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Workload Models of VBR Video Traffic and
Their Use in Resource Allocation Policies

Pietro Manzoni,Member, IEEE,Paoclo Cremonesi, and Giuseppe Seradeimber, IEEE

Abstract—The load generated by new types of communications  Several papers on modeling VBR video streams have been
services related to multimedia and video transmission is becoming presented [1]-[10]. Most of them focused primarily on the
one of the major sources of traffic in WAN networks. Modeling ;e nification of the statistical process(es) that best fit the

this type of load is a prerequisite for any performance study. ..
In this paper, we approach the load-characterization problem €MPpirical data of one [5], [6], [8], [10] or more [1], [3],

from a global point of view by analyzing a set of 20 video [4], [7], [9] video sequences. In [8], Lazat al. modeled the
streams. We developed resource-, subject-, and scene-orientedautocorrelation functions of the VBR bit streams with general-

characterizations of coded video streams. We have also imple-jzed stochastic transform-expand-sample (TES) methodology.

mented multidimensional data-analysis techniques and applie - - n . .
a “scene working set” approach, as well as static and dynamic Krunz and Tripathi [1] captured bit-rate variations at multiple

video traffic models. We show that the behavior of a video time scales through a modulated process consisting of a
sequence can be predicted with high accuracy by applying the second-order autoregressive process that varied around values

scene working setechnique. Applications of this technique for derived by scene analysis. Lagn al. ([6], [9]) were the first
predicting bandwidth demands and allocating buffers in an ATM to design algorithms for lossless smoothing

itch Iso d ibed in this study. - - .
swiich are also described In this study The general applicability of the results obtained from an-

Index Terms— Burstiness, communication systems perfor- alyzing a video stream is usually limited, since the best-fit
rr:g\r/‘v%?i(s delay-sensitive ~ traffic, multimedia communication, oo meters derived for a specific stream do not necessarily
' apply to other streams. In this paper, rather than investigating
the adequacy of some stochastic processes to characterize a
|. INTRODUCTION given pattern, we approach the traffic-load characterization

HE WORKLOAD of computer networks, ranging fromproblem from a global point of view, taking into account a
the Internet to local intranets, has been increasing gxopulation of 20 video streams. The suitability of a workload

ponentially. Networks are used to transport various types @odel depends upon the type of performance-evaluation study.
load which have widely varying resource demandsality The load characterization may be approached at different
of service(QoS) requirements, and traffic patterns. The lod@vels by applying several techniques. We analyzed the sta-
generated by new types of communications services relatiglical characteristics of a set of streams at frame level by
to multimedia and video transmission is fast becoming om@nsidering each stream as an unordered set of frames (i.e., no
of the major sources of traffic in B-ISDN/ATM networks.temporal relationships between frames). The models obtained
The need for modeling this type of traffic is essential fowith this approach are also referred tosatic traffic models
addressing issues such as admission control and bandwigitames are described by their resource consumption. By
allocation, and is also indispensable for network managapplying multidimensional data-analysis techniques, namely
ment (e.g., performance prediction, capacity planning, afactor analysis and k-means clustering, we identified a small
optimization). set of parameters describing the videos. We grouped the videos

One of the problems that arises in modeling video-codéato three clusters based on this set. In the modeling studies
streams is that the bandwidth required is highly variable, boithwhich only static characteristics are required, a video popu-
over time and in absolute value. Although using compressigition can be represented by elements having cluster centroid
techniques does indeed effectively save bandwidth, it intrparameters. The results obtained, i.e., the clusters (groups),
duces extra nondeterministic factors in traffic behavior due ¢an be useful in all situations where a video classification
the variable amount of image redundancy that can be exploitgsl.required. Consider, for example, the design of a video-
In fact, this type of transmission is usually referred to aserver. In this case, it is necessary to know how to organize
variable bit rate (VBR) data stream transfer. the internal storage of the server and also to forecast which

type of load possible clients will require from the server. This
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Fig. 1. Portions ofl-, P-, and B-frame size sequences of thace video.

a classification that was similar to the one obtained when Il. EXPERIMENTAL DATA

the resource consumption parameters were taken intq e g initially subdivide the 20 traces used for our experi-
account. ments into four groups, or categories, according to the subject

Knowledge of load fluctuations is required in performancgy ie video. The four categories, i.enpvies, sports, news/talk
studies in which the dynamic characteristics of the resourghows and various were as follows.

demands must be taken into account. The resulting models are
also referred to agynamic traffic models

We investigated the dynamic characteristics of the videos
using a simple technique that is applicable to all videos. First,
we identified scenes. Then, we usescane working sehodel
to characterize the scene reference function of each video. The
scene working set kept track of the scene sizes referenced
during the last time interval of a given size. A scene was )
refergnced when a frame with asimi?ar bandwidth requirement F 1 GP (ace), 1995 superbowl finalsbow), two 1994

was received. The idea behind the scene working set is directly soccer world CUP_ matchesdcland soca),
i . » News/Talk Show: two German talk showstdlkl and
related to the concept of scene: a scene referenced in the :
talk2) and two German video conferencaseysland

recent past has a high probability of being referenced in news2:
the immediate future. The scene references have a degree of .~ .~ : :
locality. . Varl_ous. two MTV video clips @tvl and mtv2. _

In this paper, we show that the behavior of the experimen- 1€ Videos were compressed using an MPEG-1 compliant
tal scene sequences can be predicted with a high level &5¥coder. The quantization values wede:= 10, P = 14,
accuracy by using a three-element last recently used (LRY)d 8 = 18 using the patterniBBPBBPBBPBR which
working set stack. Due to the intrinsically low complexitydV€S & group of picture (GOP) size of 12. Each MPEG
of our method, the prediction of the dynamic fluctuations ofid€0 stream consisted of 40000 video frames, which at 25
bandwidth demands—based on the working set model—cféﬁmeS/s represented gbout 30 min of real-time fuII-mot_lon
be performed on-line during the transmission of each viddl€0. Twenty frame-size sequences (FSS's) were derived
stream. Thus, na@ priori scene behavior characterization id11l from the MPEG-1 compressed video streams, taking
required. Furthermore, the classification of video streaniBl0 consideration the size of each frame in Bitshe work
based on the number of scenes identified with the workir%scr'be‘?I in this paper is based on analysis performed on the
set technique, matches the classification obtained with the>'s- Fig- 1 shows portions of the P-, andB-frame size
resource oriented approach. As an application of the propos&gluences of theace video. _
characterization technique, we have applied the working set/Vhile several parameters may change between the different
model to explore the performance of a buffer scheduler in P EG encoders (e.g., the GOP pattern, the quantization level,
ATM switch. and the image dimension), the meaning and the importance of

This paper is organized as follows. In Section 11, we ana|y£efra_1mes is common to the various stand_ards. Indeed, there is
the experimental streams used. In Section 11, we introduce tRefiréct correspondence betwekframe size and the actual
static characterization of VBR streams using factor analydf@@ge size, whil& andP frames are related only to the motion
and a clustering algorithm at the frame level. In Section IV, \A@aractenstms. As a resultframes are gsually the largest in
describe the characterization of the dynamic aspects of streat#§: For example, the averagérame size for all 20 FSS's
when applying the working set model at the scene level.

Section V presents the results obtained using the WorkmgThe names in italics are the short names used to indicate the corresponding
set model in the prediction of the bandwidth demands at thieeo sequence.
frame level and in the allocation of buffers of an ATM switch. 2Thanks to Oliver Rose of the University ()M/L"zburgY who

Section VI concludes the paper. made these traces. [Online]. Available FTP://ftp-info3.informatik.uni-
wuerzburg.de/pub/MPEG/

Movies: “James Bond: Goldfinger” bpond), “Jurassic
Park” (dino), “The Silence of the Lambs”lgmbg, “Star
Wars” (star), “Terminator II” (term), three episodes from
the series “Mr. Bean” l{ean, two episodes from “The
Simpsons” §imp, an episode from “Asterix”dstel) and
a 1994 movie previewnfovie;

Sports: ATP 1994 tennis final gtp), Hockenheim 1994
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TABLE | TABLE 1l
DESCRIPTIVE STATISTICS OF THE [-FRAME SizE CORRELATION MATRIX R OF THE EIGHT STATISTICAL VARIABLES OF TABLE |
FOR THE 20 VIDEO STREAMS CONSIDERED T . - -
range min  max mean stder stdev skew  kurt
category FS8S | range min maz | mean | stder | stdev | skew | kurt range | 1.000 -153 983  .516 .878 .902 415 409
bond | 222256 | 22336 | 244592 | 83297 | 451 | 26072 | 55| .97 min | -153 1.000 .028 418 -.002 -.045 -.024 -271
dino | 101976 | 17656 | 119632 | 55076 | 201 | 11639 | .60 | 1.74 max {983 .028 1.000 599 .888 .904 416  .363
Movies | lambs | 119104 | 15120 | 134224 | 38023 | 221 | 12813 | 1.69 | 5.39 mean | 516 418 599 1.000 702 .691 -.227 -.358
star | 111088 | 13728 | 124816 | 44012 | 244 | 14138 | 1.38 | 5.03 stder | 878 -.002 888 702 1.000 .992 229 102
term | 63096 | 16464 | 79560 | 37387 | 144 | 8341 | 57| .81 stdev | 902 -045 904 691 992 1.000 229 115
movie | 139104 | 14008 | 153112 | 57658 | 366 | 21138 | .56 | .84 skew | 415 -.024 416 -227 229 220 1.000 .883
bean | 135904 | 14272 | 150176 | 75161 | 336 | 19458 | 91| 1.05 kurt 409 -271 363 -358 102 115 883 1.000

stimp | 133192 | 15304 | 148496 | 74045 | 333 | 19268 | .13 .39
aster | 131800 | 15576 | 147376 | 71116 | 332 | 19180 | .01 17
atp 175768 | 15088 | 190856 | 75698 | 377 | 21801 | 1.13 | 4.25 TABLE Il

race | 149256 | 36792 | 186048 | 79241 | 360 | 20826 | 1.06 | 1.44 M E = L
Sports | sbowl | 126240 | 14600 | 140840 | 67952 | 330 | 19105 | 43| .35 ATRIX OF ESTIMATED FACTOR LOADINGS AND

socl | 164464 | 22712 | 187176 | 79142 | 437 | 25243 | 101 | .67 OF VARIMAX ROTATED FACTOR LOADING
soc2 | 168032 | 22964 | 190296 | 70017 | 436 | 25228 | 1.27 | 1.84
Talkl | 70676 | 30102 | 106768 | 64734 | 176 | 10181 | 42| .20
News/ | talk? | 97256 | 35496 | 132752 | 73773 | 225 13026 | 78| 71

Estimated Rotated
variable | I Fy Fy Iy Fy Fy

Talk Shows | newsl | 162640 | 31776 | 194416 | 85419 | 499 | 25604 | 1.03 | 1.35 range | 967 127 118 | 924 -309 124
news? | 176056 | 13832 | 189888 | 70616 | 363 | 20992 | 53| L57 min 002 464 -878-018 .680 -.991
mivl | 179168 | 18520 | 197688 | 69861 | 418 | 24173 | 89| L17 max 978 -.043 -041| 931 -300 -.056
Various | miv2 | 234920 | 16488 | 251408 | 61396 | 439 | 25377 | 2.43 | 10.24 mean | .648 692 -139) .756 395 -.437

stder 953 179 104 | 975 -.040 -.014
stdev 961 169 142 983 -.044 .027
skew 404 -790 -401 ] .168 -.938 -.057

considered was 65742 bits, while the average sizeB afhd kurg 317 _-906 -175| 089 -.951 201
B frames were 24588 and 10851 bits, respectively.
Thus, in problems dealing with resource reserva-

tion/allocation policies, the decisions based dfframe th idered eiaht variables that b dto ch teri
size values are also valid f&® and B frames. Furthermore, € considered eignt variables that can be used fo characterize

the I-frame sequence captures the dynamic characteristf gh FSS. We then applied a clustering technique to identify

of video traffic at a high level of granularity, since all the¥he cluste'rs. of components (i.e., FSS's) having hqmogeneoqs
modifications of the data of amh frame produced by the characteristics. Each cluster can be represented in the traffic

motion are incorporated in the next frame. The above model by some of its members selected according to a suitable

considerations motivated the decision to concentrate our Vé:ﬁterion. Factor qnalysig describes the covariancg reIationg.hips
traffic-modeling effort on thel-frame sequence only. The2MONg many variables in terms_ofafew u_nderlylng ql_Jantltles
descriptive statistics for theframe sequence in each of the@lled factors [13]. This technique consists of finding the
20 FSS's considered are shown in Table I. To have an over3i§eénvalues in order of decreasing magnitude and the corre-
behavior description of the-frame values, these includesPonding eigenvectors of the correlation matrix for the given
the range, minimum, and maximum. We then evaluatsgt of variables. The relative size of each eigenvalue gives
the first four moments of the distribution generated by tHBe variance of the corresponding factor, i.e., the eigenvector.
I-frame values. We obtained a central value (thear), the Table Il shows the correlation matri® of the eight statistical

dispersion around this value (tséandard deviatioj) and two Variables considered in Section II. _
values evaluating the shape: thkewnessto determine the There were three eigenvalues greater than one, respectively:

symmetry of the distribution, and theurtosis, to determine A1 = 441, A2 = 2.22, and A3 = 1.03. Therefore, we
the degree of peakedness [12]. considered three common factors, which accounted for a

cumulative proportion of 0.95[ A1 + A2 + A3)/g] of the total

standardized variance. The derived factor loading matrix is

shown in Table Ill. Also shown in Table Ill are the factor
ll. STATIC CHARACTERIZATION OF VBR STREAMS values obtained with the varimax rotation criterion, a correc-

The modeling approach followed in this section considef®n method that allows us to “spread out” the squares of the
each FSS as an unordered set of elements |lifeame sizes. loading on each factor as much as possible.
Sincel frames are dealt with as if no temporal relationships From Table IlI, it can be seen thai defines a group of the
existed among them, we will refer to the models obtained wittariablesrange, max, stderandstdey and 7> defines a group
this approach astatic traffic models of the variablesnin andmean Since factor analysis considers

In this framework, an FSS is characterized by a tuple ¢fgative values and values close to zero as irrelevant, factor
eight variables (see Table I) and is considered a point Iy will be excluded from the following.
the eight-dimensional spaclR®. The statistical properties Fig. 2 shows a scatter plot df; and F% in the estimated
of this data set are analyzed through multidimensional datnd rotated cases. Both plots illustrate the presence of these
analysis technigues, namely factor analysis and clusteritggo groups. We takenax as a representative dfi, since it
Multidimensional (or multivariate) analysis is an extension dfas the highest load. We chosen as a representative df,
the classical mono-variate statistical analysis and is requirgdgtead ofmean,because it has the lowest correlation with
since we want to take into consideration various variables ragax (0.028). We discardelurtosisand skewnesssince their
the same time to understand the relationship between theatues for factorF; were definitely lower than the ones of the
[13]. four variables consideredange, max, stder, stdgvand they

With factor analysis, we obtained the smallest numbesf
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I TABLE IV
mear CLUSTER CENTROIDS AND MEMBERS CORRESPONDING
TO A PARTITION OF THE FSSINTO THREE GROUPS
N s min variables centroid of cluster 1 centroid of cluster 2 centroid of cluster 3
5 ° min 18946 19412 32997
= mag 130704 190909 248000
ﬁ stder aster, dino, lambs, mouwte, | atp, mivl, news!, news2, bond, mtv2
- S[‘fﬁv elements id bean, showl, simp, star, race, socl, soc2
L 00— may ! talkl, talk2, term
g Tange, % of elements 55 35 10
54
0.5 —
Jskew sports(57%)
‘ o kurt
10 _ B
-0.5 0.0 0.5 10 /'
Estimated Factor 1 '
(@ il sh
alk snows :
(18%) sports (9%) various (14%) news/
10 —_ talk shows
| (29%)
min (@ (b)
0.5 mean’ Fig. 3. Subject-oriented characterization of (a) cluster 1 and (b) cluster 2,
o e obtained with a resource-oriented characterization (see Table IV).
Q
E ¢ stder . . . .
o 00 sudev A resource-oriented characterization of the three clusters is
= max intuitive. The bandwidth requirement increases moving from
& . range” clusters 1-3. While clusters 1 and 2, which represent 90%
05 of the sample (see Table IV), contain the FSS that can be
considered as “normal,” the ones in cluster 3 are highly
Rt gew. demanding FSS’s having very large frame sizes. A subject-
N T S I

0 03 10 oriented characterization of clusters 1 and 2 is shown in Fig. 3.
Rotated Factor 1 Cluster 3 is not shown, since its significance is low (having
(b) only two FSS belonging tmovieand tovarious respectively).
Fig. 2. Scatter plot of factor8; andF> in the (a) estimated (b) and rotated AS can be seen in Fig. 3, cluster 1 can be considered as
case. being representative ahoviestreams and cluster 2 as being

representative asportsstreams. Indeed, 88.8% of tingovies

assume negative values for factB. Thus, two variables are are in cluster 1, representing 72.72% of its elements, and
sufficient to characterize the given data set, since they descri@&0 of thesportsare in cluster 2, representing 57.14% of

a large fraction of the total variance. We then proceeddg elements. The four streams méws/talk showare equally

with the grouping procedure, using themeans clustering distributed between clusters 1 and 2, and represent a minor
algorithm. Thek-means clustering algorithm [14] subdivideg?€rcentage of the elements of these two clusters, 18.18% and
a given data set into a specified numberof clusters in 28-57%, respectively. When new streams are considered, an
the spacelR™, with m being the number of variables thatFSS is assigned to a cluster if the values of its variables are

describe each element. Based on the factor analysis results Y8in the ranges of the cluster's variables. When an element
havem — 2. may be assigned to more than one cluster, it will be assigned

To estimate the optimal numbérof clusters in which the to the cluster whose centroid is closest. The results obtained,

given data set can be subdivided, we used two indicatorsi&¥- the clusters (groups), can be useful in all situations where
how well a partition works. For each variable, we used i classification of video is required. Consider, for example, the
overall mean-square ratio, i.e., a measure of the reductid@sign of a video server. In this case, is necessary to know how
of within-cluster variance between partition inand & + 1 to organize thg internal storage oflthe server m_achmg and also
clusters, and the ratio of the variance among the clusters dAdorecast which type of load possible clients will require from
the within-cluster variance. Large values of the overall medfi€ Server. We can make these predictions if we know which
square ratio justify increasing the number of clusters fiom ClUSter a video belongs to. Cluster analysis also provides us
to k 4 1. An optimal partition should also be characterized byyith the variables (i.e., the minimum and the maximum) that
values greater than one of the ratios of the variances amdM{] P& used by our algorithm—detailed in Section V-A—for
the cluster and within the cluster for each variable. Thefgrecasting the size of the next frame.

conditions are satisfied when we partition the given data set

of FSS’s into three clusters. Table IV shows the values of the V- DYNAMIC CHARACTERIZATION OF VBR STREAMS
variablesmin and max, corresponding to the centroids of the In the approach described in Section lll, the dynamic char-
three clusters and the identifiers of the elements that beloagteristics of a traffic stream were not taken into account
to each cluster. and the temporal relationships of thdrames were ignored.
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Ji=1
refy = filll;
while(#t > 0) // while trace t has elements
// looking for the 5 sub-traces sj in ¢
for k:=1to 5 — eval (uk, Sk, Uk | Sk subof t);
// checking the additional condition for sub-trace ssf
if (abs(frlj+#ui+#sy —1] — refr) < T) — #us 1= o0;
// selecting the sub-trace closer to the left part of ¢
// that is, the sub-trace with component u; with smaller cardinality
eval (u;, 8;, v; | #u; = min(#ug, #ug, #ug, #ug, #us));
// evaluating scene-label’s values for the (#u;+#s; — 2) FHrames in the window
for k := jto (jr#u;+#s; — 2) — If[k] := (refy div T)*T}
// reassigning value to refy
refr = frlj+#u;+#s; —1];
// evaluating scene-label’s values for the Iframe at position (#u;+#s; — 1)
i [j+#u;+#s; —1] = (reff div T)«T;
J = JH#u s
// reassigning trace ¢
b= vy

Fig. 4. The algorithm used for the generation of the sequence of SLS's.
However, when it is necessary to reproduce the same traffadgorithm:

load behavior that has been found in a network during a given
period of time, a suitable modeling technique must be con-

sidered. Models able to reproduce the dynamic characteristics while (3f7(7))
of streams are referred to aynamic traffic modelsin this ti=t"(V(i))
section, we describe a technique that allows the construction i1

- ?

of dynamic models.

A. Modeling Video Behavior at Scene Level An example of tracet is: (1, 2, 2, 2, 2, 2, 1, 1, 1, 1,

The sequence of-frame sizes (e.g., Fig. 7) can be segS’ 3, Which'can be rewritten in a more compact form as

mented inscenessuch that the size of the frames of a segmeht = ,<1>A<2>OA<1>4A<3>2' The tracet is searched for five
are close in value. When we talk about scenes, we are RBEcial subtraces. We define the functirbtrace of(subof)
talking about what the typical spectator usually thinks ofS follows:
Instead, a “scene” is considered as a block of frames that s subof t 2
has certain size properties in common. Several algorithms

have been applied to identify scenes (see e.g., [8], [5], [1{¥hich means that if a subtrace exists, it is the one closest to the
We based our algorithm on these previous works, introducingt margin oft. The five subtraces are identified using a sliding
slight modifications to reduce as much as possible the numRghdow of lengthL,,i, + 1. Luin iS @ parameter representing

of scene labels. Our algorithm is based on a set of five I’U|@ﬁ3 minimum |ength of a scene expressed in numbet of
which apply a difference operator to the size of consecutiygmes.

frames. Each scene is labeled by quantizing the size of itSEach one of these subtraces determines a scene change
first frame at the granularity of a threshold value. We will segnd activates the calculation of a scene label. THames

that, in the video streams considered, this technique identifiggt belong to the current window are replaced by the scene
a limited number of scenes, while still preserving the dynamigbel. The final sequence of scene labels is calleghe-label

(Fu,v.t=u"s"v) A(Bp,q. u=p"s"q)

characteristics of the original sequence. sequenceSLS).
The algorithm is based on a scaling functidn(i)) defined  Fig. 4 presents a code-based description of the algorithm
as follows: used to scan traceand generate the sequence of scene labels
(I1). Expressiondta in the code refers to the length of trace
1, it (f1())— f1i—=1)>T a. Variable ref ; is the value of the last frame preceding a
V(i)=1q 2, if =T<(fr(¢)— fre—1)<T scene change.
3, i (fr(é) = fr(i —=1)) < =T The five subtraces used to determine a scene change are the
following:

where{f;(i): ¢ = 1,2,.--} is thel-frame size sequence and _ _ (1)"(2) P
T is a threshold value. A trace of valuesV(-) is obtained !
from a sequence of-frame sizes by applying the following 54

s =@ sy = (1)
— <3>Lnlin; 55 = <2>5*Lnlin'
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Fig. 5. Graphic representation of three different types of scene changes
(described by subtraces 1, 4, and 5, respectively.)

As shown in Fig. 5, subtrace; requires that we check %00 om0 2300 2350 2400
whether the difference of the value of thle frames that I-frames sequence
correspond to the first and last label is less than threshold .
T. Fig. 5 illustrates the identification of subtraces 1, 4, and é%’rgémf g;gg;eef plot (grey bars) and scene label sequence (solid line) of a
respectively. Subtraces, and s, describe one abrupt scene
change (positive and negative, respectively), while subtraces
s3 and sy represent a sequence of abrupt scene changesl the average is still an acceptable value. With such a
(positive and negative, respectively). Subtragedescribes value, the instabilities due to small fluctuations of frame
a possible scene change caused by a sequence of ssia# were avoided and the number of scenes identified was
differences between the sizes of successive frames. Whenlihmted. At 77 = 4890, the number of different scene labels
cumulative difference of frame size in the considered sequenisesmaller than 50, which is an adequate value to produce
is greater than thresholfl, a scene change takes place. efficient implementation, as will be shown in Section V. To

When a new scene is identified, its frames are labeled withse the following analysis, we rounded the valuel'ofo
the size of the first frame at the granularity of the threshoBD0O bits. Since not all the frame-size jumps corresponded
value 7". Several values of threshold® were investigated. to scene changes, the minimum scene length was set to one
Clearly, a tradeoff exists between the valuesIofand the second, i.e.Li, = 2. Again, the value fot.,,;;, was chosen
number of scenes identified, and thus the accuracy of thecording to the definition of “scene” used in this work. A
SLS varies. We evaluated a range of possible values faalue of 1 s is a compromise which limits the overhead
T between 1-25 ATM cell payloads (an ATM cell payloadntroduced at the switch (as will be detailed in Section V-
corresponds to 48 bytes). Possible valuesifornere between B), while maintaining a good characterization of the FSS, as
384 and 9600 bits. These values correspond to a typichlown in Fig. 6.
ATM switch queue length. To evaluafE we consider three  Fig. 7 shows the actual values bframe sizes (grey bars)
factors: the number of different scene labels generated, @ved the corresponding sequence of scene labels (solid line)
mean, and the standard deviation of the derived SLS with thEa fragment ofaster When our method was applied to the
correspondent FSS. Fig. 6 presents the result of this analysist of 20 FSS’s with a threshold@ = 5000 bits—which is
The dashed line represents the behavior of the mean, while tindy 7.5% of the mean frame size (65742 bits)—the average
straight line shows the behavior of the standard deviation. Thamber of scenes identified was 24. The number of scenes of
bars represent the amount of different scene labels generatbd.20 FSS'’s, grouped according to the three clusters obtained
Position?” = 4890 is where the standard deviation is minimunin the previous section, are shown in Fig. 8(a). It is interesting
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40 17 T T T T T T T T T T T T T T TABLE V
PARAMETERS USED BY FORECASTING ALGORITHMS
cluster [ video | labels I D2 D3 Dr Max label | Min label
35 oo s talkl | 13 | 0.9346 | 0.0113 | 0.0101 | 0.0440 | 100000 40000
L4 term | 13 | 0.8872 | 0.0206 | 0.0230 | 0.0692 80000 15000
telk? | 16 | 0.9529 | 0.0113 | 0.0056 | 0.0302 | 125000 35000
. dino | 18 |0.9142 | 0.0137 | 0.0080 | 0.0641 | 105000 20000
@ 30 [ T e ] lambs | 19 |0.9382 | 0.0155 | 0.0065 { 0.0398 | 130000 15000
& ° 1 star | 20 |0.9037 | 0.0215 | 0.0158 | 0.0590 | 125000 15000
3 . aster | 24 |0.8635 |0.0107 | 0.0122 | 0.1136 | 135000 15000
5 o5 , _ e 1 bean | 24 |0.9316 | 0.0083 | 0.0077 | 0.0524 | 145000 30000
Nt e o e e sbowl | 24 |0.8626 |0.0155 | 0.0131 | 0.1088 | 140000 15000
2 simp | 25 |0.8785|0.0158 | 0.0110 | 0.0947 | 140000 15000
£ movie | 26 | 0.8596 | 0.0128 | 0.0143 | 0.1133 | 155000 15000
= 20 ° o avrage | 20.1 | 0.0024 | 0.0142 | 0.0181 | 0.0653 | 125000 21000
° race | 24 | 0.8650 | 0.0095 | 0.0128 | 0.1127 | 185000 35000
° news? | 27 |0.9181 | 0.0083 | 0.0074 | 0.0662 | 190000 15000
o socl | 28 |0.8458 | 0.0086 | 0.0104 | 0.1352 | 180000 45000
15 e 2 news! | 29 {0.9101 { 0.0064 | 0.0034 | 0.0801 175000 30000
soc2 | 30 |0.8572]0.0104 | 0.0080 | 0.1244 | 190000 20000
oo mivi | 30 |0.8596 | 0.0113 | 0.0092 | 0.1199 | 200000 20000
atp 34 | 0.8800 | 0.0116 | 0.0110 | 0.0974 | 190000 15000
b v average | 28.8 | 0.8765 | 0.0094 | 0.0088 | 0.1053 | 187000 25000
NP ORI DNREC LI RDD bond | 30 |0.8641 ] 0.0161 | 0.0116 | 0.1082 | 195000 25000
FEF b\‘;q,&o %‘:ﬁ@v@‘zo&;\‘io@&‘%4‘%&;“‘%%0(’@ TS 3 | mw2 | 31 | 0881500128 | 00098 | 0.0950 | 245000 | 15000
@ average | 305 | 0.8728 | 0.0144 | 0.0107 | 0.1020 | 220000 20000
2.0 T 1 v T T L T T T o 3 .
B. The “Scene Working Set” Model
In this section, the problem of modeling and forecasting
the dynamic behavior of scenes when applying the technique
1.0

of the working set to the SLS’s is studied. The working set
technigue has been used to model the behavior of a program in
virtual memory systems. It characterizes the memory page ref-
erences through the notion loicality. The original working set
model has been reformulated by replacing the page numbers
with the scene labels and identifying tbeene working seThe
scene working set keeps track of the scene labels referenced
during the last interval of time. A scene label is referenced
when a frame with the corresponding size is received. The
idea behind the concept of locality is that a scene label that
has been referenced in the recent past has a high probability
of being referenced in the immediate future. This is directly
FEFEFS NF related to the concept of scene. Very often, a scene changes
®) into a new one with a similar bandwidth requirement; that is,

_ references to a scene label tend to remain close in time.

Fig. 8. (a) Number of scene labels for each stream. (b) Average error ofA typical implementation of the working set model is the
frame size due to the use of scene label approximation.

last recently used (LRU) stack model (SLRUM) [15], [16]. In
pur context, the LRU stack is a list of scene labels which are
\ﬂ’ldered according to the time of their most recent reference.

a trend in the number of scenes is evident (see Table V). SLRUM i i del defined b i
This provides another way of characterizing the clusters wi € oL 'S a generative model defined by a stationary
%}ﬁck distance probability vector

respect to the number of scenes, which is also related to th
dynamism.

To evaluate the accuracy of the approximation of the SLS
obtained using the algorithm in Fig. 5, we computed theherep, > 0 andX?_, p, = 1. Each elemenp; represents
average difference for each FSS between the actual frathe probability that the next scene label will have the same
size and the value of the corresponding scene label. Fig. 8(aJue as theith element of the stack.
shows these differences (as percentages) for each FSS. A®o identify the scene working set, we used two vectors,
can be seen, these values, which can be considered asrtlamd !, with a number of elements equal to the number of
errors introduced by the approximation of the SLS’s, are dalifferent labels in each SLS. When a label was referenced, we
less than 1.8%, a very small value. The absolute error valle®ked for its position: in the vector! and incremented the
averaged over all the 20 FSS’s was 190 bits, while the absolutie element ofr. To represent the stack structure, the veétor
difference in the standard deviation was 656. In the followingyas reordered at each reference, so that the value of the last
we use the SLS’s instead of the FSS'’s, since they are mueffierenced label appeared in the first position. Table V shows
easier to deal with and the percentage of errors they prodube number of scene labels, the values of probabiljiies.,
is negligible. p3, pr = 1 — 33 _, ps, and the maximum scene labels for

oo £ i

Average frame size error (%)

D I Y

-2.0 L L P DS

to point out that when moving from cluster 1 to cluster

Z_jz(plv"'vpkv"'vpn)
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the 20 FSS’s. Streams were grouped according to the clusters TABLE VI

obtained in Section lll and were ordered according to theResuLTs oF FOUR BANDWIDTH FORECASTING POLICIES (AT SCENE LEVEL)
. BASED ON A WORKING SET MODEL APPLIED ON THE 20 VIDEO STREAMS
number of scenes in each cluster. The average number of scene

. predictions
labels for clusters 1_3 was 201' 288’ and 305’ reSpeCthEly. policy cluster | correct | overestimation | underestimation
The max labels also increased from cluster 1 to cluster 3. Zo % %

. . . 1 87.88 6.09 6.01
Assuming the number of different scenes to be an index of the conservativel | 2 86.05 705 6.89
dynamism of a stream, we can say that streams of cluster 1 ? 2337 ;?g 329

. . . .05 X .85

are less dynamic than streams of cluster 2, which in turn are conservative? | 2 7769 1177 10.54
less dynamic than those of cluster 3. 3 76.54 1161 1185
. . 1 81.47 12.95 5.58

The analysis of thep; values confirmed the presence of pessimistic 2 76.84 17.11 6.04
a working set with a limited size for all the FSS’s, i.e., the R 2 f;;l
scene label references were very local. For example, for the optimistic 2 77.03 6.34 16.63
streamtalk2, the probability that the next scene label is equal 3 | 7638 684 16.78

to the current one ip; = 0.9529, the probability that it is
equal to one of the last referenced two different scene label§yhen , ~ 1 — pr, We cannot predict any scene label by

IS p1 +p2 = 0'964_2’ and that it is equ_al to one of the IaStusing the working set, i.e., a label fault has occurred. In this
referenced three different scene labelgyis-p;+ps = 0.9698. case, we propose four different prediction algorithms, namely:

The average values qi, for clusters 1-3 were 0.9024,.,,qervativel, conservative2, pessimisaiogd optimistic The
0.8765, and 0.8728, respectively. These values agree with fiei iterion behind the two conservative approaches is to

characterization of the dynamism of _the clusters we _magﬁppose that next frame will have the same size has the
before. The more dynamic a stream is, the less predictaBle, o recent oneConservative aigorithm makes its decision
the scene labels are. These results allow us to say that taking into account the last label referenced, while the

static models obtained in Section Ill are also represemati¥8nservativezalgorithm uses the average of the three labels

of the dynamic characteristics of the different streams. In tfﬂ;.? the working set. Theessimisticpolicy uses the maximum

following section, we use the working set model to forecaglpe| valye of the stream as the next label and finally the
the bandwidth requirements at the scene level. optimistic policy uses the minimum label value of the stream.
The use of the maximum and the minimum of the scene label
derives from the results of Section IlI.
The different forecasting policies correspond to different
In this section, we want to validate our proposed methodajuality of services offered since the amount of bandwidth
ogy of workload characterization to real problems of resouredlocated decreases, moving frggassimistido conservative2
management. We present two applications to the problemscohservativeland tooptimistic policies.
bandwidth prediction of a video stream (in Section V-A) and The results of the application of the four policies to the 20
to the evaluation of an ATM internal buffer utilization (inFSS’s, grouped into the three clusters identified in Section I,
Section V-B). are reported in Table VI. The number of times that the predic-
tion was correct, as well as the number of times in which the
scene label was over- or under-estimated are reported for each
policy. As has previously been pointed out, the general trend
One of the most important problems to deal with whegf dynamism of the streams increases from cluster 1 to cluster
transmitting continuous media, like videos, is how mucB, |ndeed, in each policy, the number of times that a correct
bandwidth we will require along the path [17]-{20]. Thisprediction is made decreases from cluster 1 to cluster 3; that
information can be used to evaluate aspects like: how magy the prediction is more difficult in more dynamic streams.
data-streams could share a certain path, which QoS can b@yhat is interesting to note is that a simple policy like
provided, what the maximum bandwidth required to transmibnservativelallows for a bandwidth prediction which is
a group of videos is, and so on. In this section, we describe:grrect 87.88% of the time for streams of cluster 1, the most
technique based on the application of the working set methgghsistent one. If the maximum QoS is required, we need to
to predict the bandwidth requirement at scene level of a vid@gaximize the number of times in which enough bandwidth
stream. is allocated. Thepessimisticpolicy satisfies this requirement
We implement a working set of size three with a stack @4 429 of the time, even if the bandwidth is overestimated
three elements. This stack is used to contain the values19f 9504 of the time. In spite of their simplicity, the worst

the last three different scene labels. The next scene label wgsult obtained from the four policies is a correct prediction
predicted by sampling the cumulative distributiongfwith 76380 of the time.

random numbers,., 0 < n,. < 1. If 0<n, < p1, then the

next predicted scene label is equal to the one in the first stack ) .

position, i.e.,, to the last scene referenceg, I& n,. < p1+ps, B. Allocation of an ATM Switch Internal Buffer

then the next predicted scene label is equal to the one in thé\Ve present in this section the results of simulation experi-
second stack position. #f; +p2 <n, < p1 +p2 +ps, then the ments which illustrate the impact of the proposed forecasting
next predicted scene label is the one in the last stack posititechnique on the allocation of the internal buffer of an ATM

V. APPLICATIONS TO RESOURCERESERVATION PROBLEMS

A. Prediction of the Bandwidth Requirements
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I multiplexer demultiplexerc > O We model video streams using tleN-OFF model [23],

I o [24]. In the oN-OFF model, the traffic load is composed of
[ two distinct periods which alternate. During tlkeev period,
%e%tr%l cells arrive deterministically at intervals of duration No
L: ucu

cells arrive during theorF period. In our case, the duration
Fig. 9. Structure of the ATM switch model. of the oN period (Tox) depends directly on the size of the
currentl frame. TheorrF period corresponds to the sum of the

switch. Traffic control in ATM-based networks is the subject 0 llent period between frames plus the duration penods of the
or B frames, up to the nextframe. Theon period length

;n |Ir_:_18?1r_talgter(';sri;rgz deafiic;r;o:/gr?tlhe[zlzﬁt ft(;vg y;?;s.o,?ct(i g;gécgrresponding to théth | frame can be calculated as follows:
control is to protect the network and the user in order to ‘ Fr(k)

achieve predefined network performance objectives. Basically, on(k) = W Q)
traffic control refers to the set of actions taken by the network !

to avoid congestion. According to the 1.371 standard, tWghere f,(k) is the size of thekth I-frame andW; is the
functions are required for managing and controlling traffigandwidth of theith switch input line. Since a switch is
in ATM networks: Connection Admission ContraindUsage sypposed to have input lines, the worst-case situation is
Parameter Contral Connection Admission Control refers tojf e suppose that the video streams reach the switch at the
the actions taken by the network at call set-up phase in ordgjme time, which means that they are totally synchronized.

to accept or reject an ATM connection. Usage Parameter apdhis case, the length of the period during which the largest
Network Parameter Control represent the set of actions tak§iyer is required is

by the network to monitor and control traffic on an ATM

connection in terms of cell traffic volume and cell routing Tox(k) = min(Thx (k) Vi:1<i<n. )

validity (this is usually calledpolice functio. There are

two fundamentally opposite approaches for specifying traffic Tpe required buffer space, in bits, is

parameters: namely, a statistical approach and an operational

(or algorithmic) approach. The latter is the one we are using n

in this paper. An operational approach defines the traffic q(k) = Ton(k) * <Z Wi)- (3

parameters by means of a rule. The rule has been standardized i=1

;}glzﬁfﬁr:rygg(:&“;n 1.371, and is called the generic cel rateDu_ring i'Fs activ_ity, our extended version of the GCRA
The techni . t tend th .t%lrgorlthm, is required to calculate the actual size of itle

que we propose is meant to extend the virtyal

scheduling version of the GCRA. As will be shown later, ourf te;me fonr1 th?”ti'nﬁlg “nerist; Lhesetva:LL:es alilnotw performance
extension requires only a long-run average of an additional € computation ¢escribed up to this point.
The calculated value of theframe allows us to forecast,

sum operation and a comparison for each incoming cell. To

guarantee the required QoS, the crucial problem is to alloc&@nd the algorithm described in Section V-A, the value of the

the proper amount of network resources (i.e., in our cag‘éextl frame (indicated ag7(k +1)). Therefore, by applying

buffer space). The most straightforward method would be Qi) usingf}(k +1) instead off; (k) and then calculating (2),
allocate a sufficient amount of buffer to satisfy the peak celf® can finally evaluate
rate. This makes it possible to eliminate cell loss and delay

variability. However, this approach wastes a high percentage q(k +1) = Tox(k + 1) * <Z Wi)-
=1

of the internal buffer.

The queueing network model of an ATM switch withl/O
interfaces is shown in Fig. 9. We considered a central-queueThis value(g(k + 1)) determines the maximum amount of
approach based on [22], where the buffer is shared amdpigffer space required by video streams. Fig. 10 shows the
all the input lines: each incoming cell is stored in tentral results of the application of this method on a switch with
gueue The internal buffer will be shared among two types = 4 I/O ports and theconservativelpolicy. Four sources
of workload: video streams and other types of traffic (e.gnere present, with each one transmitting éiséervideo stream
file transfers). While the former load usually has high Qo the switch. The average buffer utilization wés= 30%.
requirements, the latter can accept a “best effort” service. Weu can see how the reserved buffer size varies in time, trying
apply the working set prediction technique (working set of sizZe accommodate the incoming video traffic. The use of a
three) to determine the required amount of buffer space to peak-rate allocation policy would have required allocating an
allocated for the video streams. The proposed allocation poliayerage value of 214 cells. With tlenservativeolicy, the
attempts to meet the QoS required from the video streams dyerage value of allocated cells was 168, saving about 27% of
minimizing the impact on the other types of traffic. In othethe buffer space. Since the proposed forecasting policy failed
words, we try to reserve enough buffer space to store vidg@ the sense that it underestimated the frame size) in about
stream cells with a proper QoS, limiting the waste of buffe8% of the cases, the evaluation of the correct buffer size also
space. failed, giving a 1.36% rate of cell loss.
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Multidimensional data-analysis techniques, factor analysis,
clustering, and the scene working set technique are used to
construct static and dynamic video traffic models. Applications
of the proposed techniques for the prediction of the bandwidth
demands of the 20 video streams, and for the allocation of
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[14]

15
If required by the QoS, we can reduce the cell loss b[y
applying a correction factox to ¢g(k + 1), i.e., ¢'(k+ 1) = 16]
(1+a)+q(k+1). In this case, we obtain different combinationé
of cell loss and average buffer space, as shown in Fig. 117]
By increasing the value of, cell loss is reduced, but the
average size of the internal buffer is increased. On the other
hand, smaller values af reduce the size of the buffer while[18]
increasing the percentage of cell loss.

VI [19]

Design, optimization, and capacity-planning decisions &
require predictions of network performance. To obtain accurate
predictions, reliable models of both the workload and netwoiR1]
are required. Indeed, workload characterization is a prerequi-
site to any performance study. In this paper, we have describjes|
several characterization techniques that can be applied to
construct models of the load which is generated by coded vid&d!
streams. Whereas conventional modeling studies were based
on only one or very few empirical traces, our study takes ﬁ,?

: . ; . ; 24
video traces into consideration. Resource-, subject-, and sc e]
oriented characterization approaches have also been used.

CONCLUSION

buffers in an ATM switch, demonstrate the viability of the
approach.
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