the ideal arrival times of the active flows.

Because the scheduler advances the clock, i.e., it
"shifts" the clock to the right, it is called a Time-Shift
scheduler. We refer to the adjustable real-time clock by the
name ShiftClock1.

When a packet p is received from an inactive flow r
(i.e., queue.r is empty), ShiftClock is updated as follows,

ShiftClock := max(ShiftClock, Imin)

where Imin is the minimum ideal arrival time of all active
flows. That is,

1If the clock of the scheduler cannot be advanced, the
scheduler may increment a variable, say shift, instead of
incrementing the clock. Any reference to ShiftClock is then
substituted by the expression clock + shift.

Imin = (min s : queue.s ≠ empty : I.s)

Furthermore, the timestamp of r is updated as follows.

F.r := max(ShiftClock, F.r) + L.p/R.r

When a packet from an active flow r is forwarded, F.r is
increased by L.r/R.r, provided flow r remains active.

We next present in Figure 2 the definition of the Time-
Shift scheduler, using the notation of [15].

The process has two inputs from its environment. The
first is ch_idle, which indicates if the output channel is
idle. It becomes false when the scheduler sends a packet p
to the channel, and becomes true L.p/C seconds after-
wards. The second input is the rate reserved for each flow.

We assume the following. Variable ShiftClock is an ad-
justable real-time clock. It increases automatically with
the progression of time. Also, executing an action takes
zero time, i.e., ShiftClock remains constant while an ac-
tion is executed unless an assignment statement in the ac-
tion changes its value. Finally, ShiftClock does not ad-
vance while the packet queue is non-empty and the chan-
nel is idle, i.e., the next packet to forward is chosen im-
mediately after the channel becomes idle.

The process contains two actions. In the first action, a
packet is received from a flow. If the flow becomes active,
then a time shift is performed, i.e., ShiftClock is in-
creased, if necessary. Also, the flow timestamp is updated.

In the second action, when the output channel is idle
and there are still packets to forward, the active flow with
the smallest timestamp is obtained from function
least_ts(F), and a packet from this flow is forwarded. The
flow's timestamp is updated if the flow remains active. If
no active flows remain, ShiftClock is updated so that it is
greater than the flow's timestamp. This is necessary to
prove fairness in Section 5.

Implementing this protocol requires two ordered queues:
one for the flow timestamps, and one for the ideal service
times. Inserting or removing an element from either of
these takes O(log(n)) time, where n is the number of ac-
tive flows. Thus, the desired efficiency is achieved.

The restriction on the reserved rates given by (1) above
is sufficient, provided the rate assigned to each flow re-
mains fixed. However, this is not always the case, be-
cause the application generating data packets for the flow
may terminate, and the flow may be reassigned to a new
application that reserves a different rate. Thus, a restric-
tion is needed to indicate when can the reserved rate of a
flow be reassigned to another flow.

The restriction we choose is the following. We say that
a flow r is live if either ShiftClock ≤ F.r or r is active.
The rate of a flow r can be reassigned to another flow if
flow r is no longer live. Thus, the following is required to
be an invariant of the reserved rates.

(∑ r : ShiftClock≤F.r ∨ queue.r ≠ empty : R.r) ≤ C (2)
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4. Delay Bound in Time-Shift Schedulers
In this section, we show that the Time-Shift scheduler

has a bound on packet delay no greater than the bound on
packet delay of a Virtual Clock scheduler or a Weighted
Fair Queuing scheduler.

We say that packet p exits the scheduler L.p/C seconds
after p is forwarded to the output channel, i.e., when the
output channel becomes idle after receiving p from the
scheduler.

Henceforth, any reference to time refers to the value of
ShiftClock. For example, the expression "at time T"
refers to the state of the system when ShiftClock = T.

The delay bound for a Time-Shift scheduler follows
from the following theorem.

Theorem 1
In a Time-Shift scheduler, for every active flow r,

ShiftClock  ≤  F.r + (Lmax - L.r)/C

Proof
Let p be the packet currently at the head of the queue of

flow r. Let T be the time when p became the head of the
queue of flow r, and let S be the latest time, no later than
T (S ≤ T), such that one of the following was true.

a) A time-shift occurred (i.e., ShiftClock was advanced,
and S = ShiftClock = Imin after the increase).

b) Some packet q was forwarded, where F.q > F.p
c) All flow queues were empty.

In all three cases, at time S, for all active flows s,

S ≤ I.s  ∨  F.p < F.s (3)

In (a), this holds because after the time-shift,
S = Imin ≤ I.s. In (b), the packet q chosen for transmis-
sion had F.q > F.p, and all active flows s have
F.s ≥ F.q > F.p. In (c), there are no active flows and (3)
holds trivially.

Assume F.p < S. From (3), and I.s < F.s, for all active
flows s at time S,

F.p < F.s

Furthermore, when any flow s becomes active after S,

F.p < S < F.s

Hence, F.p < S is impossible, because flow r is active at
time T, S ≤ T, with F.p = F.r. We must have instead that
S ≤ F.p.

From the definition of S, only packets from flows s
with F.s ≤ F.p are forwarded after S and before p is for-
warded. From Lemma 1 below and from relation (3), these
packets can be no more than (F.p - S)·C bits, and hence,
p exits the scheduler no later than the following time.

S + (F.p - S) + Lmax/C

Thus, p is forwarded to the channel no later than time

F.p + Lmax/C - L.p/C.

The term Lmax/C is needed because for cases (a) and (b)
we did not count the packet currently being forwarded at

time S. When p is the head of the queue of flow r, we
have F.r = F.p, and this continues to hold until p is for-
warded. Thus, packet p is forwarded to the output channel
no later than time F.r + (Lmax - L.r)/C, and at this time
either flow r becomes inactive, or F.r increases, which
implies the statement of the theorem.

Lemma 1
If U ≤ V, and at time T, for all active flows r,

U ≤ I.r  ∨  V < F.r

then, starting from time T, the packets forwarded to the
output channel with a timestamp at most V sum to
a total of at most (V - U)·C bits.

Proof Sketch
For a packet p of flow r, define I.p = F.p - L.p/R.r.
We associate a timestamp with each "bit" b of packet p.

We allow b to be a real number in the interval [0, L.p].
For a bit b in packet p, its timestamp equals I.p + b/R.r.
Thus, the first bit has a timestamp equal to I.p, and the
last bit has a timestamp equal to F.p. We say that times-
tamp t is contained by packet p if a bit in the packet has
timestamp t, i.e., I.p ≤ t ≤ F.p. A flow r contains times-
tamp t if some packet of r contains t.

For example, consider Figure 3. In this figure, the ideal
arrival time and timestamp of each packet are denoted by a
small vertical line. In flow 1, for its first packet, p, we
have I.p = 1 and F.p = 3. Similarly, we have I.q = 3 and
F.q = 4. Thus, all timestamp values from 1 up to 4 are
contained by flow 1.

The proof consists of first showing that if timestamp t
is contained by packet p, then flow r is live at time t, and
furthermore, the value of R.r used to compute the times-
tamp of p is the same value that R.r has at time t. Thus,
for any interval (s, t), if flow r contains all values in this
interval, then the same rate R.r is used to timestamp all
packets of r that contain bits in this interval.
Furthermore, the bits of flow r whose timestamps are in
this interval sum to at most (t - s)·R.r bits.

Finally, using relation (2), it follows that, for any in-
terval (U, V), the bits with a timestamp in this interval
from packets of any flow add to at most (V - U)·C bits.
The lemma then follows trivially.

The details of the proof may be found in [5].



♦
Theorem 1 implies that each packet p will exit the

scheduler before ShiftClock reaches the value of the
timestamp of p plus Lmax/C. It has been shown that the
exit time of a packet in Virtual Clock scheduling is also
at most the packet's timestamp plus Lmax/C [4] [8] [22].
These two bounds are not directly comparable, because the
exit time in Time-Shift scheduling is measured with re-
spect to a clock that is adjusted forward, while in Virtual
Clock the exit time is measured with respect to a clock
that is never adjusted.

To show that the delay bound in Time-Shift scheduling
is at most the delay bound of Virtual Clock, consider the
following alternative protocol. When a flow becomes ac-
tive and the clock is less than Imin, the scheduler sub-
tracts Imin - clock from all flow timestamps (whether ac-
tive or not). Thus, Imin = clock is accomplished by reduc-
ing Imin rather than increasing the clock.

Note that the difference between the real-time clock and
any flow timestamp remains the same in both algorithms.
Hence, the difference between any pair of flow timestamps
is also the same, which implies that the alternative sched-
uler forwards packets in the same order as the original.
Note also that Theorem 1 places a bound on the difference
between a flow timestamp and the real-time clock. Thus,
this bound also holds for the alternative scheduler, and
each packet is forwarded by the time indicated in its times-
tamp plus Lmax/C.

Finally, because the alternative scheduler reduces the
flow timestamps, it is easy to show that the timestamp of
each packet in the alternative scheduler is at most the
timestamp of the same packet in a Virtual Clock sched-
uler. Thus, the delay bound for a Time-Shift scheduler is
at most the delay bound of a Virtual Clock scheduler.

The delay bound of Weighted Fair Queuing is similar to
that of Virtual Clock [19]. Hence, the delay bound of
Time-Shift scheduling is also no greater than the delay
bound of Weighted Fair Queuing.

5. Fairness in Time-Shift Schedulers
To ensure fairness, the Time-Shift scheduler should al-

locate any unused bandwidth to all active flows in propor-
tion to their reserved rates. Equivalently, for any pair of
flows, as long as both flows remain active, the ratio of
the number of packets forwarded from each flow should be
the same as the ratio of their reserved rates. Note that this
holds if the difference between the flow timestamps of the
pair of flows is tightly bounded.

The fairness of the Time-Shift scheduler is stated by the
following theorem.

Theorem 2
Of the active flows with an ideal arrival time equal to
Imin, let τ be the flow with the greatest timestamp. If r
and s are active flows, then

| F.r - F.s | ≤ L.τ/R.τ + max(L.r/R.r,L.s/R.s) + Lmax/C

Proof Sketch
We prove the theorem by showing that the scheduler

preserves the following invariant. For every flow r, one of
the following conditions hold.

a) r is active, and  I.τ ≤ I.r ≤ F.τ + Lmax/C

b) r is inactive, and

F.r ≤ ShiftClock  ∨  F.r ≤ Imin

c) r is inactive, and  I.τ ≤ F.r ≤ F.τ

The proof that the protocol preserves the invariant may
be found in [5].

We next show that the invariant implies the statement
of the theorem. Below, we only need case (a) of the in-
variant. Cases (b) and (c) are needed to show that case (a)
holds when an inactive flow becomes active.

Consider two active flows r and s. From case (a) above,

I.τ ≤ I.r ≤ F.τ + Lmax/C

I .τ ≤ I.s ≤ F.τ + Lmax/C

From the definition of ideal arrival time, we obtain the
following upper and lower bounds for F.r and F.s, which
imply the theorem.

I.τ < F.r = I.r + L.r/R.r ≤ I.τ + L.τ/R.τ +
                                               L.r/R.r + Lmax/C

I .τ < F.s = I.s + L.s/R.s ≤ I.τ + L.τ/R.τ +
                                               L.s/R.s + Lmax/C

♦
The bound of Theorem 2 on the relative value of two

flow timestamps prevent flows that become active from
"hogging" the output channel and denying service to
flows that have exceeded their reserved rates. The Virtual
Clock protocol has no similar bound.

The above bound is close to, but not as tight as, the
bound provided by Self-Clocking Fair Queuing. However,
the fairness bound above is achieved in conjunction with a
delay bound that is significantly better than the delay
bound of Self-Clocking Fair Queuing.

Notice also that part (a) of the invariant in the proof of
Theorem 2 and Lemma 1 combined imply that the packet
currently at the head of the queue of flow r will exit the
scheduler within

L.τ/R.τ + L.r/R.r + Lmax/C

seconds. This bound holds regardless of whether flow r
has abided by its reserved rate or not.

6. End to End Delay Bounds
We present the end to end delay bound for a flow

traversing multiple Time-Shift schedulers. To do so, we
borrow some results from Flow Theory [2] [3], which we
overview next. Proofs for the theorems may be found in
[5].

A flow r is an infinite sequence r.0, r.1, r.2, . . . , of
non-negative real numbers. Informally, we divide time



into small and fixed sized intervals which we call instants.
Each r.i represents the number of bits that travel in flow r
at instant i. We denote the sequence r.0, r.1, . . . , r.i by
r.(0,i).

As a flow traverses a network, it experiences queuing
delays, represented by flow operators. A flow operator has
an input flow r and an output flow s. At the ith instant,
the operator inputs r.i, outputs s.i, and stores the remain-
der in an internal buffer. The content of the buffer at the
ith instant is denoted b.i. The infinite sequence b.0, b.1,
b.2, . . . , is the buffer flow of the flow operator.

b sr

Formally, a flow operator with input flow r, output
flow s, and buffer flow b is defined, for every i, i ≥ 0, as
follows.

s.i is contained in the interval F.(r.(0,i), b.(i-1), i)

b.i = b.(i-1) + r.i - s.i

where b.(-1) = 0, and F is a function, called the operation
of the flow operator, that returns an interval of real num-
bers. The output of a flow operator should be no greater
than its input, i.e., its operation is restricted as follows.

0  ≤  s.i  ≤  r.i + b.(i-1)

Formal definitions for the buffer capacity and delay of a
flow operator with respect to a given input flow may be
found in [2] [3].

We model the changes experienced by a flow as it tra-
verses a path in a computer network by a linear network
of flow operators. A linear network consists of a sequence
of flow operators, (f.0, f.1, . . . , f.(n-1)), where the input
to each flow operator is the output of the previous flow
operator. The input and output flows of the linear network
are the input flow of f.0 and the output flow of f.(n-1), re-
spectively.

The first flow operator we introduce is the R-limiter,
where R is a positive real number. The operation of an R-
limiter is defined as follows

R                   if b.(i-1) + r.i  ≥  R{s.i = 
b.(i-1) + r.i    if b.(i-1) + r.i  < R

where r is the input flow, s is the output flow, and b is
the buffer flow of the R-limiter. Basically, the R-limiter
is a constant-rate server that forwards its input flow to its
output flow at exactly the rate R.

Let a Virtual Clock scheduler have an input flow r with
a reserved rate R. The timestamp of a packet p from flow
r is equivalent to the time at which p exits an R-limiter
whose input flow is r. In Virtual Clock, packet p exits by
the time indicated in its timestamp (plus Lmax/C), i.e.,
by the time it would exit the R-limiter (plus Lmax/C).

 Because the delay in a Time-Shift scheduler is at most
that of Virtual Clock, packet p from flow r in a Time-
Shift scheduler also exits by the time it would exit an R-
limiter with input flow r (plus Lmax/C).

This behavior can be represented by an R-filter. An R-
filter is a flow operator that never delays its flow longer
than the delay it would experience in an R-limiter. That
is, if an R-limiter and an R-filter have the same input
flow, then, the sum of any prefix of the output flow of
the R-filter is at least the sum of the same length prefix
of the output flow of the R-limiter.

Let bl be the buffer flow of an R-limiter with input
flow r. The operation of an R-filter is as follows.

s.i = max((bf.(i-1) + r.i)·X.i,  bf.(i-1) + r.i - bl.i)

where r is the input flow, s is the output flow, bf is the
buffer flow of the R-filter, and each X.i is an undeter-
mined real value in the closed interval [0, 1].

Theorem 3
A linear network of two R-filters is equivalent to a single
R-filter.

♦
By induction over the number of R-filters, any linear

network of R-filters is identical to a single R-filter.
From the definition of an R-filter, an R-filter can be

used to represent the behavior of a single Time-Shift
scheduler. However, in an R-filter, the first bit of a packet
of size L may exit up to L/R instants earlier than the last
bit of the packet. These bits should exit together, since
packets are indivisible units of data and must be transmit-
ted as a whole. Furthermore, a packet in a Time-Shift
scheduler may exit up to Lmax/C seconds after it would
exit an R-limiter. Therefore, we represent a single Time-
Shift scheduler with the following linear network, where
L is the maximum packet size of the flow.

(L/R+L max/C)-delayerR-filter

A D-delayer, where D is positive integer, is a flow opera-
tor that may delay its input flow in an arbitrary manner
by at most D instants. Its formal definition can be found
in [3] [5].

Theorem 4
Let d be a D-delayer, and f be an R-filter. If the linear
networks (d,f) and (f,d) have the same input flow, then:

1. Each output flow of (d,f) is an output flow of (f,d).

2. The buffer capacity of (f,d) is at most the buffer ca-
pacity of f plus D·R.

♦
A flow traversing n Time-Shift schedulers is represented

by a linear network consisting of n (R-filter,
(L/R+Lmax/C)-delayer) pairs. Using Theorems 3 and 4, it
is easy to show that the delay of this linear network is at
most the delay of a single R-limiter followed by an
(n·(L/R+Lmax/C))-delayer (recall that the delay of an R-
filter is at most that of an R-limiter).

The delay through the R-limiter is dependent upon the
burstiness of the flow. There are several ways to bound



the burstiness of a flow [2] [6] [13]. One of these is the
(m,R)-uniform property [2] below.

 Let m be a positive integer and R be a positive real
number. A flow r is (m,R)-uniform iff, for every j, j ≥ 0,

r. i
i= j

j+m−1
∑   ≤   m ⋅ R

The delay of an (m,R)-uniform flow through an R-lim-
iter is at most m, and the buffer capacity is at most m·R.
Thus, the total end-to-end delay is at most

m·R + n·(L/R+Lmax/C).

Furthermore, from Theorems 3 and 4, the buffer capacity
of the jth scheduler is at most

m + j·(L + Lmax·R/C).

The upper bound on the end-to-end delay of a series of
Time-Shift schedulers derived in the section is the same
upper bound on the end-to-end delay for a series of Virtual
Clock or Weighted Fair Queuing schedulers [8] [12] [19].
Thus, the Time-Shift scheduler achieves the same end-to-
end delay, while at the same time being fair and efficient.

7. Concluding Remarks
An additional attempt to improve the fairness of Virtual

Clock has been presented in [1]. Three techniques were
proposed. As stated by the author, the first technique does
not preserve the rate-dependent delay. The second tech-
nique resets the Virtual Clock value of all flows to zero
when the scheduler has no packets to forward, which can
be shown to preserve the rate-dependent delay. However,
during periods of heavy load, especially in slow links, all
flows may not become inactive often, and thus the unfair-
ness of Virtual Clock prevails. The third technique resets
to zero the Virtual Clock value of an individual flow
when it becomes inactive. Again, this does not achieve
fairness unless all flows become inactive simultaneously.

In Time-Shift scheduling, the end-to-end delay increases
by L/R + Lmax/C with each hop in the path to the desti-
nation. It is possible to decrease this delay for some flows
at the expense of either increasing the delay of other flows
or leaving some bandwidth unreserved. This has already
been done in other protocols that do not ensure fairness
(e.g., [7] [9] [10]). In a future paper, we plan to investi-
gate if this reduction in delay is possible while at the
same time ensuring that the scheduling protocol is fair.
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