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Comments and Corrections__________________________________________________

Comments on “A Deterministic Approach to the
End-to-End Analysis of Packet Flows in Connection

Oriented Networks”

Jean-Yves Le Boudec and Gérard Hébuterne

Abstract—We prove that the buffer bound in the above paper, can be im-
proved by using a modification of the proofs in the original paper together
with so-called network calculus bounds. We also show that the delay bound
in the above paper, is the sum of worst-case queueing delays at all nodes
along the path of a connection.

Index Terms—ATM, delay bound, FIFO, network calculus.

I. INTRODUCTION

IN the above paper,1 the authors consider a network of discrete time,
first in first out (FIFO) queues. They assume that the network uses a
connection-oriented paradigm, and that packets (called “cells”) all have
the same size (as is the case with ATM). In particular, it is assumed
that all cells belonging to one connection follow the same path, estab-
lished at connection setup. In this context, the words “connection” and
“flow” have the same meaning. It is further assumed that a connection
is spaced at the source by at least the route interference number (RIN)
of the connection. The RIN of connectionr is defined as the number of
occurences of other connections joining the path ofr: This assumption
is called thesource rate condition; it is shown in the above paper, that
under this set of assumptions:

• network is stable (namely, queue lengths remain bounded);
• delay for any connection is bounded by its RIN;
• maximum buffer required at a queue withI input links andNi

connections on input linki is bounded bymax1�i�I (N �Ni);
with N = �I

i=1 Ni:

In this paper, we show that, under the same assumptions, it is pos-
sible to improve the buffer bound tomin1�i�I (N � Ni) instead of
max1�i�I (N � Ni): This can be achieved using a small variation
of network calculus bounds [3], [4], [6], and the above paper, together
with a modification of the main proofs in the above paper. This also
implies some improvements for the delay bound.

Essentially the same result was found independently by Zhang in [7],
using a different approach, based on a detailed analysis of worst case
delays. See also some concluding remarks in Section III. In [7], Zhang
also analyzes the tightness of the bound.

In Section II, we give the new bounds. The section relies on a number
of lemmas, which are given in the Appendix.

Throughout this paper, we adopt a discrete time model, as in the
above paper, and assume that all packets have the same size, equal to
one unit of data.
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II. I MPROVING THE BOUNDS IN [2]

Our starting point is a number of results, which we collectively refer
to as “network calculus” [3], [1], [2], [6]. These results give determin-
istic bounds on buffer and delay, assuming input processes are limited
by some arrival curves, and the service element offers some form of
service guarantee. We say that a flow admits a function�(t) as arrival
curve if the number of cells that can be observed on the flow during
any interval of durationt is� �(t): We also say that a nodee offers
to a flow r a “strict service curve”�(t) if, during any time interval of
lengtht; for which the backlog of connectionr at nodee is positive,
the number of cells of flowr that are output by the node is� �(t):
The backlog for flowr at nodee at some time instant is defined as the
number of cells of flowr, which have entered nodee and did not de-
part yet. The strict service curve property was defined for example in
[5] and is an abstraction of the generalized processor sharing concepts
introduced in [5]. The following theorem is a new variant of classical
results in [3], [1], [2], and [6].

Theorem 2.1: Consider a node that receives an input connection,
with a buffer large enough to avoid discarding data. Assume that the
node offers a strict service curve� and that the input connection has an
arrival curve�: Assume that�(u0) � �(u0) for someu0 > 0: Then
the maximum buffer occupancy is bounded bysup

0�u<u (�(u) �
�(u)):

The theorem says that for the computation of a buffer bound, it is
sufficient to consider time intervals less thanu0: The idea is that the
busy period duration is less thanu0:

Proof: The proof is similar to network calculus bounds in [3], [1],
[2], and [6]. Callx(t) [respectively,x�(t)] the input [output] function.
This is traditionally defined as the cumulative number of cells observed
on the input [output] flow over the time interval[0; t]: Consider a given
time t at which the buffer is not empty, and calls the last time instant
beforet at which the buffer was empty. Then, from the strict service
curve property, we have

x
�(t) � x

�(s) + �(t� s) = x(s) + �(t� s):

Thus the buffer sizeb(t) = x(t)� x�(t) at timet satisfies

b(t) � x(t)� x(s)� �(t� s) � �(t� s)� �(t� s):

Now if t� s � u0; then there exists a timet0 = s+ u0; with s+1 �
t0 � t such thatb(t0) = 0: This contradicts the definition ofs: Thus
we can assume thatt� s < u0:

Now we proceed with a property that generalizes the results inthe
above paper and will be required for improving the buffer bound.

Theorem 2.2:With the assumptions in the above paper, consider a
given linke and a subsetS ofm connections that use that link. Letn be
a lower bound on the number of route interferences that any connection
in the subset will encounter after this link. Then over any time interval
of durationm+ n; the number of cells belonging toS that leave link
e is bounded bym: An equivalent way to formulate the theorem is to
say that if we call� the minimum arrival curve for the aggregate of the
m flows on link e; then we have

�(m+ n) � m: (1)

Before giving the proof, let us mention the following. Form = 1; the
theorem means that the spacing between cell departures from linke is
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Fig. 1. A time-space diagram illustrating the definitions ofd c andc

c (all cells shown are inS): Time flows downwards. Rectangles illustrate busy
periods.c ; c are inA while d is inA : The merging point for the flows of
d andc is link g (not g ):

at leastn + 1; wheren is the “remaining” route interference number
for the connection, past linke: In general,n is less than the RIN of
the connection. The differencen � RIN is due to cell delay variation
accumulated in the buffers along the path. In other words, a connection
gains cell delay variation along its path, and the cell delay variation is
bounded by the route interference number consumed along the path.
This result (namely, form = 1) derives immediately from Theorem 1
in the above paper.

However, the theorem is more powerful. It gives a bound on the
number of arrivals for an aggregate flow. It can easily be seen that the
bound is not a simple consequence of bounds for individual connec-
tions; indeed, the bound so obtained would be�(1+ n) � m; instead
of �(m + n) � m: In contrast, the bound in the theorem takes into
account global interactions between connections.)

Proof: Remember that we have assumed a connection-oriented
network; thus every cell (= packet) belongs to one connection, and
every connection uses one path. Consider an arbitrary cellc; and call
r the connection it belongs to; as a shortcut, we also say that cellc “is
in S” if r is inS: Consider now a fixed time interval(s; t] = [s+1; t]
with t = s + m + n: Call A the set of all cells inS that leave the
link during (s; t]: Note that connections inS may interfere at several
different links, but since they all end up using linke; there is always
one last link before or ate at which they interfere. We call this link the
merging point of the two connections. We use the classical definition
of busy period used in queueing theory, namely, a time interval during
which the backlog for the flow at the node is always positive. For two
cellsc andd in S; and for some linkf; we say thatd c if c andd
are in the same busy period at the merging points for the connections
of c andd (seeFig. 1). We will use the binary relation as follows. By
Lemma 1 in the above paper, the delay for a cellc in S due to interfer-
ences inS at the merging point is bounded by the number of cellsd in
S satisfyingd c: Our definition ofd c is very close to the concept
of delay chainused in the above paper. More precisely,d c at some
link f is equivalent to saying that cellsc andd are in the same delay
chain at linkf; that link f is the merging point for the connections of
c andd; and thatd reached linkf beforec:

We now define the setA0 as follows; we say that some celld is in
A0 if and only if d is in S; d leaves linke before or at times; and
there exists a sequence of cellsc0 = d; c1; . . . ; ck all in S; such that
ci�1 ci for i = 1; . . . ; k; andck 2 A: The definition ofA0 is
similar to that of thesuperchainfor a given path in the above paper;
however, it differs in that it does not apply to one specific path, and
that the cells in the chain are restricted to be inS: Call k = #A0;

where the # sign indicates the number of elements in a set (thusk is
the number of connections that are inA0). Note that it is possible that
A0 is empty, in which casek = 0: Also callA1 the subset ofA made
of those cells that leave the link in(s; t� k]: Since the link rate is one
cell per time unit, we have

(#A) � k + (#A1): (2)

The main idea of the proof is that

(#A1) � m� k (3)

which together with (2) will prove the result. Equation (3) follows from
Lemma A.1, which shows that there can be at most one cell per con-
nection inA0 [ A1:

We now come to our main result. Consistent with the network model
in the above paper, a network node is modeled as a collection of output
buffers, with no contention other than at the output buffers. Every buffer
is associated with one unidirectional link which it feeds. Every link has
one origin node and one end node. We say that a linkf is incident to
link e if the origin node of linke is the destination node of linkf: In
general, a link has several incident links.

Theorem 2.3:Consider some arbitrary linke with I incident links,
and callNi the number of connections that use linke and arrive on the
ith incident link,i � I: Also callN = �I

i=1 Ni: With the assump-
tions in the above paper, the amount of data in the buffer is bounded by
min1�i�I (N �Ni) (instead ofmax1�i�I (N �Ni) as in the above
paper).

Proof: We apply Theorem 2.2 to the set of connections that arrive
at e on link i; with m = Ni andn = N: The maximum number of
cells that can arrive duringt time slots at linke via the ith incident
link is thus limited by�i(t) = min (t; Ni); for t � N: We now apply
Theorem 2.1 to� = �I

i=1 �i and the strict service curve�(t) = t: We
can assume without loss of generality thatN1 � N2 � � � � � NI : The
function� � � is continuous and has a derivative at all points except
theNi’s. The derivative changes its sign atNI (= max1�i�I (Ni));
thus the maximum of�� � is atNI and its value isN �NI :

1) The Delay Bound:Last, let us discuss the delay bound. Call
j(r; e) the link by which connectionr arrives at nodee: From The-
orem 2.3, the delay experienced by a cell of connectionr arriving at
nodee is bounded by

min
1�i�I(e)

(N(e)�Ni(e)) � N(e)�Nj(r;e)(e): (4)

Here we have denoted withI(e) the number of incident links at node
e; Ni(e) the number of connections arriving at nodee on link i; and
N(e) = �

I(e)
i=1 Ni(e): Now N(e) � Nj(e) is the number of route

interferences for connectionr at nodee: Also write e 2 r to express
that nodee is on the path of connectionr: The end-to-end delay for
connectionr is thus bounded by

�(r) =
e2r

(N(e)�Nj(r;e)(e)) (5)

which is precisely the RIN of connectionr: This result is already in the
original paper . However, we should mention here first that, contrary to
what might be interpreted from the above paper, the end-to-end delay
bound is the sum of the local, independent delay bounds at every node.
Second, a better bound can be directly obtained by using the left-hand
side in (4) instead of the right-hand side. This gives the following bound
for the end-to-end delay:

�
0(r) =

e such that e2r

f min
i such that 1�i�I(e)

(N(e)�Ni(e))g:
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Fig. 2. Two cells of same connection cannot be inA :

Namely, the end-to-end delay is bounded by the sum of the minimum
numbers of route interferences for all connections at all nodes along the
path of a connection. For asymmetric cases, this is less than the RIN of
the connection as given in(5).

III. CONCLUDING REMARKS

Essentially, the same result was found independently by Zhang in
[7], using a different approach, not based on network calculus. In our
approach, we show an intermediate result (Theorem 2.2), which gives a
property of the arrival function for an aggregate number of connections.
We believe that this direction could be used to analyze generalizations
of the original problem in the above paper, in particular, if we consider
more general general source rate conditions.

APPENDIX

PROOF OFTHEOREM 2.2

We use a discrete time model and assume that all propagation times
are zero. The proof in this Appendix can easily be modified to incorpo-
rate propagation times, but we prefer to leave this to the reader as this
complicates a notation that is already complex enough.

The main technical result is the following lemma. It is an extension
of the “excluded superchain” lemma in the above paper.

Lemma A.1: With the notation in Theorem 2.2, there is at most one
cell per connection inA0 [ A1:

Proof: First, we prove that there cannot be two cells of the same
connection inA0: We proceed by contradiction. Assume thatd; d0 2

A0 belong to the same connection and were emitted in that order. There
existsc0 = d; c1; . . . ; ck in S such thatc0 c1; c1 c2; . . . ; ck�1

ck; with ck 2 A1 (see Fig. 2). Callfi the merging point for the con-
nections ofci�1 andci: We show now that celld0 must be flowing on
the common subpath after cellck: Indeed, otherwise, from the FIFO
property, it would have reachedfk beforeck: Assume it has reached
fk afterck�1; then it would belong to a super chain fromd to d0: This
is impossible from Lemma 2 in the above paper. Thusd0 reachesfk
afterck�1: By recursion, this shows thatd0 must have reachedf1 be-
fore c0 = d, which is a contradiction. Thus celld0 must be flowing on
the common subpath after cellck: Now this contradicts the facts that
d0 2 A0 andck 2 A1:

Second, we show that there cannot be two cells of the same connec-
tion inA1: Let d be a cell inA1: Call s + �; with � � 1 the time at
which d leaves the link. From Lemma 1 in the above paper, the delay
experienced byd along its path is bounded by the number of interfer-
ence units experienced byd:

Now let us make the distinction between an interference unit, which
is due to a connection inS and which occurs at the merging point with
the connection ofd (call r the number of such interference units expe-
rienced byc); and other interference units experienced byd (call r0

Fig. 3. There cannot be two cells of the same connection inA :

Fig. 4. There cannot be two cells of the same connection inA [ A :

their number). For example, in Fig. 3, the interference ofc1 at g0 is
counted inr0; whereas the interferences ofc1 at g and c2 at f are
counted inr: The delay experienced byd between its source and link
e is thus bounded byr + r0: Now if c is an interfering cell counted in
r; we havec d: Thus eitherc 2 A0 or c 2 A1: In the latter case, by
the FIFO property,c must leavee befored: Thus

r � k + � � 1: (6)

Also callR0 the number of route interferences for the connection ofd

due to connections that are either not inS or are inS but are not at the
merging point with the connection ofd: We have thusr0 � R0: Call t0
the departure time for celld at its source. From the above we have

t0 = s+ � � r � r
0

� s� k + 1�R
0

:

Call t1 the emission time for the next cell, say,d1; following d at its
source. By the assumptions in the theorem, the total number of route
interferences for the connection ofd is at least(m� 1)+R0+n; thus

t1 � t0 +m+R
0 + n:

Combining the two previous equations, we have

t1 � s+m+ n� k + 1 = t+ k + 1:

Thus, from the definition ofA1; d1 is not inA1; which proves that
there cannot be two cells of the same connection inA1: Third, we
prove that ifd 2 A0 andd0 2 A1; then necessarilyd andd0 belong
to different connections. Consider somed 2 A0; and a sequencec0 =
d c1; c1 c2; . . . ; ck�1 ck; with all cells inS andck 2 A1:

Call fi the merging point forci�1 andci: See Fig. 4. Callb the arrival
time ofd atf1 ands+ �; with � � 1 the departure time forck at link
e: Defineri as the number of interference units in the busy period atfi

whereci�1 andci interfere, plus those experienced by cellci between
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fi andfi+1; excludingfi+1; due to cells inS at their merging point
with the connection ofd: Following the same reasoning as in the proof
of Lemma 2 in the above paper, we have

s+ � � b �

k

i=1

(ri + r
0

i): (7)

Call t(d); t(d0) the departure times of cellsd and d0 at their
(common) source. We have similarly

b� t(d) � r0 + r
0

0 (8)

wherer0 [respectively,r0

0] is the number of interferences units for cell
d on its path from the source tof1; excludingf1; due to cells inS at
their merging point with the connection ofd [respectively, due to other
cells].

Now since the spacing between cells at the source is at least the route
interference number for the path ofd andd0; we have

t(d0)� t(d) � m+ n+R
0 (9)

whereR0 is the number of route interferences for the path ofd; due
to connections not inS at the merging point with the connection ofd:

Thus

k

i=0

r
0

i � R
0

: (10)

Combining (7)–(10), we get

t(d0) � s+ � +m+ n�

k

i=0

ri:

Now every interference counted inri corresponds to one cell
 in
S with 
 ci for somei: Thus either
 2 A0 or 
 2 A: By the
FIFO property, in the latter case
 must leave linke beforeck: Thus
�k

i=0 ri � k+ � � 1: Thust(d0) � s+m+ n� k+ 1 = t� k+ 1
andd0 is not inA1: Combining the three arguments, we find that there
is at most one cell per connection inA0 [ A1:
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