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Rule-Base Structure Identification in an 
Adaptive-Network-Based Fuzzy Inference System 

Chuen-Tsai Sun 

Abstruct-Fuzzy rule-base modeling is the task of identifying 
the structure and the parameters of a fuzzy IF-THEN rule base so 
that a desired input/output mapping is achieved. Recently, using 
adaptive networks to fine-tune membership functions in a fuzzy 
rule base has received more and more attention. In this paper 
we summarize Jang’s architecture of employing an adaptive 
network and the Kalman filtering algorithm to identify the system 
parameters. Given a surface structure, the adaptively adjusted 
inference system performs well on a number of interpolation 
problems. We generalize Jang’s basic model so that it can be 
used to solve classification problems by employing parameter- 
ized t-norms. We also enhance the model to include weights of 
importance so that feature selection becomes a component of 
the modeling scheme. Next, we discuss two ways of identifying 
system structures based on Jang’s architecture. For the top- 
down approach, we summarize several ways of partitioning the 
feature space and propose a method of using clustering objective 
functions to evaluate possible partitions. We analyze the overall 
learning and operation complexity. In particular, we pinpoint the 
dilemma between two desired properties: modeling accuracy and 
pattern matching efficiency. Based on the analysis, we suggest 
a bottom-up approach of using rule organization to meet the 
conflicting requirements. We introduce a data structure, called 
a fuzzy binary boxtree, to organize rules so that the rule base 
can be matched against input signals with logarithmic efficiency. 
To preserve the advantage of parallel processing assumed in 
fuzzy rule-based inference systems, we give a parallel algorithm 
for pattern matching with a linear speedup. Moreover, as we 
consider the communication and storage cost of an interpolation 
model, it is important to extract the essential components of the 
modeled system and use the rest as a backup. We propose a 
rule combination mechanism to build a simplified version of the 
original rule base according to a given focus set. This scheme can 
be used in various situations of pattern representation or data 
compression, such as in image coding or in hierarchical pattern 
recognition. 

I. INTRODUCTION 
HE concept of system modeling is closely related to T interpolative input-output mapping, pattem classification, 

case-based reasoning, and learning from examples. It plays an 
important role in rule-based control, data compression, pattem 
recognition, expert systems, and multiple-objective decision 
processes. Conventional approaches of system modeling per- 
form poorly in dealing with complex and uncertain systems, 
because it is very difficult to find a global functional or 
analytical structure for a nonlinear system. 
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Fig. 1. A typical fuzzy rule. 
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Fig. 2. Approximate reasoning. 

On the contrary, a fuzzy inference system uses fuzzy IF-THEN 

rules to describe a system. Fig. 1 gives a typical example of 
a fuzzy rule, where X I  and X z ,  are input variables, Y is an 
output variable, and A , B ,  and C are linguistic terms [31] 
characterized by appropriate membership functions [30]. 

Consequently, a fuzzy rule gives a meaningful expression of 
the qualitative aspects of human reasoning. Based on pattern 
matching between rule antecedents and input signals, a number 
of fuzzy rules are triggered in parallel with various values 
of firing strength. Individually invoked actions are combined 
together with a defuzzification mechanism to give a single 
output. The inference process is called approximate reasoning, 
as illustrated in Fig. 2. 

While there are many ways of modeling a fuzzy inference 
system, such as the ones using fuzzy relation equations [14], 
[ 181 and those represented as fuzzy associative memory (FAM) 
banks [8], [9], [27], this paper follows the approach proposed 
by Sugeno and his colleagues [24], [26], which is based on 
the idea of finding a set of local input-output relations (rules) 
to describe a system. Fuzzy rule-based systems have found 
many successful applications. Further, each fuzzy rule can 
be considered as a localized receptive field [12], which is 
biologically applaudable in human perception. 

We can perform fuzzy modeling by extracting knowledge 
from human experts and by transforming the expertise into 
rules and membership functions. The resulting system can then 
be tuned by monitoring its performance through trial and error. 
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Fig. 3. A fuzzy inference system. 

However, depending on human introspection and experience 
results in some severe problems. First of all, even when 
human experts exist, their knowledge is often incomplete and 
episodic rather than systematic. Moreover, there is no formal 
and effective way of knowledge acquisition. For example, 
determining the proper number of rules and partitioning the 
input feature space for the most part remain arts. Finally, we 
want the system to have learning ability to update and fine-tune 
itself based on newly arriving information. 

As a result, researchers have been trying to automate the 
modeling process based on numerical training data. The goal 
is to establish a rule-based system of the type shown in Fig. 
3. Each rule, representing a local description of the system’s 
behavior, is composed of an antecedent part (condition) and 
a consequent part (action). The antecedent part is a fuzzy 
pattern of multidimensional input features; the consequent part 
is a linear combination of inputs. The modeling task can be 
divided into two parts: structure identification and parameter 
identification. The former is related to finding a suitable 
number of rules and a proper partition of the feature space; the 
latter deals with the adjustment of system parameters, such as 
the membership functions, linear coefficients, and combination 
logic. 

Recently, Jang [5] proposed a method of using adaptive 
networks and Kalman filters for parameter identification and 
obtained impressive simulation results. This architecture is 
quite general in that it can be used in both interpolation and 
classification problems. It can also be modified to incorporate 
advanced fuzzy pattern matching techniques such as weights of 
importance and fuzzy quantifiers in an approximate reasoning 
process. We show simulation data to verify the effectiveness 
of these generalizations. Our further discussion on structure 
identification is based on this model. 

Jang’s approach assumes a predetermined structure, i.e., a 
gridlike partition of the feature space. We show, in terms of 
topological and computational complexity, that the assumption 
is no longer true when the system to be modeled is sophisti- 
cated and the number of input variables becomes large. Several 
multidimensional data structures for partitioning the feature 
space are summarized in this paper. We propose a hill-climbing 
method based on k-d trees to solve the structure identification 

problem. Two objective functions, a density measure and a 
typicality measure, are used in the partition process to find a 
proper starting point for the parameter identification phase. The 
entire modeling scheme is applied to a temperature prediction 
problem and gives satisfying results. 

However, when we face a really complicated system, a 
simple, global, and effective partition is difficult to find. Now 
we encounter the dilemma between modeling accuracy and 
learning/operation efficiency. We propose a method of rule 
organization to solve this problem. It employs the concept of 
divide and conquer to achieve modeling accuracy with many 
small rules, each covering a local region. Then we build a 
binary fuzzy boxtree out of the rules based on a similarity 
measure between their antecedent pattems. We claim that a 
branch-and-bound algorithm can do the pattern matching job 
for firing appropriate rules with logarithmic efficiency so that 
the large number of rules will cause no trouble for the entire 
scheme. Moreover, to maintain the advantage of fuzzy rule- 
based systems in parallel processing, a parallel algorithm is 
proposed to meet the requirement. 

Another alternative to cope with sophisticated systems is to 
use rule combination so that we can apply a simplified rule- 
base. When there is a focus area in the application domain, 
this is a promising approach. We give an algorithm for rule 
combination with respect to a boxtree and show how to 
invoke rule bases with various granularities in an interpolation 
problem. 

11. LEARNING WITH ADAPTIVE NETWORKS 

Now we consider the problem of parameter identification of 
a fuzzy rule-based inference system. As pointed out by Zadeh 
[33], when the rule-base structure can be formulated, we can 
use adaptive networks to calibrate the membership functions. 
Various approaches have been proposed in this direction, as in 
[25] and [29]. Our discussion and the development of structure 
identification mechanisms in the following sections are based 
on Jang’s method [5] because of its comprehensibility and 
effectiveness. 

An adaptive network is a multilayer feedforward network in 
which each node performs a particular function (node function) 
based on incoming signals and a set of parameters pertaining 
to this node. When the set of parameters is empty, we use a 
circle to denote the node; otherwise we use a square. The type 
of node function may vary from node to node with the choice 
of node function depending on the overall function that the 
network is designed to cany out. 

Fig. 4 demonstrates Jang’s architecture with two input 
variables, 2 1  and 2 2 ,  and one output variable, y. Each input is 
represented as two linguistic terms; thus we have four rules. 
The nodes in the same layer have the same type of node 
function. 

Each node at layer 1 (membership) is associated with a 
parameterized bell-shaped membership function represented as 
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Fig. 4. An adaptive-network-based fuzzy inference system. The table at 
bottom shows the number of nodes and the number of parameters of each 
node at each layer. V is the number of input variables; L is the number of 
linguistic terms for each input; and R is the number of rules. In this case, 
R = L v .  

where z; is one of the input variables, A is the linguistic term 
associated with this node function, and { U ; ,  b;, c;} is the pa- 
rameter set. The parameters are tuned with back-propagation, 
a gradient descent method, in the learning process based on 
a given training data set. Each node at layer 2 (conjunction) 
multiplies the incoming signals and sends the product out. The 
output signal corresponds to the firing strength of a rule. 

The ith node at layer 3 (normalization) calculates the ratio 
of the ith rule’s firing strength to the sum of the firing strengths 
of all the rules, i.e., the relative portion of the ith rule in the 
final result. A node at layer 4 (defuzzification) calculates a 
linear combination of input signals, i.e., 

do + di *xi + d2 * XZ, (2) 

and multiples the result with the weight coming from layer 
3. During the learning process, the d;’s are adjusted using a 
Kalman filter 171 to minimize the mean square error between 
the calculated output and the desired output. Finally, the single 
node at layer 5 (summation) produces the weighted sum of the 
output signals coming from invoked rules. 

Note that in Jang’s method, the firing strength of each 
fuzzy rule is calculated as the product of the membership 
values in the premise part, the consequence of each rule 
is a linear combination of inputs, and the final output is 
obtained as the weighted average of each rule’s consequence. 
However, other types of fuzzy reasoning method [ 101 can also 
be implemented with this model. The number of nodes at each 
layer and the number of parameters associated with each node 
are summarized in a table shown at the bottom of Fig. 4. 

The effectiveness of modeling using Jang’s model is shown 
in [51. It gives not only a meaningful representation of a 
system, but also a comprehensive network topology for the 
learning process. Further, Jang’s model is a special configu- 
ration of layered adaptive networks with localized receptive 
fields, which are supported by biological evidence [12] and 
are relatively efficient to learn [15]. Another advantage of this 
model is its simplicity in terms of connections between two 
layers, which is a critical factor in VLSI implementation [3], 
[ 1 11. Moreover, the basic model can be generalized in several 
directions to solve various problems, as discussed in the next 

section. Consequently, we choose Jang’s model as the basis 
for structure identification as well as rule organization. Our 
analysis and design are largely based on architectural and 
computational complexity. 

111. GENERALIZATIONS OF JANG’S BASIC MODEL 

From Fig. 4, it is easy to see that the topological complexity 
of Jang’s model is O ( R )  or O(Lv) .  This results from the 
assumption that the feature space if uniformly partitioned 
along each input dimension. Since the size of the network 
grows exponentially as the number of inputs increases, obvi- 
ously the learning and operation efficiency will be poor when 
the architecture is used to model a complicated system with 
many variables. Thus, the first generalization of Jang’s model 
is to abandon the uniform-partition assumption and consider 
an arbitrary rule-base configuration. When the configuration, 
i.e., a proper partition of the feature space, is not known 
at the beginning of the modeling process, we have to do 
structure identification before the parameter calibration can be 
manipulated. Structure identification is discussed in the next 
section. 

Moreover, the discussion up to this point is based on the 
implication that the input variables are of equal importance. 
However, in applications of automatic control, pattern classi- 
fication, or multicriteria decision making, this assumption is 
usually not true. In other words, a general modeling scheme 
should include feature selection. We can enhance the basic 
model by introducing the concept of weight of importance in 
fuzzy pattern matching to fulfill this requirement. 

Assume each input variable z; is associated with a weight 
of importance w; E [0,1]. We generalize the result of (1) to a 
weighted degree of match, denoted by s;: 

(3) 

Note that the less important a variable is (w; small), the smaller 
the role that s; plays in the multiplication at the next layer in 
the adaptive network. On the other hand, if a variable is of 
full importance (wi = l),si reduces to p ~ ( z i ) .  

Fig. 5 gives the configuration of the generalized model with 
two inputs and three rules. Each weight node at layer 1 has 
the weight of importance as its only parameter. The initial 
value of weight is defaulted at 1.0 but can be assigned to any 
value in [O, 11 by users based on their heuristic judgment. Note 
that the architectural complexity is now of O ( R  * V )  with R 
independent of V . 

During the learning process, once a weight of importance 
is stabilized below a certain threshold value, the correspond- 
ing variable is considered unimportant in the system to be 
modeled. Thus, the variable can be neglected and a simplified 
structure/parameter identification process can be resumed to 
find an even better solution. 

s; = 1 - w; * (1 - pA(5 ; ) ) .  

Iv .  MODELING SCHEME FOR CLASSIFICATION PROBLEMS 

Jang’s model assumes that an output value can be rep- 
resented as a particular linear combination of inputs-within 
each region in the feature space. The overlapping among 
regions provides the natural smoothness for the input-output 
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Fig. 5.  Generalized configuration with weights of importance. 

We applied this learning scheme on an Iris classification 
problem to find the mapping between four input variables 

mapping. This characteristic of Jang’s model makes it suitable 
for applications such as automatic control and time series 
prediction. 

Another important category of geometric learning, classi- 
fication, has some different properties. Generally speaking, a 
classifier partitions the feature space based on labeled training 
data. In the context of fuzzy classification see [16], [17], 
[32] classes are overlapping and each training data item is 
associated with numbers in [O, 11 representing degrees of 
belonging, one value for each class. A modified network based 
on Jang’s scheme can be used as a fuzzy classifier (see Fig. 6). 

There are two input variables and four rules in this example 
and we assume that the training data are categorized by three 
fuzzy classes. We still employ weights of importance for 
feature selection at Layer 1. Layer 2 calculates the membership 
values for rule premises as before. 

In most pattern classification and query-retrieval systems, 
the conjunction operator plays an important role and its 
interpretation changes across contexts. Since there is no single 
operator that is suitable for all applications, we use parame- 
terized t-norms at layer 3 to cope with this dynamic property 
of classifier design. Bonissone provided a detailed discussion 
on t-norms and their parameterized versions (see [ 2 ] ) .  For 

1 

i = l  

where P is the number of training data and T(z) and O(i )  are 
the ith desired output and the calculated output, respectively. 
After 200 epochs of learning we obtained a modeling error 
A P E  = 1.984%, a fairly good result. 

V. FEATURE SPACE PARTITIONING 

We justified the need for structure identification in the 
previous discussion. Now we describe various methods of 
achieving this goal and their limitations. These methods can 
be divided into two categories: feature space partitioning and 
rule organization. We discuss feature space partitioning here 
and will cover rule organization in the next section. 

As mentioned before, a rule-base structure can be viewed 
as a partition in the multidimensional feature space. Fig. 
7 shows several data structures frequently used in model- 
ing a multidimensional sophisticated system. These structures 
possess a common property: they are composed of fuzzy 
hyper-rectangles, or fuzzy boxes. The antecedent part of a 
fuzzy rule can be considered as a fuzzy hyper-rectangle in the 
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Fig. 7. Four fuzzy multidimensional data structures: (a) fuzzy grid, (b) 
adaptive fuzzy grid, (c) fuzzy k-d tree, (d) multilevel fuzzy grid. In 
two-dimensional space, the structure in (d) is also called a fuzzy quad tree. 

multidimensional feature space. Consequently, the structures 
in Fig. 7 are all candidates for modeling a fuzzy rule base. 

Wang and Mendel [27] used fuzzy grids [Fig. 7(a)] as their 
data structure for FAM banks. They proposed a deterministic 
procedure to decide the mapping between a fuzzy region and 
an output linguistic term. Since the procedure is deterministic, 
there is no learning involved in their method. The performance 
depends entirely on the definition of the fuzzy grid. In gen- 
eral, the finer the grid, the better the modeling performance 
becomes. However, there are two major drawbacks when 
we partition a certain feature dimension into a large number 
of regions. First, the operation efficiency suffers. Second, it 
becomes likely that some regions will not cover any training 
data and will remain undefined. Karr [8], [9] used the same 
rule-base structure but he employed genetic algorithms to 
optimize the mapping. 

Jang’s basic model is built on adaptive fuzzy grids [Fig. 
7(b)]. At the beginning of learning, a uniformly partitioned 
grid is taken as the initial state. As the parameters in the 
premise membership functions are adjusted, the grid evolves. 
The gradient descent method optimizes the location and size 
of the fuzzy regions and the degree of overlapping among 
them. Two problems exist in this scheme. First, the number of 
linguistic terms for each input variable is predetermined and 
is highly heuristic. Second, the learning complexity suffers an 
exponential explosion as the number of inputs increases. 

Fuzzy grids give the most restricted structures; on the 
other extreme, fuzzy clustering algorithms [l], 1221 based on 
training data result in the most flexible partitions. However, 
this approach has its own problems. First of all, the resulting 
structures are not necessarily hyper-rectangles; they need 
refinement. To map a fuzzy cluster to a set of bell-shaped 
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functions, we can Tonsider c, in (1) as the coordinate of 
the cluster center, h, in the ith dimension; meanwhile, a, is 
assigned to the value of cluster radius, i.e., the longest distance 
from the center to a point, pi, with nonzero membership in the 
ith dimension, The value of b, is interpreted as a slope and 
can be determined as a linear function of the membership of 
the boundary point 6. 

The second weak point of clustering algorithms is that the 
cost tends to be high, because the efficiency of convergence 
is not guaranteed. Third, the total number of rules (clusters) is 
predetermined in these algorithms. When the resulting partition 
is not good enough and we want to increase the number of 
rules, we have to rerun the clustering algorithm from the 
beginning. 

The essential point here is that in the context of adaptive 
network training, we do not need to find a perfect clustering 
since our goal is just to find a satisfiable initial state for the 
adaptive network to tune. In other words, as we have verified 
the validity of the parameter identification mechanism using 
adaptive networks, it makes no sense to spend a lot of time 
in optimizing the cluster criteria, no matter what the objective 
functions might be. 

Thus, we adopted an intermediately flexible partitioning, 
the fuzzy k-d trees [Fig. 7(c)], for structure identification. In 
the following, we explore several ways of providing a feature 
space partition based on fuzzy k-d trees. 

A k-d tree results from a series of guillotine cuts. By a 
guillotine cut, we mean a cut which is made entirely across 
the subspace to be partitioned; each of the regions so produced 
can then be subjected to independent guillotine cutting. At 
the beginning of the ith iteration step, the feature space is 
partitioned into i regions. Now another guillotine cut is applied 
to one of the regions to further partition the entire space into 
i + 1 regions. 

There are various strategies to decide which dimension to 
cut and where to cut it at each step. Some are based merely on 
the distribution of training examples; others take the parameter 
identification methods into consideration. We list and briefly 
discuss several strategies in the following before introducing 
a hill-climbing method based on fuzzy clustering objective 
functions. 

1) Balanced-Sampling Criterion: The simplest tactic is to 
cut the dimension in which the training data associated with the 
region are most spread out and to cut it at the median value of 
those samples in that dimension [4]. The expected shape of the 
regions under this procedure is asymptotically cubical because 
the long dimension is always cut. In general, this method 
produces homogeneously distributed localized receptive fields. 

2) Information Gain: The cutting procedure can be viewed 
as a method of building a decision tree. Quinlan [ 191 proposed 
a method based on information theory and defined the concept 
of information gain at each branch. Therefore, the rule of 
thumb is to choose a cut with the most information gain at 
each step. 

3) Regional Linearity: This strategy is suitable when the 
consequence part of a rule is represented as a linear com- 
bination of the input features, as in Jang’s basic model. 
Conceptually, we want to use a hyperplane to approximate the 
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training samples in a region and minimize the mean square 
error. Thus, we can apply a Kalman filter to identify a set of 
linear coefficients and the cut resulting in the least error will 
be selected under this criterion. 

4 )  Direct Evaluation: The most direct, but inefficient, way 
to evaluate a partition is to feed the resulting structure into the 
parameter identification phase and use the final performance to 
choose the best cut. Sugeno and Kang [24] used this approach 
together with a large number of heuristics to find the proper 
structure. 

The above methods are all crisp partitions so the result 
need to be fuzzified. Furthermore, the evaluation functions 
used in these hill-climbing algorithms are either too shallow, 
without considering the need of parameter identification, or 
too deep, thus bothered by a credit assignment problem. We 
propose as a compromise using two fuzzy clustering objective 
functions, a typicality measure and a density measure. The 
basic assumption of this approach is simply that a good fuzzy 
rule is usually represented by a cluster which has a prototypical 
center and a strong support from the samples. 

VI. HILL-CLIMBING WITH FUZZY 
CLUSTERING OBJECTIVE FUNCTIONS 

1- Obl.ctlve FuncUons 

hnslly Measure 

Typicality hasure 

4 Cluster Anmlyslr 

Adaptlva Nmlwork 

Gndlent hsrant Algorlmm 

(a) (b) 

Fig. 8. A general fuzzy modeling scheme: (a) structure identification; (b) 
parameter identification. 

where P is the number of training data, C is the number 
of clusters (rules), d j k  is the distance (or the measure of 
dissimilarity) between sampling points j and I C ,  and p;j is the 
membership of point j in cluster i. As pointed out by Ruspini, 
J D  is a measure of cluster quality based on local density, 
because J D  will be small when terms in (8) are individually 
small; in tum, this will occur when close pairs of points have 
nearly equal fuzzy memberships in the C clusters. 

JT is a variation of the least square functional proposed by 
Bezdek 111: .~ 

Our method is still an n-step hill-climbing approach, where P C  

JT = p?kd?k’ (9) n is the desired number of rules, because of considerations of 
efficiency. At each step a fuzzy set is defined for each cluster k = l  i= l  
i with the following membership function, which will be used 
in the objective functions: 

where p;k denotes the membership of the kth point (x:) in 
the ith cluster, v is the number of variables, x k j  is the j th 
coordinate of Z T ,  and I1 stands for fuzzy conjunctive operator. 
Calculation of the parameters aij ,  b i j ,  and ci j  is dependent 
on the hyper-rectangle defined by a cluster resulting from 
guillotine cuts. Let h; be the physical center of the ith hyper- 
rectangle; then c i j  is defined as the j th  coordinate of h;, a;j 

is calculated as half the length along the hyper-rectangle’s 
j th dimension and bij is determined by the desired degree of 
overlapping between fuzzy regions. At the end of the structure 
identification phase, the a’s, b’s, and c’s are fed into the 
adaptive network as the initial parameters. 

Now we define two objective functions for the best-first 
search process. As analyzed by Bezdek [l], various objective 
functions can suggest radically different substructures in the 
same data set. To achieve a meaningful structure for a fuzzy 
rule base, we have to select appropriate measures. In our 
approach, we use two objective functions: one ( J D )  is a 
density measure; the other ( J T )  is a typicality measure. 

J D  was proposed by Ruspini [21]: 

where d ; k  l,s the distance from point k to the center (or 
prototype) h; of cluster i. We call JT a typicality measure 
because it will be small when points in a clyster adhere tightly 
(have small d i k ’ s )  to their cluster center hi. 

Density and typicality are important measures because they 
are closely related to two important characteristics of linguistic 
terms: the support and the core, respectively. The support is 
the range of nonzero membership values ( p  > 0), whereas the 
core is the range of full membership ( p  = 1). In general, we 
want a linguistic term to have a strong support (high density, 
or small J o )  and a representative core (good prototype, or 
small JT) .  Thus, it is reasonable to choose J D  + JT to be our 
objective function. In other words, for each possible guillotine 
cut, we calculate J D  + JT of the resulting partition. Then we 
select the partition with the least J D  + JT value as our next 
hypothesis to continue the hill-climbing 

Fig. 8 summarizes our adaptive-network-based fuzzy rule- 
base modeling scheme. To verify the combined effect of 
structure identification and parameter identification, we applied 
the mechanism described above to a time series prediction 
problem. We generated 400 pieces of training information 
from a data set containing the monthly mean temperature at 
Vienna. We used four inputs and 35 rules in this application. 
After 200 epochs of learning we obtained a modeling error 
APE = 4.317%. 

As mentioned above, the cutting procedure can be viewed 
as a method of building a decision tree. Efficient decision tree 
construction depends on the existence of salient discriminating 
features. If this is not the case, as seen, for example, in Fig. 9, 
where there are no adequate guillotine cuts, the mechanism 
of partitioning the feature space is not longer suitable for 
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Fig. 9. A clustering without salient discriminating features. 
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Fig. 10. Fuzzy points approximating a compatibility relation. Various num- 
bers of fuzzy points result in different degrees of information granularity: 
(a) coarse, (b) finer. The interpretation of fuzzy inference as a compatibility 
relation was discussed in detail by Ruspini [23]. 

structure identification. Thus, in very complicated systems, we 
are usually forced to use large numbers of small rules. In the 
next section we propose a method of rule organization to cope 
with the resulting computational complexity. 

VII. RULE ORGANIZATION 

In a fuzzy inference system, the rules can also be viewed 
as a set of fuzzy points which as a whole approximate 
a compatibility relation. As more rules are involved, finer 
approximation as well as better modeling accuracy is likely to 
be achieved (see Fig. 10). However, when modeling accuracy 
is our major concem and we decide to use an extremely 
large number of rules, we must deal with the problem of 
computational complexity. 

In this section, we introduce a data structure, called a fuzzy 
boxtree, to organize rules so that pattern matching can be 
performed in logarithmic time. The mechanism includes the 
following steps: 

1) use a divide-and conquer data structure, the multilevel 
fuzzy grid, to partition the feature space and fine-tune 
a large number of small rules so that accurate local 
mappings are achieved; 

2) define a fuzzy boxtree on antecedents of rules and 
provide a linear-time algorithm to construct it; 

3) introduce a branch-and-bound algorithm for pattern 
matching in logarithmic time; 

4) provide a parallel algorithm to maintain the advantage of 
parallel processing presumed in fuzzy inference systems; 

Since we are going to use a large number of rules to 
achieve modeling accuracy, and take different degrees of 

local complexity as well as unbalanced sample distribution 
into consideration, we adopt a multilevel fuzzy grid [see 
Fig. 7(d)] as the structure to partition the feature space. The 
top level grid coarsely partitions the whole space into equal 
sized and evenly spaced fuzzy boxes, which can be further 
partitioned by finer fuzzy grids. This partitioning continues 
until a terminating condition is met. Two criteria can be 
used as the terminating condition. The first is the balanced 
sampling criterion; i.e., the resulting boxes should contain 
similar numbers of training examples. The other is to use an 
application-dependent evaluation. For example, if we assume 
each output to be a linear combination of the inputs, as in 
Jang’s model, we can use LMS methods to evaluate the fitness 
of each grid. When the mean square error is below a threshold, 
we stop the partitioning process. 

Now we can apply the learning model based on adaptive 
networks to identify the parameters in each region. Because 
of the small size of the regions and the resulting local linearity, 
the learning efficiency is expected to be good. Moreover, since 
the entire feature space is still covered by overlappng regions, 
the smoothness among regions will not be affected, although 
the regions are now separately trained. The only problem 
to be solved is the computational complexity in operation 
time caused by the resulting large number of rules. Now, we 
construct a boxtree to put the rules together. 

A binary fuzzy boxtree T is a rooted tree in which each 
intemal node has two children. Let R denote the set of nodes 
of T.  Each node r E R is a fuzzy set with a membership 
function pT(u) such that 

i f s i sachi ldof r thenp , (u)  5 pr(u),Vu E U, 
in other words, s C r. 

In our application, each leaf stands for a fuzzy pattem which 
pattem which represents the antecedent part of a certain fuzzy 
rule. Moreover, each membership function is bellshaped and 
is determined by six parameters: 

where e1 5 c2. Note that the three-parameter function defined 
in (1) is a special case of this function with a1 = u2, bl = ba, 

The similarity measure between two fuzzy pattems, A and 

(1 1) 

i.e., a conjunctive aggregation of partial similarity measures, 
S ,  (At, B;)’s, in individual feature dimensions. S(A;, Bi) is 
in tum calculated by 

S(Ai ,  &) = SUP {min (PA,(u), P B , ( u ) ) }  (12) 

and ~1 = ~ 2 .  

B, is given by the following formula: 

S(A, B )  = n S(A;, &), 
2 

U E U  
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T Ai Bi 

Fig. 11 .  Similarity measure between two fuzzy sets. 

t C = t  C 

I b 

x1 

(a) (b) 

Fig. 12. 
functions; (b) corresponding inclusion of boxes. 

Constructing an intemode in a boxtree: (a) covering of membership 

(see Fig. 11). The boxtree construction algorithm repeatedly 
finds the two boxes (patterns) with the largest similarity 
degree, makes them siblings, and inserts the parent as an 
internode. 

A membership function in an intemode C is defined 
as a combination of the corresponding functions in its 
child nodes, A and B. For example, if A is speci- 
fied by parmeter set ( ‘1,  > b l A  1 ‘ l a  > ‘ 2 A  1 9 ‘ 2 A } ,  by 
{ ‘ l ~ r b l ~ , c l ~ , a 2 ~ , b 2 ~ , C 2 ~ } ,  and ( ‘ 1 A > ‘ 2 A )  5 ( ‘ l B , ‘ Z B )  

in Pareto ordering, we use the following parameters to 
characterize C: 

‘ 1 ,  = a l A  b l C  = b l A  ‘ lc  = ‘la 
‘ 2 C  = ‘ 2 8  b2C = b2B ‘ 2 C  = ‘2 , .  (I3) 

Fig. 12 shows the idea and the resulting inclusion relation 
among fuzzy sets. 

Since an internode inherits the (fuzzy) boundaries defined 
by its children, the above construction can be realized in 
linear time by employing the famous greedy algorithm of 
finding a maximum spanning tree, given the similarity measure 
between each pair of fuzzy pattems. Fig. 13 shows a boxtree 
constructed. 

For T E R that is a leaf, pLT(u) is the compatibility measure 
of an input U against the pattem r ;  for an intemode T ,  pT(u) is 
the upper bound of compatability of the subtree it defines. 
This property provides a data structure to apply the basic 
branch-and-bound algorithm in searching optimal solutions. 
For example, if we want to find all rules which have a firing 
strength larger than a specified value, the boxtree structure 
allows a search from the root to prune any subtrees whose 
root function is smaller than that value. 

Thus, we can use the following algorithm to find the best 
rule against which an input U is matched. In this algorithm, F 
stands for a frontier of expanded nodes, B is the upper bound 
to a certain point. 

Algorithm 1: Branch-and-Bound Algorithm to Find the 
Best-MatchedRule 

1) F c {Root}; B t -00; 

Fig. 13. A boxtree. 

2) while F # 0 do 
select a set of nodes S G F ;  
expand the internodes in S to get the set of their children, 

F +- { F  - S }  U L ( S ) ; B  +- max({B} U {pL,(u) : w E 
S and U is a leaf}); 

O 
Usually, in a fuzzy inference system, it is not necessary to 

find all rules with a firing strength greater than zero. Instead, 
we are satisfied with the best k rules whose antecedents are 
compatible with the input. Algorithm 1 can be generalized 
to this case by keeping a priority queue of size IC and using 
the kth best value in pruning. This algorithm is of O(log, R)  
efficiency in pattern marching for a fuzzy rule base with R 
rules. 

The advantage of parallel processing is presumed for fuzzy 
rule-based inference systems because the rules are considered 
to be independent of each other in the pattem matching 
process. Now we organize the rules into a structure, the 
boxtree; can we still claim the benefit? In other words, if 
we have p processors instead of one, can we decrease the 
processing time to O(l/p), or achieve a linear speedup? The 
answer is positive. 

Let each of the p processors maintain a local frontier, F;. 
and a local priority queue, B;. At each step every processor 
i does one of two things: 

1) if Fi # 0 then it expands the node of best matching in F; 
and sends its children to processors chosen at random; 

2) if Fi = 0 then it sends the message “there is a rule of 
firing strength s” to processors chosen at random. 

The processors then update the sets F; and queues Bi on 
the basis of the messages received. The computation continues 
until all sets Fi are empty. At this point, the best matches 
are given by the merge of B;’s. This algorithm provides a 
linear speedup. The details of a general parallel algorithm for 
a branch-and-bound procedure are given in [34]. The analysis 
of its complexity is discussed in [20]. 

In summary, given a fuzzy rule base, with R rules, that 
models an application system, we can build a boxtree of 

L ( S ) ;  

F + {U E F : pL,(u) >_ B} .  
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2R- 1 nodes and use a parallel branch-and-bound algorithm to 
perform the pattern matching task with logarithmic efficiency. 
Consequently, with the boxtree data structure, we can use 
many more rules in the modeling process to achieve high 
performance without losing efficiency in the later pattern 
matching process. 

VIII. FOCUS-SET- BASED RULE COMBINATION 

To further improve the performance of self-organized sys- 
tems, such as those based on adaptive networks, dynamic 
skeletonization is usually necessary. By skeletonization we 
mean trimming the redundant or the less important parts of 
a complicated system, as suggested in [13]. However, we 
claim that skeletonization should be done under a dynamic 
relevance criterion, i.e., the part to trim or to simplify should be 
determined by the current situation. In this paper we propose 
a method of skeletonization, or rule base compression, for 
adaptive-network-based fuzzy inference systems. 

Note that in Fig. 13 every frontier in a boxtree can be 
viewed as a fuzzy rule base because it covers the entire feature 
space. For a frontier containing internodes, we can use either 
of the following two methods to determine the consequent as 
well as the antecedent parameters. The first way, the local 
approach, is to adopt the antecedent parameters as specified in 
the boxtree and to use LMS methods of finding a hyperplane 
to approximate the training data covered by individual regions. 
The alternative, the global approach, is to use the antecedent 
parameters as the initial values for Jang’s model and rerun 
the entire training process. The latter way is much more time 
consuming and should be used only when the goal is to find 
a merged rule base permanently. If we consider the feature 
space partitioning method introduced previously as a top-down 
approach, rule merging can be viewed as a bottom-up way of 
identifying a system structure. 

As asserted before, a fuzzy rule-based system can be used 
to solve various interpolation and classification problems. 
However, in order to be of practical use for the purpose of 
system representation and communication, e.g., in medical 
application of image archiving systems, dynamic rule-base 
compression becomes essential. With rule compression those 
components of the system are (temporarily) simplified that are 
supposed to be of less relevance to the current use of the 
system. The more relevant a component, the more rules are 
used for that component. The degree of relevance is specified 
by a focus set. 

A focus set, or a window, is a fuzzy set defined on the 
feature space which indicates the focus of our current interest. 
Given a window, W ,  the similarity gain, G(r) ,  defined on an 
internode T is calculated as 

G(T) = S(TI, W )  + S ( T ~ :  W )  - S(T, W ) ,  (14) 

where T I  and r2 are the two children of T and 5’ is the similarity 
measure defined 

Now we can use the following algorithm to find the most 
suitable frontier containing n rules to approximate the original 
rule base with respect to W .  

Fig. 14. A compressed rule base. Dotted lines define a frontier in a boxtree. 
Each frontier can be regarded as a compressed rule-base. 

Algorithm 2: Algorithm to Find the Best-Matched Rule 

1) F + {Root}; 
2) while IF1 < ri do 
select an internode T E F with the largest similarity gain 

expand T to get the set of its children, L(r ) ;  
calculate similarity gain for nodes in L(r) ;  

O 
This algorithm is of linear efficiency. 
A compressed rule base with respect to a window is shown 

in Fig. 14. Once the structure is determined, we apply the 
local approach mentioned above to identify the consequent 
parameters. Thus, a simplified but still proper rule base is 
constructed. It can be used for applications such as coding 
and hierarchical pattern matching. When higher resolution is 
required for a simplified region, the corresponding internode 
can be expanded to provide a finer sub-rule base. 

Base withRespect to a Focus Set 

G ( r ) ;  

F + { F  - r }  U L(T) ;  

IX. CONCLUDING REMARKS 

We have proposed a general modeling scheme for an 
adaptive-network-based fuzzy inference system which can 
be used in data compression, pattern recognition, decision 
analysis, and many other fields where human expertise is 
either unavailable or episodic. The modeling scheme is a two- 
phase design. Parameter identification is implemented with 
Jang’s model, which employs Kalman filters to improve the 
overall performance. We modified Jang’s model for classifi- 
cation problems. Parameterized t-norms and mean operators 
were brought into this picture to make the modeling scheme 
more flexible. We also introduced the concept of weight of 
importance to achieve the goal of feature selection. 

Structure identification, on the other hand, was realized with 
two different approaches. The top-down method partitions the 
feature space by guillotine cuts under the guidance of fuzzy 
clustering objective functions. The two measures, density 
and typicality, we chose to evaluate clusters have a sound 
theoretical background in fuzzy sets. The bottom-up approach 
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emphasizes modeling accuracy and uses many small rules. The 
rules are structured into a fuzzy binary boxtree to speed up the 
pattern matching process when the rule base is in operation. 
We proposed a parallel algorithm to maintain the advantage 
of fuzzy systems in parallel processing. 

The rules can also be merged or combined according to 
a dynamically defined focus set. We provided algorithms of 
identifying a suitable frontier in a boxtree and determining the 
parameters. The sub-rule bases thus found can be organized 
into a hierarchy so that rule bases with various granularities 
can be employed in accordance with different demands of 
accuracy and efficiency. 
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