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Abstract— Continuous—media traffic (i.e., audio and video)
can tolerate some loss but has rigid delay constraints. A nat-
ural QoS requirement for a continuous—media connection is
a prescribed limit on the fraction of traffic that exceeds an
end—-to—end delay constraint. We propose and analyze a
framework that provides such a statistical QoS guarantee to
traffic in a packet—switched network. Providing statistical
guarantees in a network is a notoriously difficult problem
because traffic flows lose their original statistical character-
izations at the outputs of queues. Our scheme uses bufferless
statistical multiplering combined with cascaded leaky—buckets
for smoothing and traffic contracting. This scheme along
with a novel method for bounding the loss probability gives
a tractable framework for providing end—to—end statistical
QoS. Using MPEG video traces, we present numerical re-
sults that compare the connection—carrying capacity of our
scheme with that of guaranteed service schemes (i.e., no
loss) using GPS and RCS. Our numerical work indicates
that our scheme can support significantly more connections
without introducing significant traffic loss.

Keywords: Bufferless Multiplexing, Call Admission Con-
trol, End—to—End QoS, Multimedia Traffic, Regulated Traf-
fic, Statistical Multiplexing, Statistical QoS, Traffic Smooth-
ing.

I. INTRODUCTION

Continuous—media networking applications are increas-
ingly popular in the Internet. These applications include
Internet phone, real-time video conferencing, and stream-
ing stored audio and video. But because the Internet
provides only a best—effort service, the Quality of Ser-
vice (QoS) perceived by a user is inconsistent and unpre-
dictable. In particular, the QoS for a continuous—media
session is often poor when the links between communicat-
ing entities are congested or subject to sudden and unpre-
dictable traffic surges.

It is therefore desirable to introduce new services into
the Internet that can guarantee QoS to continuous—media
applications. The subject of providing QoS guarantees in
packet—switched networks has been a major area of re-
search over the past 10-20 years, both inside and outside
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of the Internet research community. One of the proposi-
tions that has resulted from this research is a specification
for guaranteed QoS [47]. When an application uses this
service, the application’s packets have guaranteed bounds
on delays with no packet loss. The guaranteed QoS service
is a natural outgrowth of a body of research in the area of
delay bound calculations for queueing networks with regu-
lated traffic [7], [8], [34], [35], [58], [57], [18], [27], [4], [26].

It can be argued, however, that guaranteeing absolutely
no packet loss is overly conservative for continuous—media
applications, which can typically tolerate a small rate of
loss. In fact, users may not perceive any quality degra-
dation when there is infrequent packet loss, especially if
the receiver employs error concealment techniques (e.g.,
see [53]). Furthermore, schemes that guarantee no loss typ-
ically have a low connection—carrying capacity for bursty
continuous—media traffic (e.g., VBR video or speech with
silence detection) [43], [20], [21], [19]. Alternatively stated,
the no—loss schemes necessitate a high degree of bandwidth
over provisioning.

This raises two important questions. First, is it possible
to develop a comprehensive framework that provides statis-
tical QoS guarantees in a network, that is, bounds on the
fraction of traffic that exceeds an end—to—end delay con-
straint? Providing statistical guarantees in a network con-
text is a notoriously difficult problem because traffic flows
lose their original statistical characterizations at the out-
puts of queues. And if yes, can this statistical-QoS scheme
have significantly better connection—carrying capacity than
a guaranteed QoS scheme? In this article we first develop
a framework that provides statistical QoS guarantees in a
network setting. We also argue that our approach typically
has significantly better connection—carrying capacity than
a deterministic guaranteed QoS scheme.

In order to guarantee deterministic or statistical QoS,
connections need to make contracts with the network in
order to limit, in some sense, the amount of traffic the con-
nections send into the network over intervals of time. Only
by making and enforcing contracts can a network expect
to be able to provide guarantees. Leaky buckets, being
relatively easy to implement, are convenient mechanisms
for defining and enforcing traffic contracts. Sources that
conform to leaky—bucket characterizations are said to be
requlated sources. In recent years, several research teams
have carefully studied the problem of providing statistical
QoS guarantees to regulated sources that are multiplexed
in a single shared buffer [15][33][37]. With shared buffer
multiplexers, however, it is difficult (if not impossible) to
tightly characterize a connection’s traffic once the traffic



passes through the shared buffer. Therefore, the existing
solutions do not extend to the network environment in a
satisfactory manner.

Although our approach also uses leaky bucket regula-
tors, it provides meaningful statistical guarantees in a net-
work context. The QoS guarantees provided by our scheme
can be roughly stated as follows: the fraction of traffic
that exceeds a specific end—to—end delay constraint is be-
low a prescribed bound. The scheme allows each connec-
tion to have its own end—to—end delay constraint and its
own bound on the fraction of traffic that exceeds this de-
lay limit. Such a statistical QoS guarantee is particularly
appropriate for continuous—media traffic, whereby times-
tamping and a playout buffer can ensure the continuous
playout of video or audio without jitter [38]. Our traf-
fic management scheme has the following components: (7)
each connection’s traffic is smoothed at the connection’s
input as much as allowed by the connection’s delay con-
straint; (i7) all nodes within the network employ bufferless
statistical multiplexing; (#i7) admission control is based on
the worst—case assumption that sources are adversarial to
the extent permitted by the connection’s regulator, while
concurrently assuming the connections generate traffic in-
dependently. A critical device in our is scheme is a novel
bound for a connection’s traffic loss at a single node.

Our scheme has the following features:

o Admission control is solely based on the connections’ reg-
ulator parameters, which are policable. It is not based on
more complex, difficult—to—police statistical characteriza-
tions.

o It allows for statistical multiplexing in the network while
meeting the QoS requirements. The smoothing at the input
increases the statistical multiplexing gain.

o It allows for per—connection QoS requirements: the con-
nections can have vastly different delay and loss require-
ments.

o Because the multiplexing is bufferless, the switches re-
quire only small input buffers (when traffic is packetized),
thereby reducing switch cost.

o A connection’s traffic characterization does not change
as the traffic passes through a bufferless multiplexer, that
is, the traffic leaving the network node conforms to the
same regulator constraints as the traffic entering the node.
This feature is particularly useful when analyzing multihop
networks.

The statistical multiplexing within the network increases
the connection carrying capacity of the network signifi-
cantly at the expense of miniscule losses in the network.
We provide numerical examples that demonstrate that by
allowing for very small losses of the order of 10~7 (which
can be effectively hidden by error concealment techniques
[53]) our scheme can typically support two to three times
the number of connections that deterministic service disci-
plines (GPS, RCS, etc.) can support.

The problem of providing end—to—end statistical QoS
guarantees in a network has received a great deal of atten-
tion in recent years. The early works [23], [3] in this area
derive probabilistic bounds on the delay of flows in a net-

work, while [44] discusses a conceptual framework for QoS
assurances in a network. A scheme which is able to pro-
vide end-to—end statistical QoS in a network of Generalized
Processor Sharing (GPS) schedulers is developed in [14].
End-to—end statistical QoS guarantees are also provided
by the scheme proposed in [25], which employs Traffic—
Controlled Rate-Monotonic Priority Scheduling [24]. Our
approach was developed independently of [14], [25] and was
first presented in [41], [42]. In this article we extend our
approach and present it in a comprehensive manner. The
GPS based scheme [14] is further refined in [22]. Schemes
for providing end-to—end statistical QoS in a network of
Earliest Deadline First (EDF) schedulers are developed in
[1], [49]. A comparison of the EDF based schemes and the
GPS based schemes is conducted in [50]. An approach that
statistically bounds the burstiness of flows in a network is
presented in [51]. A framework for achieving end—to—end
statistical QoS through coordinated network scheduling is
devised in [29]. In [16] aggregation of flows in core routers
of the Internet is exploited to decompose the network and
analyze the end-to-end queuing behavior using tools de-
veloped for the analysis of a single queue. Finally, there
have been several efforts to extend the deterministic net-
work calculus [7], [8], [9], [4], [26], which relies to a large
extend on arrival envelopes and service curves, to proba-
bilistic network services. Different definitions of probabilis-
tic service curves have been studied in [10], [36]. A prob-
abilistic network calculus for a class of so—called “dynamic
F—servers” is developed in [4]. A calculus for providing
end—to—end statistical QoS is developed and evaluated in
[2], [30]. This calculus employs effective service curves and
applies in rather general settings.

This article is organized as follows. In Section IT we for-
mally define the cascaded leaky—bucket regulators and the
statistical QoS requirement. We also discuss the smoothers
at the network ingresses and describe our network model.
In Section III we focus on a single node. We determine the
worst—case traffic and outline our smoothing and admission
control procedure. We also consider general smoothers and
show that the optimal smoother is a single-buffer smoother
which smoothes traffic as much as the delay limit permits.
In Section ITI-B we evaluate our smoothing/bufferless mul-
tiplexing scheme in the context of a single node numerically
using traces of MPEG encoded video. In Section III-C we
compare our scheme to designs based on buffered statisti-
cal multiplexing. In Section IV we analyze multihop net-
works. In Section IV-A we compare the performance of our
smoothing/bufferless multiplexing scheme with that of de-
terministic service disciplines in multihop networks. In Sec-
tion V we discuss how the responsibilities of smoothing, call
admission control and traffic policing can be shared by the
application and the network when our smoothing/bufferless
multiplexing scheme is employed. We conclude in Sec-
tion VI.



II. REGULATED TRAFFIC AND THE STATISTICAL QOS
REQUIREMENT

In this article we study networks consisting of inter-
connected bufferless nodes. We assume a virtual circuit,
connection—oriented network and view traffic as fluid, that
is, packets are infinitesimal. The fluid model, which closely
approximates a packetized model with small packets, per-
mits us to focus on the central issues and significantly sim-
plifies notation.

Each connection j entering the network has an associated
requlator function (also often referred to as arrival envelope
in the literature), denoted by £;(t), t > 0. The regulator
function constrains the amount of traffic that connection j
can send into the network over all time intervals. Specif-
ically, if A;(¢) is the amount of traffic that connection j
sends into the network over the interval [0, ], then A;(t) is
required to satisfy

At+T) - A0 SE® Vr>0, t20. (1)

A popular regulator is the simple regulator, which con-
sists of a peak rate controller in series with a leaky bucket;
for the simple regulator, the regulator function takes the

following form:
&£;(t) = min{pjt, o7 + pit}.

For a given source type, the bound on the traffic provided
by the simple regulator may be loose and lead to overly
conservative admission control decisions. For many source
types (e.g., for VBR video), it is possible to get a tighter
bound on the traffic and dramatically increase the admis-
sion region. In particular, regulator functions of the form

. Lj L;
E;(1) :mln{p;t, af-—i—p?t,..., o7 +p;’t} (2)

are easily implemented with cascaded leaky buckets; it is
shown in [54] that the additional leaky buckets can lead
to substantially larger admission regions for multiplexing
with deterministic QoS. We shall show that this is also
true to some extend for multiplexing with a statistical QoS
requirement. Specifically, we shall demonstrate that with
three properly selected leaky buckets, we can achieve the
maximum admission region. With two carefully selected
leaky buckets we can achieve most of this admission region;
however, in most cases these two leaky buckets differ from
the simple regulator in that both leaky buckets have a non-
zero bucket depth o (see Appendix B for details).

Throughout this article we assume that each regulator
has the form (2). Without loss of generality we may assume
that p; > p3 > --- > pfj and 0% < 0} <--- < ofj. For
ease of notation, we set p; = pfj . Note that for connection—
Jj traffic, the long-run average rate is no greater than p; and
the peak rate is never greater than pj.

Each connection also has a QoS requirement. We con-
sider a QoS requirement that is particularly appropriate
for multimedia traffic that has stringent end-to—end de-
lay requirements but can tolerate some loss. Specifically,
each connection has a connection—specific delay limit and

a connection—specific loss bound. Let d; and ¢; denote the
delay limit and loss bound for connection j. Any traffic
that overflows at one of the bufferless links in the network
is considered to have infinite delay, and therefore violates
the delay limit. The QoS requirement is as follows: the
long—run fraction of connection—j traffic that is delayed by
more than d; seconds must be less than ;.

This QoS requirement can assure continuous, uninter-
rupted playback for a multimedia connection as follows.
Each packet (which we assume to be infinitesimally small
in our fluid analysis) is time-stamped at the source. If
a packet from connection j is time-stamped with value
x, the packet (if not lost in the node) arrives at the re-
ceiver no later than x 4 d;. The receiver delays playout of
the packet until time = + d;. Thus, by including a buffer
at each receiver, the receiver can playback a multimedia
stream without jitter with a fixed delay of d; and with a
loss probability of at most ¢;.

The first aspect of our strategy is to pass each con-
nection’s traffic through a buffered smoother at the con-
nection’s input to the network. We design the smoother
for connection j so that the connection—j traffic is never
delayed by more than d; in the smoother. After having
smoothed a connection’s traffic, we pass the smoothed traf-
fic to the network, and the traffic follows its route through
the network. At each link along its route, the connection’s
traffic is statistically multiplexed with traffic from other
connections. The second aspect of our strategy is to remove
all of the buffers inside the network; that is, we use buffer-
less statistical multiplexing rather than buffered multiplex-
ing before each link in the network. In our fluid model, a
connection’s traffic that arrives to a bufferless link either
flows through the link without any delay or overflows at
the link, and therefore has infinite delay. The QoS require-
ment of a connection j is met if the fraction of connection—
j traffic that overflows any of the links along the route of
connection j is less than €;. Also, note that provided the
loss at each link is small, we can reasonably approximate
a connection’s traffic at the output of the multiplexer as
being identical to its traffic at the input of the multiplexer.
In other words, a connection that satisfies a certain regu-
lator constraint at the input of a node satisfies the same
regulator constraint at the output of the node.

For the smoother at the input of connection j to the net-
work we initially use a buffer which serves traffic at rate cj.
When the smoother buffer is nonempty, traffic is drained
from the buffer at rate ¢j. When the smoother buffer is
empty and connection—j’s traffic is arriving at a rate less
than ¢, traffic leaves the buffer exactly at the rate at which
it enters the buffer. For the fluid model and QoS criterion
of this article we shall show that more complex smoothers
consisting of cascaded leaky buckets do not improve per-
formance.

Using the theory developed in [7], it can be shown that
the maximum delay in the smoother is

max{gj—g) — t} .
t>0 c;
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Fig. 1. Multihop network with N nodes.

We set the smoother rate to

¢j =min < ¢; > 0: max
>0

20_d<al. ®

Cj

where d; is the delay requirement for connection j. Since
the bufferless nodes inside the network introduce no addi-
tional delay, traffic from connection j that flows through
the network without loss has an end-to—end delay of no
more than d;. It is straightforward to show from (3) that
the smoother rate can be expressed as

(4)

£,
¢ = max i(®) .
J t>0 dj +t

Intuitively, ¢} is the smallest smoother rate that guaran-

tees (deterministically) that the traffic is delayed by no
more than d; in the smoother. When considering a plot of
the regulator function £;(t) and the straight line ¢}t as a
function of time ¢, ¢} is the smallest slope ¢} such that the
maximum horizontal distance between () and cjt is less
than or equal to dj;.

A. Network Model

An important characteristic of our framework is that it
provides statistical QoS guarantees in a network. We shall
illustrate this characteristic in the context of a multihop
network with intervening local traffic flows. Consider a
multihop network with N nodes, as shown in Figure 1.
Each node is a bufferless multiplexer, that is, buffering is
not permitted at each of the N nodes. Let C), denote
the transmission rate for the link between the nth and the
(n + 1)st node.

One connection, which we label connection 0, passes
through all N nodes. All of the other connections pass
through exactly one node. We denote I(n) for the set of
connections that pass through node n. We assume through-
out that the traffic generated by the streams is mutually
independent. In this paper we shall show how an end—to—
end statistical guarantee can be provided to connection—0.
To this end, we first solve the single—node case in the fol-
lowing section.

We note that in the considered network, the multiplexed
streams are independent at each node. This independence
is exploited in our calculation of the bound on the loss
probability, which in turn is the basis for our call admis-
sion rule. In a more general network, where several streams
(that are independent at the network ingress) traverse sev-
eral nodes together, correlations may be introduced among
the streams. However, the bufferless multiplexers intro-
duce correlations among the streams only in case there is
loss, i.e., when the aggregate arrival rate of the streams
exceeds the link capacity. Otherwise, i.e., when there is no

Eo(t)=> ¢

" bufferless
Elr@ 1 O== G- multiplexer

Fig. 2. Node 1 is a bufferless multiplexer. The independent smoothed
streams in I(1) are multiplexed onto the output link of capacity
Ci.

loss, the streams are not “aware” of each other, and the
independence is preserved. We expect that in the typical
network operating regime the probability of loss is kept
quite small, say on the order of 10~7 to 10~°, by employ-
ing the call admission rule developed in this article. Thus,
there are typically only miniscule correlations introduced
when several flows traverse a number of common nodes.
We expect that these miniscule correlations have a negli-
gible impact on the calculation of the bound on the loss
probability.

IIT. GUARANTEEING STATISTICAL QOS: SINGLE NODE
ANALYSIS

In this section we determine the worst—case traffic and
derive the optimal smoothing strategy. For this purpose
we initially focus on a particular node n, 1 < n < N.
|I(n)| smoothed streams are multiplexed onto the output
link of capacity C,. Each of the connections j, j € I(n),
has a regulator function £;(¢) and QoS parameters d; and
€j. Now regard the arrival process of stream j to its
smoother as a stochastic process. Let (A4;(t), ¢ > 0) de-
note the arrival process of the unsmoothed stream j, and
let (4;(t,w), t > 0) denote a realization of the stochas-
tic process. Also let A,(t) = (4;(t), j € I(n)), and
let (An(t), t > 0) be the associated vector stochastic
arrival process. We say that the vector arrival process
(An(t), t > 0) is feasible if (i) the component arrival pro-
cesses (A;(t), t > 0), j € I(n), are independent, and (1)
for each j € I(n), each realization (A4;(t,w), t > 0) satisfies
the regulator constraint

A]‘(t+’l',w) —A]‘(T,w) < gj(t) vVr>0, t>0.
Denote A, for the set of all feasible vector arrival processes
(An(t), t > 0). For a fixed feasible vector arrival process
(Ap(t), t > 0), let U;(t) be the rate at which traffic from
connection j leaves the associated smoother at time ¢, and
let U; be the corresponding steady-state random variable.
Note that the streams U;, j € I(n), may have traversed
a number of bufferless nodes before reaching node n. The
bufferless nodes do not delay or alter the traffic streams
(except for miniscule losses due to link overflow which are
negligible in typical networking scenarios). Consider mul-
tiplexing the streams U;, j € I(n), onto the bufferless link



of capacity C,. The long-run average fraction of traffic
lost by connection j is

B |(Zierm Ui = O s

icron) Ui
; (5)
E[U;]

Pinfo,n (]) —

loss

where (z)* = max(0,z). The definition of Pllonsfso’n(j) relies
on the natural assumption that traffic loss at multiplexer n
is split between the sources in a manner proportional to the
rate at which the sources send traffic into the multiplexer.
Note that B () keeps track of loss for each individual
connection.

Although Pllonsfso’n(j) is an appealing performance mea-
sure, we have found it to be mathematically unwieldy. In-
stead of P (j) we shall work with a bound on B™°"(j)
which is more tractable and which preserves the essential
characteristics of the original performance measure. Noting
that the term in the expectation of the numerator is non—

zero only when Eie](n) U; > C,,, we obtain the following
bound on P™o" ()

loss

E (X icrm Ui - Cn)+Uj]
Chn - E[Uj]

Pinfo,n (J) S

loss = ‘Plzss (.7) (6)
In most practical circumstances the QoS requirement spec-
ifies traffic loss to be miniscule, on the order of ¢; = 107°
or less. Thus we expect the bound to be very tight: In
the rare event when the aggregate demand for bandwidth
> ic1(n) Ui exceeds the link capacity Cy, 3¢ () Ui s typ-
ically very close to C,,. In Section ITI-B we provide numer-
ical results which show that P (j) is very nearly equal to

(7). Henceforth, we focus

the actual loss probability pinfo,n
on the bound P?_(j), and we refer to P _(j) as the loss

loss
loss loss
probability for connection j at node n. We emphasize here
that the bound (6) is a crucial and important step for the
techniques taken in this paper. To our knowledge, no other
authors have made direct use of this important bound.
By taking the supremum over all the feasible vector
stochastic processes, we obtain the following worst—case
loss probability for connection j at node n:

E [(Eie](n) Ui — Cn)+Uj]
Cn - E[U}]

*1
J

(7)

= sup

n

The loss probability of connection j at node n is guaranteed
to be bounded by ¢;" for all feasible vector arrival processes
in A,, that is, for all independent arrival processes whose
sample paths satisfy the regulator constraints.

As a first step in computing the ¢;"’s, we need to ex-
plicitly determine the random variables Uj, j € I(n), that
attain the supremum in (7).

Lemma 1: Let Uy, j € I(n), be independent random
variables, with U7 having distribution

. { ¢;  with probability 22
U; = 0 P

-
c*
J

with probability

There exists a feasible vector arrival process which pro-
duces the steady-state rate variables U7, j € I(n), at the
smoother outputs.
Proof: The proof is by construction. For each j €
I(n) let
o2
tj = — _] 2
Pj = Pj

and Lo
Pio;

T =%
T (s = 0)p;

Also let 6, j € I(n), be independent random variables
with 6; uniformly distributed over [0, T;]. For each j € I(n)
let b;(t) be a deterministic periodic function with period T}

such that .
) _ Pj 0§t<t]‘
bJ(t)_{O t; <t<Tj.

For each j € I(n) define an stochastic arrival process as

Aj(t) = /Ot bJ(S +9j)d8.

Thus each component arrival process (A4;(¢), t > 0) is gen-
erated by a periodic on—off source; process j has peak rate
p} and average rate p;. By sending each component pro-
cess (A4;(t), t > 0) into its respective smoother, we obtain
an on-off process whose peak rate is ¢ and whose average
rate is p;. This on—off process is not altered by passing
through bufferless nodes. Also, the component processes
are independent; thus the vector arrival process produces
the steady-state random variables U}, j € I(n), at the
smoother outputs.

It remains to show that each realization of (4;(t), ¢ > 0)
satisfies the regulator constraint (1). It follows immediately
from the definition of b;(t) that

t
/ b;(s)ds < &;(t) for all 0 < ¢ < T, (8)
0
We can, in fact, show that
t
/ bj(s)ds < E;(t) for all t > 0. (9)
0

To see this consider any arbitrary ¢ = nT; + s, where n is
some non—negative integer and 0 < s < 7;. We have

t T]‘ nTj
/bj(s)ds - / bj(s)ds+---+/ b;(s)ds +
0 0 (n—1)T;

nTipj + &;(s)
[€i(nT;+s) — Ej(s)] + E;5(s)
— &)

<
<

The first inequality follows from (8) and from the fact that
the average rate of b;(t) over any period of length T is p;.



The second inequality follows because the slope of £;(t) is
never less than p;. This establishes (9). Finally because
b;(t) is non-increasing over each of its periods, we have

t+1 t
/ bj(s)ds < / bj(s)ds for all 7 >0, t>0. (10)
T 0

Combining (9) and (10) proves that each realization of
(A;(t), t > 0) satisfies the regulator constraint (1).
|

We now show that the random variables Uy, j € I(n),
attain the supremum in (7). This result will lead to a sim-
ple procedure for calculating the worst—case loss probabili-
ties ¢7, j € I(n). To this end, we will need to make use of a
concept from stochastic ordering. A random variable X is
said to be smaller than a random variable Y in the sense of
the increasing convex stochastic (ics) ordering, written as
X < YV, if E[R(X)] < E[h(Y)] for all increasing, convex
functions h(-).

Theorem 1: For each j € I(n), the worst—case loss prob-
ability for connection j at node n is

o B Qier Ur = Ca)'Uf
i Cn - E[U}]
Proof:  Let U, be the set of all random vectors

(Uj, j € I(n)) such that
1. U;, j € I(n), are independent.
2. 0< E[U;] < pjand 0 <Uj < ¢ for all j € I(n).
All feasible vector arrival processes in A4,, give steady—state
rate variables that belong to U,. Let (U;, j € I(n)) be
a random vector in U,,. Let U = Ziel(n) U; and U* =
Y ici(n) Ui~ We need to show that

E[(U - Cn)"Uj]
Cp - E[Uj] N

E[(U" = Cn)"Uj]

(11)

Fix k, with &k € I(n), and consider the random vector
(U;, j € I(n)) such that Uy = U and U; = U; for j # k.
Note that (U;, j € I(n)) € U,. We first show that for each
fixed j,

E[(U - Cn)*Uj]
Cn 'E[Uj]

E[(U

Uil (12)

< Cu)*
C, - E|Uj]
Consider the case i # j. Let V. = U — U; — U;. Let
Fy(-) and Fy,(-) be the distribution functions for V' and
U;. Noting that U;, U; and V' are independent, we have

E[U - C)*U;] = E[U;+V +U; — C)*U;)

/ / E[(Ui+v+u—Cy) Tyl

dFy (v)dFy, (u)

The function f(z) = (z + v+ u — C,) " u within the expec-
tation is an increasing, convex function in z for each fixed
v and u. Thus, because U; <;cp Ui (e.g., see Proposition
1.5.1 in [52]), we have

E[(U; +v+u—Cp)tu] < E[(U; +v +u—Cp) ]

for all v and u. Combining the above two equations gives

E[(U - C,)*U;] < E[(U - Co)* U],

which, when combined with E[U;] = E[U;], gives (12).

Now consider the case i = j. Let W = U — U;. Using
U; < ¢}, the independence of W and U;, and the indepen-
dence of W and Ui, we obtain

E[(U - Cp)"Uy]
Cy - E[U;]

E[(W 4+ U; — Cy)"U]
- E[U-]
E[(W +¢f —
Ch

Cn)"] E[U]
E[U;]
]
]

IN

E[(W + ¢t —Cp)™"] E[U
Cn E[0;
E[(W + ¢t — Co)*Uj]
Cy - B[U]] '

Also

E[(U -C)YU0)] = E[W +U; — Cy) U]
= E[(W +c —C)tU.

Combining the above two equations gives (12) for i = j.
Thus (12) holds for all @ € I(n). Therefore, start-
ing with the original vector (U, Ui, ...,Ujr(n)-1) € Ux
we can replace Uy with UJ and obtain a new vector in
U, such that (12) holds. Rename this new vector as
(Uo, U1, ..., Ujr(n)|—1)- We can repeat the procedure, this
time replacing Uy with Uy, and again obtaining a new vec-
tor in Uy, such that (12) holds. Performing this procedure
foralli=0, 1,...,|I(n)] — 1 gives (11). [ ]
Exploiting the fact that the U;’s are Bernoulli random
variables, we can simplify the expression for ¢;":

w T [(Eieam—{j} Ui +¢; = Ca)*
"= . . (13)

These bounds can be computed by convolving the distri-
butions of the independent random variables. An approxi-
mate convolution algorithm is described in [28]. However,
convolution often leads to numerical problems. We there-
fore apply the Large Deviation (LD) approximation, which
is known to be accurate and also computationally very effi-
cient [43], [13], [15], [40], to the expectation in the numer-
ator. Towards this end, let uy;(s) denote the logarithm of
the moment generating of U}:

puz(s) == In E[e®V1].
We define
Uti= > U
i€l(n)—{j}
Note that
po-(s) = Z pu; (s)

iel(n)—{j}



by the independence of the U}’s. The large deviation (LD)
approximation gives the following approximation for ¢3"
[43]

1

2mpg;. (s*)

—S*(Cn*C;H“HU* (s*)’

Cps*?
where s* is the unique solution to
py-(s%) = Cp = ¢j.

In summary, (13) is a simple expression for the worst—case
loss probability of connection j at node n; this expres-
sion involves the independent Bernoulli random variables
U}, j € I(n), whose distributions we know explicitly. The
LD approximation for (13) is highly accurate and is eas-
ily calculated. We note that an admission rule based on
on-line traffic measurements for the smoothing/bufferless
multiplexing scheme proposed in this article is studied in
[39].

At this juncture we note some important related work
by Doshi [11], [12]. He studies worst—case, unsmoothed
traffic that maximizes an aggregate loss ratio, where the
aggregation is taken over all sources. For this criterion he
discovers a number of anomalies; in particular, extremal
on—off sources are not always worst case. With our bound
Bl..(7) (6) the loss is maximized by the extremal on—off
sources, which greatly simplifies admission control. Fur-
thermore, as we show in this article, smoothing of traffic
can significantly expand the admission region.

A. The Optimal Smoother

Up to this point we have assumed that the smoother for
each connection j consists of a single buffer that limits the
peak rate of the smoother output to ¢j. In this subsection
we study more general smoothers, namely, smoothers that
consist of a cascade of leaky buckets. The smoother for
connection j, defined by a function S;(t), constrains the
amount of traffic that can enter the network over any time
interval. Specifically, if B;(t) is the amount of traffic leav-
ing smoother j over the interval [0, ¢], then B;(t) is required
to satisfy

Bj(t+7) — Bj(1) < Sj(t) foralt>0, 7>0.

We assume throughout this section that the smoother func-

tions are of the form
_ : k k
S;(t) = lsrgér}wj{sj +7; t} (14)
: 1 2 M; S| 2 M;
w1thrj>7“j>--->rj1andO_sj<sj< <sj”.

These piecewise linear, concave smoother functions can be
easily implemented by a cascade of leaky buckets. The
single-buffer smoother defined in Section 2 is a special case
with M; =1, s; =0 and r; =cj.

We say that a set of smoothers (S;(t), j € I(n)) is
feasible if the maximum delay incurred at smoother j is
< d; for all j € I(n). By definition the set of smoothers

(cjt, j € I(n)) studied earlier is feasible. Now fix a fea-
sible set of smoothers (S;(t), j € I(n)), and let the reg-
ulated traffic from the connections in I(n) pass through
these smoothers. Let

E [(E;]ef(n) Ui — Cn)"U;j
Cp - E[Uj]

o] = S;tlp (15)

n

be the associated worst—case loss probability for connection
J at node n. Recall that ¢7" is the same worst—case loss
probability but with the traffic passing through the set of
smoothers (cjt, j € I(n)). The proof of the following result
is provided in the appendix.

Theorem 2: ¢;" < ¢ for all j € I(n). Thus the single—
buffer smoothers with ¢; = ¢j minimize the worst—case loss
probability over all feasible sets of smoothers.

It follows from Theorem 2 that the more complex
smoothers consisting of cascaded leaky buckets do not in-
crease the connection carrying capacity of node n. Thus
without loss of performance, we may use the simple
smoothers of the form (c;t, j € I(n)). Furthermore, The-
orem 2 verifies the intuition that in order to maximize
the admission region of node n the smoother rates are as
small as the delay constraints permit, that is, ¢; = ¢} for

j € I(n).
B. Numerical Ezperiments for a Single Node

In this section we evaluate the smoothing/bufferless mul-
tiplexing scheme in the context of a single node. We set
N =1 and focus on the network consisting of smoothers
and one bufferless multiplexer as depicted in Figure 2. We
set the capacity of the output link to C; = 45 Mbps. In
this single node scenario admission control is particularly
simple: we evaluate ¢3' (13) using the LD approximation
and verify whether ¢;f1 <€ Vj € I(1). We evaluate our
scheme using traces from MPEG encoded movies. We ob-
tained the frame size traces, which give the number of bits
in each video frame, from the public domain [45]. (We are
aware that these are low resolution traces and some critical
frames are dropped; nevertheless, the traces are extremely
bursty.) The movies were compressed with the Group of
Pictures (GOP) pattern IBBPBBPBBPBB at a frame rate
of F' = 24 frames/sec [45]. Each of the traces has M =
40,000 frames, corresponding to about 28 minutes. The
mean number of bits per frame and the peak—to—mean ra-

tio are given in Table I. Let x,,, m = 1,..., M, denote
TABLE 1
STATISTICS OF MPEG—-1 TRACES.
Trace Mean (bit) Mean | Peak/Mean
bits/frame | kbits/sec
lambs 7,312 171.2 18.4
mr.bean 17,647 423.5 13.0

the size of the mth frame in bits. We convert the discrete
frame size trace to a fluid flow by transmitting the mth
frame at rate x,, F' over the interval [(m — 1)/F, m/F].



We compute the empirical envelope and the concave hull
of each trace using the algorithms of Wrege et al. [54].
Based on the concave hull of each video we compute the
minimal smoother rate ¢j. We also apply the heuristic of
Appendix B to the concave hull in order to find the opti-
mal leaky bucket characterization with 2 and more leaky
buckets. We then compute the minimal smoother rate ¢
based on these concise leaky bucket characterizations.

Assuming worst—case on—off traffic, the smoother out-
puts are statistically multiplexed onto the bufferless link.
We set €; = 1077 for all connections. In Figure 3 we plot
the number of admissible video connections as a function of
the delay bound. The graph gives the number of admissible
video connections when the videos are characterized by the
concave hull or the optimal leaky bucket characterization
with 2 leaky buckets (which is obtained with the heuristic
of Appendix B). We observe from the plots that the op-
timal leaky bucket characterization with 2 leaky buckets
admits almost as many video connections as the more ac-
curate concave hull characterization. The curves for 3 or
more leaky buckets coincide with the curve for the concave
hull.

In the next experiment we compare the admission region
of our approach with the admission region obtained with
the deterministic admission control condition of Wrege et
al. [54]. The approach of Wrege et al. is to feed the un-
smoothed traffic into a buffered multiplexer. The deter-
ministic admission control condition guarantees that no
bit is delayed by more than the prespecified delay limit
in the multiplexer buffer (and it also guarantees that no
bit is lost). Our approach, on the other hand, exploits the
independence of traffic emanating from the connections in
I(1). The videos are passed through simple smoothers with
¢j = ¢j. The smoother outputs — assuming worst—case
on—off traffic — are then statistically multiplexed onto the
bufferless link (see Figure 2). We set ¢; = 1077 for all
connections. Losses this small have essentially no impact
on the perceived video quality and can be easily hidden by
error concealment techniques [53].

In Figure 4 we plot the number of admissible lambs con-
nections as a function of the delay bound. The graph gives
the number of lambs connections that are admitted with
the our approach (RRR) when 2 or 3 leaky buckets (LB)
are used to characterize the video trace. As we just saw
in Figure 3 the optimal leaky bucket characterization with
3 leaky buckets admits as many connections as the con-
cave hull, the most accurate, concave characterization of
the video; using more leaky buckets does not increase the
admission region. We also plot the number of lambs con-
nections that are admitted with the buffered deterministic
multiplexing approach of Wrege et al. (KLZ) when 2, 3,
8 or 16 leaky buckets are used to characterize the trace.
We observe that for delays on the order of 0.5 seconds or
more, the number of admissible connections significantly
increases as the number of leaky buckets used to describe
the trace increases. The approach of Wrege et al. thus
greatly benefits from a more accurate characterization of
the video — achieved by more leaky buckets.
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Fig. 4. Number of lambs connections as a function of the delay bound
and the number of leaky buckets (LB). Plots shown are for Wrege
et al. (KLZ) and our approach (RRR).

The main result of this experiment, however, is that our
approach allows for more than twice the number connec-
tions than does the approach of Wrege et al. For example,
for a delay bound of 1.1 seconds, Wrege et al. admit 69
connections ( = 29.6 % average link utilization) with 16
leaky buckets while our approach admits 146 connections
( = 62.7 % average link utilization) with 3 leaky buckets.
We obtain this dramatic increase in the admission region
by exploiting the independence of the sources and allowing
for a small loss probability.

In Figure 5 we consider multiplexing two different
movies, beans and lambs, each with its own delay con-
straint. We again consider a single node with C; = 45
Mbps. We use delay bounds of djamns = 125 ms or 1.25
seconds and dpean = 125 ms or 1.25 seconds, giving four
combinations. Both videos are characterized by 3 leaky
buckets. We assume that both video connections have the
QoS requirement that the fraction of traffic that is delayed
by more than the imposed delay limit is less than 10~7. For
the Wrege et al. plot we use Earliest Deadline First (EDF)
scheduling. We see that for all four cases, the admission
region for our approach is dramatically larger.

In Figure 6 we compare the actual loss probability at
node 1, P™°(j) given by (5) with our bound for loss

loss .
probability, PL_(j), given by (6). We obtain P™!(j)

and PL_(j) by simulation, and assume worst—case on—off
traffic. We also verify the accuracy of the large deviation
approximation for PL_(j). In Figure 6 we plot the loss
probabilities as a function of the number of connections
being multiplexed onto the C; = 45 Mbps link. We con-
sider the scenario where the videos have a delay bound of
1 second and are characterized by 3 leaky buckets. We ob-
serve that the bound on the loss probability PL_ (j) (solid

line) tightly bounds the actual loss probability Pinfo’l(j)

loss

(dotted line). We also observe that the LD approximation
(dashed line) closely approximates the simulation results.



160

140

120

100

80

# of lambs connections

60 {/

| concavehull

/" optimal leaky bucket characterization, 2 LB

0.2 0.4 0.6 0.8 1

delay in seconds
(a) lambs

1.2

1.4

55
50 b cos:avihullrxﬁ ]
45 + il 1

%]
g 40 optimal leaky bucket characterization, 2 LB 1
£ 35 J
8
§ 30 1
Qo
5 25 J
*
20 ]
15 | )
10 L L L L L L
0 0.2 0.4 0.6 0.8 1 12 14
delay in seconds
(b) bean

Fig. 3. Number of video connections as a function of the delay bound. The videos are characterized by the concave hull or the optimal leaky
bucket characterization with 2 leaky buckets. The bound on the loss probability is 10~7.
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C. Comparison with Buffered Statistical Multiplexing

The numerical results of the previous section show that
for a single node our approach allows for dramatically more
connections than buffered deterministic multiplexing. In

this section we briefly consider buffered multiplexing with
an allowance of small loss probabilities, which we refer to
as buffered statistical multiplexing. Consider the buffered
analogy of the single-link bufferless system studied in Sec-
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Fig. 7. The traffic of connection j is characterized by the regulator
function £;(t) and fed directly, i.e. unsmoothed, into a buffered
multiplexer.

tion ITI-B. The link has capacity C; and is preceded by a
finite buffer of capacity B;. Let the same connections in
I(1) arrive to this system; specifically the connections in
I(1) are independent and connection j, j € I(1), is regu-
lated by a given regulator function £;(t). The traffic from
the connections in I(1) passes directly into the buffered
multiplexer, i.e., the traffic is not pre-smoothed before ar-
riving at the buffer. This buffered system is illustrated in
Figure 7. Assuming that traffic is served FIFO, the maxi-
mum delay in this system is d = By /C;. Suppose that the
buffer overflow probability is constrained to be no greater
than e.

It is a difficult and challenging problem to accurately
characterize the admission region for a buffered multiplexer
which multiplexes regulated traffic and which allows for
statistical multiplexing. Elwalid et al. in [15] made signifi-
cant progress in this direction. They consider the buffered
multiplexer for the special case of regulators with two leaky
buckets, i.e., for £;(t) = min{pjt, o; + p;t}. (In our nu-
merical comparisons, we extend their theory to the case
of multiple cascaded leaky buckets.) In order to make
the buffered multiplexer mathematically tractable they as-
sign each connection its own virtual buffer/trunk system.

Each virtual buffer/trunk system is allocated buffer b ;
and bandwidth e j. The allocations are based on the buffer
and bandwidth resources (B; and Cy, respectively) and on
the regulator parameters (p;, p;, and o;) for the input traf-
fic. It turns out that the bandwidth eq ; is exactly the ¢}
obtained by setting d; = d = B;/Cy in (4). After some
analysis Elwalid et al. obtain the following bound on the
fraction of time during which loss occurs at the buffered
multiplexer:

PEMW — p( Z Ur > Ch).
JEI(1)

where U7, j € I(1), are exactly the same random inde-
pendent random variables that occur in Theorem 1. (To
calculate the associated ¢}, j € I(1), set d; = d = B1/Cy
for each connection j.)

This observation indicates that our smoother/bufferless
multiplexer system has remarkable similarities with the
buffered system in [15]. Specifically, for a fixed maximum
delay d in the buffered system, we can design a buffer-
less system with pre-smoothers which has the same max-
imum delay and which has an admission region based on
the same set of independent random variables U}, j €
I(1). The pre-smoothers essentially implement the virtual
buffer/trunk systems introduced by Elwalid et al. For a
maximum loss probability of € the admission region for the
buffered multiplexer is defined by

P(Y U;>C)<e

Jel(1)
whereas the admission region for the bufferless system is

E[(Eie[(l) Ui - C1)+U;] <e
Ch E[UJ*] -7
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Fig. 8. Number of lambs connections as a function of the delay

bound. The lambs video is described by 3 leaky buckets. Plots
shown are for Elwalid et al. (EMW) and our approach (RRR).
The difference in the number of admissible connections is due to
the different notions of loss probability.

Although these admission regions are different, they are
based on exactly the same independent random variables
U;, j € I(1). The difference in these admission regions is
an artifact of using two different notions of loss probability:
while in this article we use “fraction of traffic lost”, the
article [15] uses “the fraction of time during which loss
occurs”. If the same notions of loss were used, then the
admission regions would be identical. Figure 8 gives the
number of lambs connections that are admitted with the
approach of Elwalid et al. (EMW) [15] and our approach
(RRR) when 3 leaky buckets are used to characterize the
trace. We assume C; = 45 Mbps and set €; = 10~7 for all
connections.

Thus, in the context of a single node our bufferless
system has essentially the same admission region as the
buffered system in [15] for a fixed worst—case delay d and
loss probability e. While being no more difficult to perform
call admission, we believe that the bufferless system has
some important advantages over the buffered system: (i)
no buffer is needed at the multiplexer (for packetized traffic,
a relatively small buffer would be needed); (ii) the buffer-
less approach allows for a per—connection QoS requirement,
whereas the buffered system imposes the same QoS require-
ment on all connections; and (i47), perhaps most impor-
tantly, networks are quite tractable for bufferless links, as
we can reasonably approximate a connection’s traffic at the
output of the multiplexer as being identical to its traffic at
the input to the multiplexer. This fact is exploited in the
next section where we analyze our scheme for general mul-
tihop networks.

We conclude this section by noting that the buffered
system does have some advantages over the bufferless sys-
tem. First, although both systems have the same worst—
case delay, the buffered system has a lower average delay.
(Note, however, that multimedia applications are typically
designed for a delay bound.) Second, due to statistical
buffer sharing among streams, the buffered system has the
potential to admit more streams (see [56] for a quantita-
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tive evaluation of this potential). However, exploiting this
potential requires admission rules that are typically more
complex (e.g., [33], [37], [55]).

IV. GUARANTEEING STATISTICAL QOS: MULTIHOP
ANALYSIS

We now turn our attention to the entire multihop net-
work. Without loss of generality we focus on connection 0
traversing nodes 1 through N. At the output of any of
the nodes, connection 0 has a peak rate no larger than cj
and an average rate no larger than py. We can therefore
use (13) to calculate the worst—case loss probability ¢g" at
any of the bufferless multiplexers n, n = 1,..., N. The
end—to—end loss probability of connection 0 is bounded by
the sum of the worst—case loss probabilities of the individ-
ual hops along connection 0’s path, that is, the loss in the
network is bounded by Zgzl o

We note here that the single buffer serving traffic at rate
¢; which was shown to minimize ¢;" at a single node n
in Theorem 2 also minimizes the sum of the ¢;". To see
this, recall that the design of the smoother for connection j
depends only on the connection parameters (the regulator
function £;(t) and the delay limit d;). Therefore, the same
smoother minimizes the ¢;" at every node n along connec-
tion j’s path. As a consec}yence the single buffer smoother
with rate ¢j minimizes ), ¢3", the bound on the overall
fraction of overflowing connection—0 traffic in the network.

The end—to—end QoS requirement of connection 0 is met
if

N

> 6" < e (16)

n=1
For admission control, we must ensure that (16) holds for
all connections. Specifically, we must partition — either
statically or dynamically — the loss constraint €; among
the nodes traversed by each of the connections. This prob-
lem is of independent interest and is discussed in Sec-
tions 5.10 and 5.11 of [46].

We have thus provided a framework for providing end-
to—end statistical QoS guarantees for a multihop network.
The framework consists of input smoothers at the network
ingresses and bufferless statistical multiplexing within the
network. Increasing the number of nodes a connection
traverses increases the loss probability but not the delay.
Roughly speaking, the network loss probability for a con-
nection is approximately the loss probability of a typical
node multiplied by the number of nodes through which a
connection passes. Because the loss probability of a node
is dimensioned to be on the order of 1076 or less, the in-
creased loss is only of minor importance.

We note at this juncture that Zgil @™ also provides a
bound on the probability that a bit of connection 0 experi-
ences an end—to—end delay of more than dy in the network.
More formally, with Dy denoting the end—to—end delay in-
curred by a bit of connection 0 in the network, we have

N
P(Dy > do) <Y 63" (17)

n=1



Recall from Section II that by design a bit of connection 0
is delayed by at most dp in the smoother. Bits that do
not overflow at any of the bufferless links in the network
incur no additional delay while bits that do overflow are
considered to have infinite delay. The bound (17) follows
by noting that ZnN:1 ¢4 is a bound on the fraction of
bits that do overflow. We emphasize that the bound on
the probability that a bit violates a given delay limit is
minimized by smoothing as much as the delay limit per-
mits at the network ingress. We compare the performance
of our smoothing/bufferless multiplexing scheme with that
of deterministic traffic management schemes in the next
subsection. These deterministic schemes are lossless and
guarantee that a specific delay limit d; is never violated,
that is, they guarantee that D; < d; with probability one.

In order to facilitate the comparison of the performance
with the deterministic benchmarks we make the following
simplifying assumptions about the traffic streams and the
network. First, we assume that all streams are regulated
by a single leaky bucket; for the single leaky bucket, the
regulator function takes the following form:

Ej(t) =0j + pjt.

Note that the single leaky bucket regulator constrains the
long—run average rate of connection j to be no greater
than p;. The multihop analysis of our traffic manage-
ment scheme for more complex regulators consisting, for
instance, of a cascade of leaky buckets is a straightforward
extension of the analysis presented here. However, GPS
which we shall use as a benchmark to evaluate our scheme,
has been analyzed extensively in [34], [35] for single leaky
bucket regulators. We will make use of some of those an-
alytical results in our performance evaluation and focus
therefore on single leaky bucket regulators throughout this
section. For the regulator function £;(t) = o; + p;t and
the delay limit d; we obtain from (4) the smoother rate

¢} = max ﬁ,p- .
J d; J

To further simplify the performance comparison we as-
sume that all streams in the network are homogeneous,
that is, all streams have the same leaky bucket parameters
and QoS requirement. (We emphasize that this assumption
is not needed in our framework; we only make it here to
facilitate the comparison.) We set 0; = 0, p; = p, d; =d
and €; = € for all streams j in the network. This implies
that all connections have the same smoother rates, that is,
c; = c* for all streams j. Also, all of the Bernoulli ran-
dom variables U} are now identically distributed (but still
independent). When comparing the performance we again
focus on connection 0 traversing nodes 1 through N. We
assume that each of the nodes n, n = 1,..., N, serves .J
streams, that is, |[I(n)| = JVn =1,..., N. We also assume
that all output links in the network have the same capacity
C. With these simplifying assumptions the worst—case loss
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probability of connection 0 at a node is

B[S U+ -0t
Sn = C

The end—to—end loss probability of connection 0 is given by
N¢*. Now assume that connection 0 is new and requests
a connection traversing nodes 1 through N. The QoS re-
quirement of the new connection 0 is satisfied if ¢* < ¢/N.
Suppose that all other streams that traverse one of the
nodes n, n = 1,..., N, have allocated a loss constraint
larger than e¢/N to that node n. With this assumption
the QoS requirements of all other streams will continue to
hold if ¢* < e¢/N. Hence connection 0 can be admitted if
¢* <e/N.

We use the maximum number of connections each of the
multiplexers 1 through N can carry without violating any
QoS commitment as a measure of the performance of our
scheme. Let J* denote this maximum number of connec-
tions. We clearly have:

=", (18)

€
J* =max{J:¢" < —
r}lelil({ o< N b
where N denotes the set of natural numbers. Note that in
the described networking scenario each of the multiplex-
ers 1 through N is serving connection 0 and J* — 1 fresh
connections.

A. Comparison with Deterministic Service Disciplines

In this section we compare the performance of our
smoothing/bufferless multiplexing scheme with that of de-
terministic service disciplines. These deterministic service
disciplines provide lossless service and guarantee a deter-
ministic end—to—end delay bound. Of the deterministic ser-
vice disciplines discussed in the literature, the Generalized
Processor Sharing (GPS) [34], [35] and Rate—Controlled
Service (RCS) [18] disciplines guarantee the smallest de-
lay bounds. GPS considers the route of a connection as a
whole and is thus able to guarantee tighter bounds than
are achievable by adding worst—case delays at each hop [7],
[8]. RCS, which is at the heart of the Guaranteed Service
framework of the Internet [47], relies on traffic shaping at
every hop and can guarantee the same delay bounds as
GPS. In fact it is shown in [18] that RCS has the poten-
tial of providing tighter delay bounds than GPS. However,
the problem of how to choose the parameters of the RCS
discipline in order to achieve these tighter delay bounds is
not addressed. Instead, the authors suggest to use the pa-
rameters induced by the GPS discipline. This ensures that
RCS can accept as many connections as GPS (and some
more in a heterogeneous network). With the networking
scenario that we have chosen for the performance com-
parison — homogeneous connections, homogeneous nodes,
fluid model — GPS and RCS have exactly the same per-
formance. We shall therefore compare our scheme’s per-
formance with that of GPS. For this purpose we modify
the network depicted in Figures 1 and 2. We remove the
buffered smoothers at the network ingresses and replace
the bufferless multiplexers with buffered GPS servers.



Review of GPS

First, we briefly review GPS [34], [35] and adapt the nota-
tion of [34], [35] to our network model. The GPS server n
serving the streams in I(n) is characterized by positive real
numbers w}, j € I(n). These numbers govern the alloca-
tion of service to each of the streams. Let S} (7,t) denote
the amount of stream j traffic served by server n during
an interval [7,¢]. The GPS policy guarantees that for any
connection j € I(n) that is continuously backlogged in the
interval [r,t], that is, has a positive amount of traffic in
server n’s buffer throughout the interval [r, ],

Sn(r,t)  w?
j j .
75?(7_’ D> _w?’ i € I(n).

A connection j that is backlogged is thus guaranteed a
minimum service rate called connection j backlog clearing
rate of

w™

gt = 71710”
! Zie](n) w;

by server n. The minimum connection—-0 backlog clearing
rate along its route traversing nodes 1 through N is
= min gg.
Jo ! Ngo
Let Dy(t) be the end—to—end delay incurred in the network
by a connection—0 bit that arrives at time ¢. Furthermore,
let D denote the maximum end-to—end delay of connec-

tion 0 over all time and all feasible arrival processes of all
streams sharing a server with connection 0, formally:

max Dy(t).

su
P >0

U1§n§N./4n

Dy =

A key result of [35] is the following deterministic bound on
the maximum end—to—end delay for connection 0: if gg > po
then

We note that this bound does not require the independence
of the served traffic streams. The independence of the traf-
fic streams, however, is a prerequisite for our bound on the
loss probability. Given a specific delay bound d;, finding
the corresponding weights of the general GPS policy is a
very tedious procedure. This procedure is greatly simpli-
fied by setting w; = p; for all traffic streams. GPS with
this special assignment of weights is referred to as Rate
Proportional Processor Sharing (RPPS). With RPPS the
connection j backlog clearing rate at server n is given by

n
n_ Pj

9] = =5 Chn.
! Zie](n) Pi

For ease of comparison with our smoothing/bufferless
multiplexing scheme we make the same simplifying assump-
tions we made at the end of Section IV. In particular, we
set pj = p, 0; = o and d; = d for all connections. We
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Fig. 9. Maximum number of connections J* as a function of the num-
ber of hops N for smoothing/bufferless multiplexing and GPS.

assume that all servers 1 through N serve J connections
and have a capacity of C. With these simplifications, the
minimum back log clearing rate of connection 0 along its
route from node 1 to N is go = C/J. The end—to—end
delay bound of connection 0 is

D; < Jo/C, (19)

provided the stability condition C/J > p is satisfied. We
are interested in the maximum number of connections each
server along the route of connection 0 can serve without vi-
olating the delay limit of connection 0 or any other connec-
tion. Let J* denote this maximum number of connections.
From (19) and the the stability condition we have:

= 20,1,

Note that J* does not depend on N, the number of nodes
connection 0 traverses. We remark that for the example at
hand, consisting of homogeneous connections with homoge-
neous delay bounds, J* is the absolute maximum number of
connections a deterministic service discipline can support;
no matter what deterministic service discipline (GPS, RCS,
etc.) is employed.

Numerical Results

In this section we compare the performance of the smooth-
ing/bufferless multiplexing scheme with that of GPS in
multihop networks numerically. We have chosen the pa-
rameters ¢ = 11,925 Bytes, p = 150 Kbit/sec and C =
45 Mbit/sec. For our smoothing/bufferless multiplexing
scheme we set the loss bound to e = 10~ 7. (These parame-
ters are also used for some some of the numerical examples
in [15].) In Figure 9 we plot the maximum number of con-
nections J* that can be supported by the nodes 1 through
N without violating any QoS requirements as a function of
the number of hops, N. We do this for two delay bounds,
d = 20 msec and d = 0.2 seconds. The maximum number
of connections that can be supported by GPS is indepen-
dent of N; J* =9 for d = 20 msec and J* = 94 for d = 0.2
seconds.



200

180 |
160 |- 1
140 | 1
120 | i
& 100 1
80 - 1
60 |- i
40 | /r’l 4
4 smoothing/bufferless mux, N = 5 hops ——
20 + smoothing/bufferless mux, N = 50 hops -—--- 4
GPS
0 s ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 002 004 006 008 01 012 014 016 018 02
din seconds
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delay bound d for smoothing/bufferless multiplexing and GPS.
The GPS performance is independent of the number of traversed
hops.

Figure 10 depicts J* as a function of the delay bound d
for N = 5 hops and N = 50 hops. Again, note that the
GPS performance is independent of the number of hops.

Two points are especially noteworthy about the plots.
First, with our smoothing/bufferless multiplexing scheme
the number of allowable connections, J*, drops off only
slowly as the number of traversed hops, IV, increases. Sec-
ondly, our smoothing/bufferless multiplexing scheme dra-
matically increases the connection—carrying capacity of the
network. We observe from Figure 9, for instance, that
for a delay bound of d = 20 msec and N = 15 hops our
scheme can support more than three times the number of
connections that GPS — or any other deterministic ser-
vice discipline — can support. We achieve this remarkable
performance by first smoothing the traffic at the network
edges and then statistically multiplexing the smoothed traf-
fic streams with miniscule loss probabilities within the net-
work. The miniscule losses of the order of 10~7 can be ef-
fectively hidden by applying error concealment techniques
to the multimedia streams [53]. The losses will therefore
not be noticed by the viewers/listeners.

V. INTERACTION BETWEEN APPLICATION AND
NETWORK

In this section we discuss how the responsibilities of
smoothing, call admission control and traffic policing
can be shared by the application and the network when
our smoothing/bufferless multiplexing scheme is employed.
Call admission control is the responsibility of the network.
Before accepting a new connection, the network has to en-
sure that the QoS requirements continue to hold for all
established connections and the new connection. Policing
is also a network responsibility. The network edge has to
police all established connections in order to ensure that all
connections comply with their respective regulator function
advertised at connection establishment. While call admis-
sion control and traffic policing are responsibilities of the
network, smoothing can be performed by either the appli-
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cation or the network. We refer to the case where the ap-
plication performs the smoothing and sends the smoothed
traffic to the network edge as application smoothing. The
case where the application sends its unsmoothed traffic
to the network edge and the network edge performs the
smoothing is referred to as network smoothing.

With application smoothing the application internally
smoothes its traffic. Based on the regulator function of
its traffic and the maximum delay it can tolerate, the
application finds the minimum smoother rate by apply-
ing (4). Since the smoothing is done by the application,
there is no need to reduce the number of leaky buckets
used to characterize the traffic by applying the heuris-
tic outlined in Appendix B. Instead, the concave hull of
a prerecorded source is used directly for dimensioning its
smoother. The application advertises the regulator func-
tion £;(t) = min{cjt, aij + pfjt} and the delay bound
d;j = 0 to the network. We remark that this dual leaky
bucket regulator function has been adopted by the ATM
Forum [17] and is being proposed for the Internet [48]. The
network does not have to be aware of the smoothing done
by the application. The network edge dimensions its own
smoother based on £;(t) and d; = 0. Since d; = 0 the
network’s smoother degenerates to a server with rate cj
preceded by a buffer of size zero.

With network smoothing the application advertises its
regulator function and maximum tolerable delay to the
network. Prerecorded sources apply the heuristic of Ap-
pendix B when the network restricts the number of leaky
buckets to a number smaller than the number of seg-
ments in the concave hull. The network edge dimensions
the smoother based on the regulator function and delay
bound supplied by the application. Call admission control
is based on the assumption of worst—case on—off traffic at
the smoother output. The network edge polices the ap-
plications’ traffic before it enters the smoother and drops
violating traffic.

VI. FINAL REMARKS

In this article we have developed a framework for pro-
viding end-to—end statistical QoS guarantees in a network.
We have argued that it is preferable to smooth the traffic at
the ingress and to perform bufferless statistical multiplex-
ing within the network than to use shared-buffer multiplex-
ing. For our scheme we have determined the worst—case
traffic and have outlined an admission control procedure
based on the worst—case traffic. 'We have also explicitly
characterized the optimal smoother.

Our results are particularly relevant in light of the cur-
rent debate on service disciplines for the Internet. Our
results indicate that an Internet offering exclusively Guar-
anteed Service based on the RCS service discipline will be
severely underutilized. An Internet service allowing for
small losses — such as the Predictive Service framework
proposed in [5] — would be able to make efficient use of
the Internet resources and still provide the receivers with
an enjoyable multimedia experience. Such a statistical In-
ternet service could be based on our smoothing/bufferless



multiplexing traffic management scheme.
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APPENDIX A: PROOF OF THEOREM 2

The purpose of this appendix is to provide a proof for The-
orem 2. But first we need to establish two lemmas.

Lemma 2: A necessary condition for (S;(t), j € I(n)) to
be feasible is r] > cj for all j € I(n).

Proof:  From [8], [9], [18] the maximum delay at
smoother j is
E;(t) — s
Gy, = 20
Suppose rjl- < ¢} for some j € I(n). Because sk > 0 and
ry < rj for all k, it follows from (20) that
(t)
> —t;.
dj > max x{~* t} (21)

And because, by assumption, 1"]1- < ¢cj, it follows from (21)

that
](t) g
d; > 1“£1>ag<{ t} = dj,
where the last equality follows from (4). |

Lemma 3: There exists a stochastic vector arrival pro-
cess in A, that produces the steady-state rate variables
Uj, j € I(n), with U; having distribution

) min(r}, p})
Ui=19

at the smoother outputs.
Proof: For each j € I(n), let t; = 07 /(pj — p3) and
0 = 32/(r —1%). At t = t; the slope of £;(t) changes form
pj to p] < p] Consequently, &;(t;) = p]tj is the maxi-
mum size burst that can be transmitted at rate p;, pro-
vided successive maximum size bursts are spaced at least
Eilti)/pj —t; apart Similarly, at t = §; the slope of S;(t)
changes form r] to r] < r] Consequently, S;(65) = rjl-(sj
is the maximum size burst the smoother can pass at rate
1. , provided successive maximum size bursts are spaced at

least S;(6 )/r

Let b;(t) be a deterministic periodic function such that

with probability

mm(r P; )

with probability 1 —

()

— §; apart.

1
7. _ p] OSt<t0n]‘
bﬂ(t)_{o ton, <t < Ty .

with on-time t.,; and period T} given in Table II. Also,

let 8;, j € I(n), be independent random variables with 6;
uniformly distributed over [0, T};] and define the stochastic

arrival process j as
t ~
= / b](s + 6])ds
0
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Thus each component arrival process (A4;(t), ¢t > 0) is gen-
erated by a periodic on—off source; process j has peak rate
p; and average rate p;. The argument in the proof of The-

orem 1 shows that the vector process (A(t), t > 0) is a
feasible process in A,,.

It remains to show that by sending each component pro-
cess (A;(t), t > 0) into its respective smoother we obtain
an on—off process whose peak rate is min(r}, p;) and whose
average rate is p;. Specifically, we now show that A;(t)

produces O;(t) = fot 6j(s + 6;)ds at the smoother output
where

55(t) = { gnin(rjl.,p}) 0 <t< Ton,
Ton; <t< Tj ’
where the periods and on—times are given in Table II.
First, consider the case pj > r; and &;(t;) > S;(d;)-
Clearly, ton; < t; since ton; = S;(0;)/pj and t; = €;(t;)/pj
and by assumptlon S;(8 ) t;). This implies that
Ej(ton,) = p;ton].. Hence

i(9;
5(

S; (Tonj) =¢&; (tonj)- (22)
Note furthermore that
tonj S Tonj (23)

since ton; = Sj(d;)/pj = rjd;/pj and by assumption
ri < pj. Because of (22) and (23) and Ton; = d; the
smoother bursts at rate 1"]1- for a duration of 7,,; when fed
with an input burst at rate p; for a duration of ton; < ;.
Also, note that the smoother output has average rate
Ejlton;)/Tj = pj < 1; M where the last inequality follows
from the stability cond1t10n

Next, consider the case p; > 7} and &;(t;) < S;(d;). We
have

< 9; (24)

TOIIJ‘

since Ton; = €;(t;)/r; and &; = S;(8;)/r; and by assump-

tion S;(d;) > €;(t;). Thus S;j(7on;) = 7} Ton;- Hence
SJ’ (Tonj) = gj (tonj)- (25)
Also,
tonj < Ton; (26)

since ton] = &;(tj)/p} and Ton; = E;(t;)/r} and by assump-
tion pj > r;. Because of (24), (25) and (26) the smoother
bursts at rate 1"]1. for a duration of 7,,; when fed with an in-

put burst at rate p} for a duration of ¢,,,;. The average rate

of the smoother output is &;(ton;)/Tj = pj < r;\/[j, where
the last inequality follows from the stability condition.

Now consider the case p; < r} and £;(t;) > S;(;). We
have ton; < t; since ton; = Sj(0;)/pj and t; = &;(t;)/p;
and by assumption S;(d;) < £;(t;). This implies that
Ej(ton,) = p;ton].. Hence

S5;(65) = E;j(ton;)- (27)
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TABLE II
ON-TIMES AND PERIODS OF Ej(t) AND 6;(t).

P> p; <r1;
Ej(tj) > 5j(65) | £(t5) <Si(d;) | £;(t5) > 8;(95) | €;(t;) < S;(65)
T; Si(d;)/p; Ej(tj)/pj S;i(8;)/p; Ej(tj)/p;
ton; S;(6;)/p; tj S;(9;)/pj tj
Ton; g Ejlty)/r S;(8;)/p; t
Note furthermore that APPENDIX B: A HEURISTIC FOR FINDING A LEAKY
BUCKET CHARACTERIZATION OF PRERECORDED
05 < ton, (28) SOURCES

since d; = S;(0;)/r} and ton; = S;j(d;)/pj and by assump-
tion 7 > pj. Because of (27), (28) and p; < r; (by as-
sumption) the smoother passes the input burst at rate p;
for a duration of ¢,,; unchanged. The average rate of the
smoother output is £;(ton;)/Tj = p;j < rjwj, where the last
inequality follows from the stability condition.

Finally, consider the case pj < r; and &;(t;) < S;(J;)-
These two assumptions imply that the smoother can pass
the input burst of size £;(t;) at rate pj. The average rate

. M.
of the smoother output is &;(ton;)/T; = p; < r;’, where

the last inequality follows from the stability condition. W

Proof of Theorem 2: Using Lemma 3 and mimicking the
proof of Theorem 1 we obtain

o = E (Ziel(n) Uz _Cn)+0j]
o Ch - E[U]] ’

where 17]-, j € I(n), are defined in Lemma 3. Using the
fact that U; is a Bernoulli random variable, we obtain from
the above expression

E [(Eiel(n)—{j} Ui + min(r}, p}) — Cn)+]

o; = cn
E [(Eie](n)—{j} Uitcj - Cn)+]
> ; (29)
Ch
where the last inequality follows from Lemma 2.
From (13) and (29) it remains to show that
E[( Y, Ui+¢-Cn)'l<
iel(n)—{j}
E[( ). U+c¢-C)'  (30)
iel(n)—{j}
From Lemma 2 and Proposition 1.5.1 in [52]
U <icx U; for all i € I(n). (31)

The inequality (30) follows from (31), the independence of
U}, j € I(n), and an argument that parallels the argument
in the proof of Theorem 1. O

In this appendix we discuss how to obtain a good charac-
terization £;(t) of a source for a given restriction L; on
the number of leaky buckets. For any given characteri-
zation £;(t) we use at the network edge a single-buffer
smoother with rate ¢} given by (4). Our goal is to find a
characterization £;(t) that has at most L; slopes (i.e., L;
cascaded leaky buckets) and attempts to minimize both p;
and cj. From Theorem 2 we know that minimizing p; and
¢} minimizes the worst—case loss probabilities, and thereby
maximizes the connection—carrying capacity of a particular
node.

We develop the heuristic for determining the charac-
terization &;(t) in the context of prerecorded sources.
These sources include full-length movies, music video clips
and educational material for video-on-demand (VoD) and
other multimedia applications. It is well known how to
compute the empirical envelope for prerecorded sources
[32], [54], [31]. The empirical envelope gives the tightest
bound on the amount of traffic that can emanate from a
prerecorded source over any time interval. The empirical
envelope is however not necessarily concave, and therefore
we may not be able to characterize it by a cascade of leaky
buckets. However, applying the algorithms of Wrege et al.
[54] or Grahams Scan [6], we can compute the concave hull
of the empirical envelope. The concave hull for connection—
Jj traffic, denoted by #,(t), takes the form

H;(t) = 12%1&{0;. + pjt}. (32)
Here, K; denotes the number of piecewise linear segments
in the concave hull. Without loss of generality we may
assume 0 < 05 < --- <0]Kj and pj > p3 > .- >p]1-(j.

The number of segments in the concave hull can be rather
large. The “Silence of The Lambs” video segment used
in our numerical experiments, for instance, has a concave
hull consisting of 39 segments. This implies that 39 leaky
bucket pairs are required to police the tightest concave
characterization of the “Silence of The Lambs” video seg-
ment. Our goal is to find a more succinct characterization
of prerecorded sources in order to simplify call admission
control and traffic policing.

Suppose that a source is allowed to use L; (L; < Kj)
leaky buckets to characterize its traffic. We now present a
heuristic for the following problem: Given a source’s con-
cave hull #;(t) = min;<;<x, {0; + p;'.t} and the delay limit



d;, find L; leaky buckets (out of the K leaky bucket pairs
in the concave hull) that maximize the admission region.

We illustrate our heuristic for the case L; = 2. For
L; = 2 the traffic constraint function takes the form
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We now briefly discuss how to find the optimal regula-
tor function consisting of 3 or more leaky buckets. First,

note that there are < Ib/j‘_ll combinations of leaky
i -

bucket pairs to consider. This can be computationally

£;(t) = min{o}’ + p}’t, U?j +p§jt} with 1< aj,b; < K, (38phibitive. The heuristic can be sped up by consider-

where the indices a; and b; are yet to be specified. Our
strategy is to first choose the leaky bucket that has the
tightest bound on the average rate (i.e., minimize p;),
and then choose another leaky bucket which minimizes the
smoother rate ¢j. Let r§¥® denote the average rate of the
prerecorded source. We found in our numerical experi-
ments that some of the leaky bucket pairs in the concave
hull (particularly those with high indices) may have slopes
less than 73v¢. We set b; = max{i : p} >3, 1 <i < Kj}.
In words, we use the highest indexed leaky bucket with a
slope larger than ¥ to specify the source’s average rate.

In order to find the leaky bucket indexed by a; we con-
sider all leaky buckets (o}, p}) with 1 < i < b;. We
compute the smoother rates obtained by combining each
of the leaky buckets (a;-, pj-), 1 <@ < bj with the leaky

bucket (a?j , ps-j ) and select the index i that gives the small-
est smoother rate — and thus the largest admission re-
gion. More formally, let c;fi, 1 < i < bj, denote the
minimal smoother rate for traffic with regulator function

£;j(t) = min{o} + pit, a?j + ps-jt} and delay bound d;. By
(4) we have

min{o} + pit, o?j + pg.jt}.

C" = max
dj+t

J t>0

We can obtain a more explicit expression for it Since

e ol + pit for 0<t<t
min{oj+pjt, o’ +pjth = { 077?1‘ + /J)”.J‘t for t > t;
J J —

; b i i bj
with t; = (0,7 —03)/(pj — p;’), we have

b; b;
o +pjt
dj +1

)

i i
) o+ pit
¢’ = max l max —Z J

—  ma
0<t<t; dj +t = t>t

The expressions inside the max[-] can be further simplified.
It can be shown that

X
e

. . o
i i ifd; < =4
o; + th _ d; J = b
max ——— = i iy i
0<t<t; dj +t gitriti e g> %
dj+t1' ’ J = p;.
and
iy it b
) ) ;TP ti if . 9;
a?J +p§Jt G ifd; < i
PR Pl R b
y . o, . o,
= i 4 if d; > .
J p]

We set the smoother rate to minj<;<p, c;i and set a; to the
index that attains this minimum.

ing only regulator functions consisting of L; — 1 consecu-
tive leaky buckets of the concave hull and the leaky bucket
(asj, p?j). In the case L; = 3, for instance, we compute
the minimal smoother rates only for the regulator func-
tions &;(t) = min{o’; + pt, U;H + p;Ht, o?j + pg.jt} with
1 <i < b; — 1. This speed—up of the heuristic can produce
a suboptimal regulator function. Our numerical experi-
ments (see Section III-B), however, indicate that it works
surprisingly well.

We evaluate the heuristic using the traces of Section III-
B. The heuristic produced the optimal leaky bucket char-

acterizations given in Table III for the lambs trace. The

TABLE III
PARAMETERS OF THE OPTIMAL LEAKY BUCKET CHARACTERIZATION
WITH 2 LEAKY BUCKETS AS A FUNCTION OF THE DELAY BOUND FOR
THE LAMBS TRACE. THE AVERAGE RATE IS CHARACTERIZED BY THE
34TH LEAKY BUCKET, L.E., bjamps = 34, WITH PARAMETERS
af;jn";)‘;s = 3,157.8 KBYTE AND pb‘ambs = 208.8 KBIT/SEC FOR ALL

lambs
DELAY BOUNDS.

diamps | @ambs | Olanivs | Plambe | Clambs
sec. kByte | kbit/sec | kbit/sec

0 1 0 3474.8 3474.8
0.042 2 13.3 939.3 2535.5
0.125 2 13.3 939.3 939.0
0.250 4 23.5 802.2 801.9
0.500 8 43.5 711.0 710.8
1.000 10 69.9 676.9 674.7

table gives the index ajamps and the parameters of the leaky
bucket (opamre, pilemh<) for various delay bounds. The av-
erage rate is characterized by the 34th leaky bucket in the
concave hull, i.e., bjamps = 34, for all delay bounds. The
table also gives the minimal smoother rates for the vari-
ous delay bounds. For a delay bound of zero, the smoother
rate is set to the rate of the first leaky bucket, i.e., the peak
rate of the trace. For djamns = 0.042 sec (= 1/F) the trace
is characterized by the 2nd and 34th leaky bucket of the
concave hull (ajambs = 2, blambs = 34). Note that djamns <

(ambs [ ptlambs in this case and ¢y ps = O1o2m /diambs. For

Ulambs /plambs L A
diambs > 0.125 sec we have diambs > Opmme [praemne and

cl*ambs = (U;‘“ambs + p;‘lambstalambs)/(dj + talambs)'
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