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Comments and Corrections

Comments on “A Deterministic Approach to the [l. IMPROVING THE BOUNDS IN [2]
End-to-End Analysis of Packet Flows in Connection

- Our starting point is a number of results, which we collectively refer
Oriented Networks”

to as “network calculus” [3], [1], [2], [6]. These results give determin-
istic bounds on buffer and delay, assuming input processes are limited
by some arrival curves, and the service element offers some form of
service guarantee. We say that a flow admits a funetign as arrival

Abstract—We prove that the buffer bound in the above paper, can be im- Curve if the number of cells that can be observed on the flow during
proved by using a modification of the proofs in the original paper together ~anyinterval of durationt is < «(t). We also say that a nodeoffers
with so-called network calculus bounds. We also show that the delay bound to a flowr a “strict service curve3(¢) if, during any time interval of
in the above paper, is the sum of worst-case queueing delays at all ”Odeslengthf,, for which the backlog of connectionat nodec is positive,
along the path of a connection. the number of cells of flow that are output by the node Js 3(¢).

Index Terms—ATM, delay bound, FIFO, network calculus. The backlog for flowr at node: at some time instant is defined as the
number of cells of flowr, which have entered nodeand did not de-
part yet. The strict service curve property was defined for example in
[5] and is an abstraction of the generalized processor sharing concepts

IN the above papérthe authors consider a network of discrete timdntroduced in [5]. The following theorem is a new variant of classical
first in first out (FIFO) queues. They assume that the network usesesults in [3], [1], [2], and [6].
connection-oriented paradigm, and that packets (called “cells”) all haveTheorem 2.1: Consider a node that receives an input connection,
the same size (as is the case with ATM). In particular, it is assumedth a buffer large enough to avoid discarding data. Assume that the
that all cells belonging to one connection follow the same path, estaipde offers a strict service cur@eand that the input connection has an
lished at connection setup. In this context, the words “connection” aadival curvea. Assume thatv(ug) < 3(uo) for someug > 0. Then
“flow” have the same meaning. Itis further assumed that a connectitire maximum buffer occupancy is bounded sap, ., ., ((u) —
is spaced at the source by at least the route interference number (R¥Y))).
of the connection. The RIN of connectiornis defined as the number of  The theorem says that for the computation of a buffer bound, it is
occurences of other connections joining the path dhis assumption sufficient to consider time intervals less than The idea is that the
is called thesource rate conditionit is shown in the above paper, thatbusy period duration is less thai.
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under this set of assumptions: Proof: The proofis similar to network calculus bounds in [3], [1],
« network is stable (namely, queue lengths remain bounded); [2], and [6]. Callz(t) [respectivelyz*(#)] the input [output] function.
« delay for any connection is bounded by its RIN; This is traditionally defined as the cumulative number of cells observed

« maximum buffer required at a queue wiftinput links and; ~ on the input [output] flow over the time intervidl, ]. Consider a given
connections on input linkis bounded bynax;<;<; (N — N;), timet at which the buffer is not empty, and calthe last time instant

with N = ¥, N,. beforet at which the buffer was empty. Then, from the strict service

~h=1
In this paper, we show that, under the same assumptions, it is pgg[ve property, we have

sible to improve the buffer bound tain; <;<; (N — N;) instead of . . , .

max;<;<; (N — N;). This can be achieved (using a ;mall variation a'(t) > 27 (s) + Bt —s) = a(s) + At — 5).

of network calculus bounds [3], [4], [6], and the above paper, togeth?ﬁus the buffer sizé(t) = =(t) — 2™ (#)

with a modification of the main proofs in the above paper. This also

implies some improvements for the delay bound. b(t) < w(t) — a(s) — Bt — s) < alt — s) — Bt — s).
Essentially the same result was found independently by Zhang in [7],

using a different approach, based on a detailed analysis of worst cRgfv if t — s > uo, then there exists a timé = s + ug, with s + 1 <

at timet satisfies

delays. See also some concluding remarks in Section Ill. In [7], Zhafig< t such thab(t') = 0. This contradicts the definition of. Thus
also analyzes the tightness of the bound. we can assume that- s < wuo. O

In Section II, we give the new bounds. The section relies on a numbemNow we proceed with a property that generalizes the results inthe
of lemmas, which are given in the Appendix. above paper and will be required for improving the buffer bound.

Throughout this paper, we adopt a discrete time model, as in theTheorem 2.2: With the assumptions in the above paper, consider a
above paper, and assume that all packets have the same size, equflém linke and a subsef of m connections that use that link. Lebe
one unit of data. a lower bound on the number of route interferences that any connection
in the subset will encounter after this link. Then over any time interval
of durationm + n, the number of cells belonging t that leave link
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e where the # sign indicates the number of elements in a set ftlas
the number of connections that aredn). Note that it is possible that

A, Ao is empty, in which casgé = 0. Also call A, the subset ofA made
of those cells that leave the link {®, ¢ — k]. Since the link rate is one
cell per time unit, we have

Cellcl > s+l
N 4 (#A) < b+ (#A), 0
A
b t-k The main idea of the proof is that

(#A)<m-—k (3)

which together with (2) will prove the result. Equation (3) follows from
Lemma A.1, which shows that there can be at most one cell per con-
Cell cl nectionindg U A;. O
We now come to our main result. Consistent with the network model
Fig. 1. A time-space diagram illustrating the definitionsick ¢, ande, < in the above paper, a network node is modeled as a collection of output
¢, (all cells shown are i%). Time flows downwards. Rectangles illustrate busyouffers, with no contention other than at the output buffers. Every buffer
periods.cy, ¢z are in Ay while d is in Aq. The merging point for the flows of . iated with idirecti Link which it feeds. E link h
d ande, is link g (notg’). is associated with one unidirectional link which it feeds. Every link has

one origin node and one end node. We say that afifkincident to

. W L . link e if the origin node of linke is the destination node of link. In
at leastn 4 1, wheren is the “remaining” route interference number,

for th i t link | Inis | than the RIN of general, a link has several incident links.
or the conr!ec on, pa_s In«. 1N gen(_ar.a /IS 1ess than the ) _O Theorem 2.3: Consider some arbitrary linkwith T incident links,
the connection. The differenee— RIN is due to cell delay variation

and callN; the number of connections that use linknd arrive on the

accumulated in the buffers along the path. In other words, aconnectigh . iont link,i < 7. Also call N = S1_, N;. With the assump-

gains cell delay variation along its path, and the cell delay variationd ns in the above paper, the amount of data in the buffer is bounded by
bounded by the route interference number consumed along the pat :

. o : i1<i<r (N — N;) (instead oft i<1 (N = N;) asin the above
This result (namely, fom = 1) derives immediately from Theorem st ( N maxigist ( )

in the above paper. paper). . .
n ' . . Proof: We apply Theorem 2.2 to the set of connections that arrive
However, the theorem is more powerful. It gives a bound on t & on link . with m = N: andn = N. The maximum number of
number of arrivals for an aggregate flow. It can easily be seen that Is that caﬁ arrive during time slots at linke via theith incident
bound is not a simple consequence of bounds for individual connee

SN . _ K is thus limited bya; (#) = min (¢, N,), fort < N. We now apply
tions; indeed, the bound so obtained wouldl§é + ») < m, instead Theorem 2.1ta = S/, a; and the strict service curvi(t) = ¢. We

of a(m + n) < m. In contrast, the bound in the theorem takes intgan assume without loss of generality that < N, < --- < N7. The
account global interactions between connections.) {%%ctiona — /3 is continuous and has a derivative at all points except

Proof: Remember that we have assumed a connection-orien Ny's. The derivative changes its sign i (= maxi<i<7 (N:));

network; thust.every cell (= pal;:]keé) be]gngs to qu connﬁgtlor;l, s the maximum of — 3 is atN; and its value isV — N7. O
?\;Ery conne(i_lon_tusels onetp:_ﬁ ' OESAtertan ar Il rary,c&:hm%all 1) The Delay Bound:Last, let us discuss the delay bound. Call
r hé connection It belongs 1o, as a shortcut, we aiso say 8 j(r,e) the link by which connectiom arrives at node.. From The-

inS”if risinS. Consider now a fixed time intervéb, t] = [s + 1, 7] : S
. ) ’ orem 2.3, the delay experienced by a cell of connecti@mriving at
with t = s + m + n. Call A the set of all cells irS that leave the nodee is bounded by

link during (s, t]. Note that connections i may interfere at several
different !inks, but since they fall end up using linkthere ig a!ways min  (N(e) = Ni(e)) < N(€) = Nyiroy(e). @)
one last link before or at at which they interfere. We call this link the 1<i<i(e) ’

merging point of the two connections. We use the classical definition ) o ]

of busy period used in queueing theory, namely, a time interval durifif® We have denoted wit(¢) the number of incident links at node
which the backlog for the flow at the node is always positive. For twe Vi (€) th(?(n)umber of connections arriving at noden link ¢, and
cellsc andd in S, and for some linkf, we say thatl < ¢ if c andd ¥ (€) = EiZi Ni(e). Now N(e) — N(e) is the number of route
are in the same busy period at the merging points for the connectidfigrferences for connectionat nodec. Also write e € r to express
of ¢ andd (seeFig. 1). We will use the binary relatiog as follows. By that nodec is on the path of connection The end-to-end delay for
Lemma 1 in the above paper, the delay for a céfi S due to interfer- Connection- is thus bounded by

ences inS at the merging point is bounded by the number of céils ]

S satisfyingd =< c. Our definition ofd < ¢ is very close to the concept 8(r) =" (N(e) = N0 (€)) ®)
of delay chairused in the above paper. More precisély ¢ at some &r

link £ is equivalent to saying that celisandd are in the same delay \yhich is precisely the RIN of connectienThis resultis already in the
chain at linkf, that link f is the merging point for the connections ofyiginal paper . However, we should mention here first that, contrary to
¢ andd, and thaul reached linkf beforec. . what might be interpreted from the above paper, the end-to-end delay
We now define the setl, as follows; we say that some célllis in  hond is the sum of the local, independent delay bounds at every node.
Ao if and only if d is in S, d leaves linke before or at times, and  gecond, a better bound can be directly obtained by using the left-hand

there exists a sequence of celis= d,c1,....cx allin S, such that - gjge in (4) instead of the right-hand side. This gives the following bound
cit < ¢;fori = 1,...,k, ande, € A. The definition of Ao IS tor the end-to-end delay:

similar to that of thesuperchainfor a given path in the above paper;
however, it differs in that it does not apply to one specific path, and §'(r) = Z min (N(e) = Ni(e))}.

that the cells in the chain are restricted to beSinCall & = #.Ao, ¢ such that cep L Such that 1<i<i(e)
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Fig. 2. Two cells of same connection cannot bedip Fig. 3. There cannot be two cells of the same connectioA;in

Namely, the end-to-end delay is bounded by the sum of the minimum
numbers of route interferences for all connections at all nodes along the
path of a connection. For asymmetric cases, this is less than the RIN ¢

the connection as given ). Ay
Ill. CONCLUDING REMARKS _— i
) ) ) ror interferences™ | ® 5+l
Essentially, the same result was found independently by Zhang ir e |
[7], using a different approach, not based on network calculus. In our A,

approach, we show an intermediate result (Theorem 2.2), which givesi | g4 ) B A

property of the arrival function for an aggregate number of connections. I fek

We believe that this direction could be used to analyze generalization: gy
Fig. 4. There cannot be two cells of the same connectiofiinU A;.

v v 4

of the original problem in the above paper, in particular, if we consider
more general general source rate conditions.

APPENDIX

their number). For example, in Fig. 3, the interference:ofit ¢’ is
PROOF OFTHEOREM 2.2

counted inr’, whereas the interferences of at g andc, at f are
We use a discrete time model and assume that all propagation timegnted inr. The delay experienced bibetween its source and link
are zero. The proof in this Appendix can easily be modified to incorpe-is thus bounded by + '. Now if ¢ is an interfering cell counted in
rate propagation times, but we prefer to leave this to the reader as thige havec < d. Thus either: € A, orc € A;. In the latter case, by
complicates a notation that is already complex enough. the FIFO property;: must leave: befored. Thus
The main technical result is the following lemma. It is an extension
of the “excluded superchain” lemma in the above paper.

Lemma A.1. With the notation in Theorem 2.2, there is at most ONRiso call R’ the number of route interferences for the connectiod of

cell F;:)ggnr:éttlocv;mﬁovi tfzit.there cannot be two cells of the sarr(ljue to connections that are either noSimr are inS but are not at the
of. FIrst, we p L , rﬁerging point with the connection df We have thus’ < R’. Callt,
connection indy. We proceed by contradiction. Assume thatl' €

. . ) the departure time for cell at its source. From the above we have
Ao belong to the same connection and were emitted in that order. There P

existsco = d, ¢1,..., ¢ inSsuchthaty < ci,c1 <ca,eny oot < to=s4+7—r—1 >s—k+1—R.

ci, With e, € Ay (see Fig. 2). Callf; the merging point for the con-

nections of:;—; andc;. We show now that celf’ must be flowing on Call #; the emission time for the next cell, sal,, following d at its

the common subpath after cell. Indeed, otherwise, from the FIFO source. By the assumptions in the theorem, the total number of route
property, it would have reachefi beforec,. Assume it has reached interferences for the connectiondfs at leas{m — 1) + R’ + »; thus

fr aftercy—1; then it would belong to a super chain frahto d’. This
is impossible from Lemma 2 in the above paper. Thuseachesf,

afterc,_1. By recursion, this shows thdt must have reachefi be-
foreco = d, which is a contradiction. Thus cell must be flowing on
the common subpath after cell. Now this contradicts the facts that H>sHtmAdn—k+l=t+k+1.

d € Ay andeir € A;. -

Second, we show that there cannot be two cells of the same conrBuds, from the definition of4,, d, is not in A, which proves that
tionin A;. Letd be acell inA4;. Call s + , with = > 1 the time at there cannot be two cells of the same connectiotdin Third, we
which d leaves the link. From Lemma 1 in the above paper, the delayove that ifd € Ao andd’ € A;, then necessarily andd’ belong
experienced byl along its path is bounded by the number of interferto different connections. Consider sorhe Ay, and a sequencg =
ence units experienced lay d < ci,e1 < ca,000, 01 <X cpy With all cells inS ande, € A

Now let us make the distinction between an interference unit, whi€uall f; the merging point for;_; ande;. See Fig. 4. Calb the arrival
is due to a connection i and which occurs at the merging point withtime ofd at f; ands + 7, with = > 1 the departure time fof;. at link
the connection of (call » the number of such interference units expee. Definer; as the number of interference units in the busy perio at
rienced byc), and other interference units experienced/fgall »'  wherec,_1 ande; interfere, plus those experienced by eelbetween

r<k+4+7-1 (6)

t1 Zto—l—m—l—R/—i—n.

Combining the two previous equations, we have
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fi and f; 11, excludingf;+1, due to cells inS at their merging point  Now every interference counted ify corresponds to one ce}l in
with the connection of. Following the same reasoning as in the proof with v < ¢; for some:. Thus eithery € Ao or v € A. By the

of Lemma 2 in the above paper, we have FIFO property, in the latter casgemust leave linke beforec;.. Thus
k Ef:() i < k+7-— l.ThUSt(d') >s+m+n—k+1=t—k+1

s+7-0< Z (ri +71). (7) andd’ is notin.4,. Combining the three arguments, we find that there
i=1 is at most one cell per connectionity U A;. O

Call t(d),t(d") the departure times of cellg and d' at their
(common) source. We have similarly
b—t(d) <ro+rp (8)

wherer, [respectivelyy(] is the number of interferences units for cell
d on its path from the source tf, excludingf:, due to cells inS at
their merging point with the connection @frespectively, due to other
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