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Elicitation, Assessment, and Pooling of 
Expert Judgments Using Possibility Theory 

Sandra A. Sandri, Didier Dubois, Member, ZEEE, and Henk W. Kalfsbeek 

Abstract-The problem of modeling expert knowledge about 
numerical parameters in the field of reliability is reconsidered 
in the framework of possibility theory. Usually expert opinions 
about quantities such as failure rates are modeled, assessed, 
and pooled in the setting of probability theory. This approach 
does not seem to always be natural since probabilistic infor- 
mation looks too rich to be currently supplied by individuals. 
Indeed, information supplied by individuals is often incomplete, 
imprecise rather than tainted with randomness. Moreover, the 
probabilistic framework looks somewhat restrictive to express the 
variety of possible pooling modes. In this paper, we formulate 
a model of expert opinion by means of possibility distributions 
that are thought to better reflect the imprecision pervading expert 
judgments. They are weak substitutes to unreachable subjective 
probabilities. Assessment evaluation is carried out in terms of 
calibration and level of precision, respectively, measured by mem- 
bership grades and fuzzy cardinality indexes. Last, drawing from 
previous works on data fusion using possibility theory, we present 
various pooling modes with their formal model under various 
assumptions concerning the experts. A comparative experiment 
between two computerized systems for expert opinion analysis 
has been carried out, and its results are presented in this paper. 

I. INTRODUCTION 
HE use of information originating from human experts T in the field of reliability and safety analysis of newly 

designed installations or regarding processes on which no 
experimental observations are possible becomes more and 
more accepted by the scientific community. In particular, it is 
clear that failure rates and failure probabilities of equipment 
for which no operating experience is available, as well as 
probabilities of occurrence of rare events and of unexplored 
physicallchemical processes, are the subject matter of expert 
judgment, simply because there exist no other data sources. 
The typical piece of information that has to be assessed in such 
situations is the number of times that a certain type of event 
occurs within a certain time span or during a certain number 
of trials, or the number of hours it takes to repair equipment or 
to restore faulty situations, etc. Several methods for elicitation, 
assessment, and pooling of this type of information have been 
proposed and are being applied, including classical, Bayesian, 
and psychologic scaling approaches [4]. Nonetheless, the area 
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is still developing, in particular with respect to the assessment 
of the experts and the way in which information originating 
from different experts and/or “objective” data sources can be 
combined to arrive at the best possible result (pooling of expert 
judgment). The present paper addresses both issues, basing its 
approach on possibility and fuzzy set theory for modeling the 
uncertainty [ 1 11. 

The uncertainty model plays a central role in the use of 
expert judgments, because no human being would claim that 
he is absolutely sure about his judgments or advice. Hence, it is 
necessary to incorporate into any model the individual expert’s 
uncertainty about his advice, the decision maker’s uncertainty 
about the quality of the expert(s), and how these two kinds of 
uncertainty interact and impact on the credibility of the final 
results. The classical and Bayesian approaches use the concept 
of probability for modeling the uncertainty (respectively, the 
“frequentist” and “subjectivist” way of looking at probability), 
whereas we take possibilityhecessity as the basic framework. 
The main reason for adopting such a framework is that 
possibility theory offers a simple theory of uncertainty that 
explicitly takes into account the lack of precision of the expert 
knowledge. As such, the possibilistic framework is weaker 
than the probabilistic one because partial ignorance may be 
represented in an unbiased way, including even the extreme 
case of complete ignorance which occurs when the expert 
cannot supply informative data. A probability distribution 
never accounts for a lack of precision in the data, and so 
the possibilistic model may turn out to be more faithful to the 
available data supplied by experts. 

To get useful information from the experts, several problems 
must be solved. The first one is a proper modeling of the 
pieces of data supplied by a single expert about a given 
parameter. This type of data is almost never precise and 
reliable because the expert possesses only a rough idea of the 
value of quantitative parameters, due to the limited precision 
of human assessments and to the variability of such values 
(e.g., failure rates). In most studies the expert’s response is 
represented by a probability distribution because probability 
theory is often considered to be the only well-established 
framework for modeling uncertainty. In this paper we argue 
that a pure probabilistic model of expert knowledge is not 
so satisfactory and that possibility theory is a more natural 
framework. 

The second task to be solved is the assessment of the 
quality of the expert, namely his calibration and the precision 
of his response. In the case of probabilistic modeling, scoring 
rules have been devised for this purpose (see Cooke [4] for 
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a survey). We shall suggest a rating index which may act 
as a scoring rule for the case of possibilistic modeling. Last, 
when several expert responses are available, they must be 
combined so as to yield a unique, hopefully better response. 
This problem is also addressed here. 

In this paper we compare the possibilistic approach to expert 
judgment with other approaches found in the literature. The 
next section addresses the representation and elicitation of ex- 
pert knowledge. Section 111 describes numerical indexes for ex- 
pert response assessment. Section IV deals with the pooling of 
uncertain pieces of information. Section V describes two oper- 
ational expert judgment analysis systems (the probabilistic sys- 
tem EXCALIBR [4] and the possibilistic system PEAPS) and 
outlines an experiment that aims at comparing these systems 
in relation to the assessment and pooling of expert opinion. 
Section VI describes the use of this experiment on real world 
data, and Section VI1 contains concluding remarks. This paper 
is based on a study whose preliminary results appear in Kalfs- 
beek [22], Dubois and Kalfsbeek [ l l ] ,  and Sandri [27], [28]. 

11. EXPERT KNOWLEDGE ELICITATION 

B. Expert Knowledge as Possibility Distributions 

The choice of a particular probability distribution for the 
modeling of an expert opinion may appear debatable because, 
in the process of fitting a given parameterized distribution to a 
pair of quantiles and a median, the imprecision pervading the 
data is lost for the sake of computational convenience. There 
are indeed many probability distributions that have prescribed 
5% and the 95% quantiles and, say, mode. Faithfulness to 
the expert’s opinion, therefore, dictates incorporation of sets 
of probability distributions into the model; this approach, 
however, would be very cumbersome even if exact. Another 
idea is to use an approximate representation of the data which 
captures both uncertainty and imprecision. The simplest model 
of a family of probability distributions is offered by possibility 
theory [13], and this paper investigates how far we can go 
with this simple model. 

A possibility distribution nu [39] attached to parameter Y 
can be viewed as the membership function of the fuzzy set 
of possible values of a variable v. The possible values as 
described by 7ru are assumed to be mutually exclusive, since w 
takes on only one value (its true value) from a set X taken here 
to be a closed, bounded real interval [zl z,]. Moreover, since 

A. The Probabilistic Approach 

In the probabilistic approach, experts are typically asked 
about the numerical value of some parameter w (typically, the 
failure rate of a device) by specifying quantiles of a probability 
distribution function (PDF) on an interval containing U. Let Y 
be a random variable on an interval X. The smallest number 
z E X, such that P(v  5 x) = k/lOO, is called the IC% 
quantile, and denoted qa%. In this approach the experts are 
often asked to supply the 5%, 50%, and the 95% quantiles. In 
other words, an expert supplies z’ and z” such that P(v  5 
z’) = 0.05 and P(w 2 z”) = 0.95, respectively. Beside these 
quantiles, some information about the mode, the mean, or 
the median of the distribution is often requested. Based on 
these values and on the choice of a parameterized family of 
distribution functions (for instance a beta-distribution), a given 
distribution function is chosen that supposedly best represents 
the available information. Experts may also be asked to choose 
between two alternatives in a series of experiments, and a 
probability distribution is derived based upon their choices 
(this elicitation method is called dichotomic in [4]). Note that 
in some approaches, experts are only asked for point values 
of w, as in some Bayesian methods [261, t351. 

The meaning of such degrees of probability is not so 
obvious: they can be understood as pure subjective quantities 
assessing degrees of belief in the various possible values 
of the parameter. They can also be construed as subjective 
estimations of frequencies, the probability distribution then 
represents the frequency distribution of the parameter over 
a class of similar devices. As a consequence, the nature of 
the probabilities appearing during the elicitation is sometimes 
controversial. Some authors call them “subjective probabil- 
ities,” the term being ambiguous insofar as it may mean the 
numerical estimate of a feeling of certainty or of a subjectively 
assessed objective frequency. In reliability applications the 
second interpretation would appear to be more relevant. 

one of the elements of X is the true value of ?I, n,(z) = 1 
for at least one value z E X. Possibility distributions can be 
rigorously related to probability distributions, in which case 
7ru(z) is taken to be an upper probability bound [13]. 

The simplest form of a possibility distribution on X is 
the characteristic function of a subinterval [ s l l  s,] of X, i.e., 
7r,(z) = 1 if z E [sl ,  s,], 0 otherwise. This type of possibility 
distribution results when experts claim that “U lies between 
sl and s,.” Note that 7r,(x) = 1 has a weaker meaning than 
in probability theory, it only means that z is a completely 
possible value for v. This way of expressing knowledge is 
more natural than giving a point-value, say z*, for U right 
away, because it allows for some imprecision: the true value of 
Y is more likely to lie between S I  and s ,  than to be equal to z*. 
Clearly, allowing for imprecision reduces the uncertainty of 
the assessment. Indeed imprecise statements are always safer 
than precise ones. 

This representation, however, is not entirely satisfactory. 
Namely, claiming that nu(.) = 0 for some z means that 
w = z is impossible, a very strong statement. This is too 
strong for the expert who is then tempted to give wide, 
uninformative intervals (e.g., S I  = zl, s ,  = z,). It is more 
satisfactory, in this connection, to obtain from the expert 
several nested intervals with various levels of confidence and 
to admit that even the widest, safest intervals contain some 
residual uncertainty, here denoted E. These nested intervals 
will lead to membership functions of fuzzy intervals [9], [ l  11. 

A fuzzy interval can be viewed as a finite set of nested 
(“focal”) subsets {Al,  A2, . . . , A,} as long as the set of 
possibility values {7ru(z) I z E X} is finite. In this case, there 
is a set of weights p l  p 2 ,  . . . p ,  summing to one, such that 
11 11 

vz. 7ru(x) = p i .  (2.1) 
X E A ,  
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Namely it can be proved that if the set of possibility values 
is (a1 = 1, a2 2 a3 2 - . .  2 a,), and letting am+l = 0 
we have 

From a mathematical point of view, this definition extends to 
the infinite case, changing the set of weights pi into a PDF 
on the unit interval and turning (2.1) into an integral (see, 
e.g., [9]). This view of possibility distributions corresponds to 
the natural embedding of possibility theory in belief function 
theory [30] and hence in the framework of upper and lower 
probabilities of which belief function theory is formally a 
special case. 

Knowing a possibility distribution, the likelihood of events 
can be described by means of two set-functions: the possibility 
measure (II) and the necessity measure (N) [ll].  When R 
is the membership function of a crisp set A given as the 
evidence, an event B is said to be possible if and only if 
A n  B # 0, and certain if and only if A B; by definition we 
let II(B) = 1 and N ( B )  = 1 in these respective situations. 
In the general case where rV is the membership function of 
a fuzzy set, the possibility and necessity measures are defined 
as follows. Letting IT; and Ni be the (0, 1)-valued possibility 
and necessity measure induced by the set Ai,  we define 

II(B) = piII;(B) = sup ~ , , ( x )  (2.2) 
i=l,  m xEA 

= 1 - n(B) (2.3) 

where B is the complement of B with respect to X. This 
duality expresses the fact that B tends toward certainty as B 
tends toward impossibility. The above expressions emphasize 
the fact that possibility and necessity degrees are special cases 
of plausibility and belief degrees in the sense of Shafer (see 
also [40], for instance). 

The expert is supposed to be capable of supplying several 
intervals A I ,  . . . , Am directly, corresponding to prescribed 
levels of confidence XI, ... , A,. The level of confidence A1 

can be conveniently interpreted as the smallest probability 
that the true value of v hits Ai (e.g., from the point of 
view of the experts, the proportion of cases where v E Ai 
from his experience). The interval Ai is the smallest one 
whose probability of being hit is at least Xi. In practice, only 
three intervals have been kept: A1 with A1 = 0.05, A2 with 
A 2  = 0.5, and A3 with X3 = 0.95. A1 corresponds to the 
“usual values” of U, and A3 = [sl ,  s,] Corresponds to the 
interval which leaves a 0.05 probability (= E )  that v misses 
A J ,  i.e., the residual uncertainty of the conservative evaluation. 
The links between the Xi’s and the degrees of possibility are 
defined by X i  = 1 - a;+1 for i = 1, m, i.e., the degree of 
possibility ai+1 is related to the degree of certainty (Xi) that 
x lies in Ai;  this degree of certainty being interpreted as a 
lower bound on the probability P ( A ; ) ;  in the terminology of 
possibility theory, X i  = N ( A i )  the degree of necessity of Ai 
[ I  11. Finally, the focal subset Am = A4 is always X itself, due 

TABLE I 
DATA SUPPLEDBY E ~ E R T S  ( S I .  s u .  ml. mu.  q. C,)(IN 

THE BOLD-FACE RECTANGLE) 

A 2  I T . m u l  

A 3  [si. s J 0.95 0.45 

A 4  X I 005 0.10 1 
selected levels of degrees of weights 
intervals confidence possibility 

hi a i  

l - I - - - - 1  

- - - - -  

‘il s ,  m l  C I  C ”  % S ”  x u  

Fig. 1. Expert-originated possibility distribution. 

to the residual uncertainty. The following Table I summarizes 
the data supplied by one expert. 

From a mathematical point of view, the information can be 
viewed as a nested random set { ( A i ,  p i ) ,  i = 1, m}, which 
allows for imprecision (the size of the Ai’s) and uncertainty 
(the pi’s). The intuitive meaning of pi (= X i  - k - 1 )  is the 
probability that the interval Ai represents the actual knowledge 
of the expert and not the probability that 2 hits A ; .  The 
latter probability is lower-bounded by X i  and gathers pj’s  
for all Aj that contain A ; .  The first three lines of Table I 
correspond to specific questions asked to experts (see [22]). 
Although intervals [cl, cu],  [ml, mu], [SI, s,] are not used in 
the probabilistic approaches, these intervals can be interpreted 
in terms of quantiles of a probability distribution, e.g., [SI, s,] 
corresponds to the range between the 2.5% and the 97.5% 
quantiles. In terms of fuzzy sets, [cl, c,] corresponds to the 
core of the fuzzy set since Vx E [cl, cu] ,  R,(z) = 1 .  The 
obtained possibility distribution is pictured in Fig. 1. 

Note that by adopting a possibilistic model of the expert 
opinion we are not rejecting probability theory as an under- 
lying framework, rather, we enlarge it so as to leave room 
for the representation of imprecision in the supplied data. 
The nestedness property of the supplied intervals presupposes 
that the expert, although having imprecise knowledge, give 
coherent answers to the various questions. 

Iu. EVALUATION OF EXPERT JUDGMENT 
Once the possibility distributions of the uncertain variables 

under consideration have been determined, the next question is 
how “good” this information is before embarking on the final 
processing step, i.e., the pooling of the pieces of information 
obtained from several experts. To build a meaningful rating 
system, one must first identify the type of deficiencies experts 
may be prone to and then define indexes that enable the true 
answer and the expert answer to be compared so as to take 
these deficiencies into account. Experts can be deficient with 
regard to three aspects: 
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Inaccuracy: Values given by the expert are inconsistent 
with the real values of the parameters, for instance, un- 
derestimated. The expert is then said to be miscalibrated. 
Imprecision: The expert, although not miscalibrated, is 
too cautious. So, the intervals he supplies are too large 
to be informative. Such an expert is said to be undercon- 
fident. 
Exaggerated Precision: the value of the parameter is not 
precisely known but the expert supplies intervals that are 
too narrow (or even point-values). Such an expert is said 
to be overconfident. 

Most expert judgment systems try to detect and treat these 
deficiencies. In this case two basic approaches are used; either 
the analyst knows the experts’ deficiencies and is able to 
furnish coefficients which will modify the experts’ estimates, 
or the experts are submitted to a battery of tests. In these tests, 
the experts are asked questions whose answers are known and 
are rated on the basis of the results. The questions pertain to 
the true values of a series 211, wg , . . . , u, of “seed” variables; 
the values of these parameters are either known by the analyst 
and not known by the experts, or more often can be determined 
afterwards by means of physical experiments or other means. 
It is considered here, contrary to usual practice, that the true 
value of a seed variable may not be precisely known, either 
because the state-of-the-art in the field does not allow for 
an exact evaluation or because the available information is 
available only in histogram form. In the following we discuss 
how the deficiencies cited above are treated in the probabilistic 
and possibilistic frameworks. 

A. The Probabilistic Approach 

Cooke [4] suggests that the quality of an expert can be 
determined by the product of his informativeness and his 
calibration. The proposed informativeness measure is Shan- 
non’s entropy, and the calibration measure is a particular 
implementation of the original concept of calibration ex-ante 
given by Winkler [34]: 

. . . If I expect rain to occur on 10 percent of the days 
for which the probability is 0.10, on 20 percent of the 
days for which the probability is 0.20, and so on, then I 
view the forecaster as perfectly calibrated ex-ante. 
In the following we discuss the evaluation in this paradigm 

for the case where a variable domain has more than two 
elements (called the nondichotomic case). 

Let X be a discrete domain with B + 1 possibilities and 
let P = {pi, . . .  , PB, P B + ~ )  and r = {TI, . . .  , T B ,  r ~ + i )  
be probability distributions on X. The relative information 
between the distributions r and p is defined as follows: 

I ( r ,  p) evaluates a distance between r and p. It is the index 
commonly taken to measure the amount of information leamed 
if one initially believes that p is correct and subsequently 
learns that r is correct; it goes to zero only when r = p. The 

counterpart of (3.1) in a continuous domain X = [xl, xu] is 

If p is a uniform distribution U on R then (3.2) becomes 

~ ( r ,  u) = In (xu - 2 1 )  + / r ( u )  In r ( u )  dv. 
XU 

(3.3) 

The informativeness of an expert e, with respect to a seed 
variable vJ taking its values in X,,  is calculated as follows: 
First of all, the expert is asked to supply a fixed number of 
quantiles, representing his knowledge about the true value of 
variable U , .  A probability distribution r3 = p ( e z ,  v3) is then 
derived from these quantiles, using the hypothesis that the 
distribution of probability in each inter-quantile interval is 
uniform. Distribution r5 is the least informative probability 
distribution that is compatible with the quantiles supplied by 
the expert. At this point, (3.3) is used to calculate of I ( r J .  u3). 
This index verifies how much the expert’s assessment for 
variable ‘ u ~  differs from the completely uninformed (i.e., 
uniform) distribution on X,. 

The global informativeness of expert e, is given by the 
average of the individual informativeness index on all seed 
variables 

1 1  

m 

(3.4) 
,=l 

where m denotes the number of seed variables. 
The calibration of an expert e, is calculated as follows: Let 

B be the (fixed) number of quantiles qk% that describes each 
expert’s assessment in the experiment. Let us take the values 
IC% in increasing order and associate an index b to each one 
of them, 1 5 b 5 B. For instance, if the assessment of a 
seed variable is given by the quantiles q5%. q50r,, and q95%, 

given a variable ‘U defined on interval [XI, xu], an assessment 
consisting of B quantiles can thus be characterized by B + 1 
inter-quantile intervals i b  = [ q b - l ,  q b ] ,  1 5 b 5 B + 1, 
where qo = qo% = 21 and y ~ + 1  = qloo% = 2,. Let J b  be the 
set of variables which had their realizations occurring inside 
interval ib. The frequency of realizations of an expert in an 
interval zb is given by r b  = ) & I / ” ,  i.e., the ratio between the 
number of variables with realizations in zb and the total number 
of seed variables m. Vector r,  having the rb’s as elements, 
represents thus the frequency of success of expert e,. The ideal 
frequency is given by a vector p, where each p b  is calculated 
as the total amount of mass assigned between quantiles q b - 1  

and q b .  For instance, for B = 3, the ideal frequency vector p 
is calculated as p l  = 5%, pg = 45%, p3 = 45%, and p4 = 5%. 

The calibration measure relates each element of the expert’s 
success frequency vector r to the corresponding element in 
the ideal vector p. An expert is considered to be perfectly 
calibrated if r = p, i.e., if 5% of the total number of 
realizations of variables occurs between 21 and y5%, 45% 
between quantiles q5x and q50%, etc. The difference between 
the expert’s frequencies and the ideal frequencies is calculated 

then B = 3 and q1 = ~ 5 % ~  q 2  = 450%. q3 = ~ 9 5 % .  For a 
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using (3.1). The final calibration measure is derived through 
a hypothesis test given by 

C(e,) = 1 - &{2 . m . I [r (e i ) ,  p] . w )  (3.5) 

where w E [0.1, 1.01 is the calibration power of the hypothesis 
test (usually set to 1) and x 2  is the well-known Chi-square 
function in statistics. 

The global measure of an expert’s performance is then 
calculated using the product 

W(e,) = C(e , )  . M ( e L ) .  (3.6) 

Note that this product is in accordance with a fuzzy conjunc- 
tion of criteria. 

In this framework, the concept of an individual calibration 
measure for each variable does not exist. As a result, no 
individual quality measure can be obtained. This lack of 
individual measures may lead to distortions and represents 
the major inconvenient of this method. We illustrate one such 
distortion in the following example. Let us suppose that we 
ask a group of economists to estimate the value of a share 
of a given company for each day of a 10-day period. The 
price of the share on day j is modeled by a variable wI 
which varies in the interval [0, 101. The expert’s estimate 
of the value of a given variable uI is given in the form 
of three quantiles (q5%, q50%, qg5%). An economist will be 
considered as perfectly calibrated if 5% of the variables have 
their realizations below q5%, 5% above qg5%, 45% in the 
interval [(15%, q50%], and 45% in the interval [q50%, q95%].  

The true value of wI (the actual price of the share) is denoted 
by xj . Let us suppose that some time after the estimations were 
obtained, we verify the following values from actual market 
data: xj = 3.5. 6 5 j 5 10. 
In other words, we verify that the price of the share was 3.5 
during the first five days and 6.5 in the remaining five days. 

Let us suppose that economist el has supplied the estimation 
q’ = (3. 4, 7) for each variable from x1 to 3-5, and the 
estimation q” = (3, 6, 7) for each variable from 2 6  to 210 

[see Fig. 2(a)]. Let us also suppose that economist e2 has 
supplied estimation q” for variables x1 to x5 and estimation 
q’ for 2 6  to 2 1 0  [see Fig. 2(b)]. The hypothesis of a uniform 
mass distribution within each inter-quantile interval is used 
on all the estimations, to derive the corresponding PDF’s (see 
Figs. 3 and 4). From these PDF’s we can see that economist 
el believes that the share will have most likely a value 
between three and four units until the fifth day of the period, 
and will then rise to a value between six and seven units, 
remaining unchanged for the next five days. We can also see 
that economist e2 believes that the price of the share will go 
down exactly when e l  believes it will go up, and vice-versa. 

An examination of the realizations of the variables (see 
Fig. 3) allows us to say that economist el is very accurate, 
since the realization of each variable falls in the interval that he 
considers the most likely to contain the real value of the share. 
Economist e2 is clearly less accurate than el (see Fig. 4), and 
since they are equally precise, we can say that the opinions 
of el are more useful that those of e2. The utilization of the 
formulas above, however, yields measures C(e1) = C(e2) = 

1 5 j 5 5, and xj = 6.5, 

q l i  4 4  9 4 i 4  

x: 5 X‘,,” 

e 2 : ,  ; 1 :+ \ : i 1 b I, ; I !? I \ b : !  b b 1, 

(a) (b) 

Fig. 2. (a) Quantiles corresponding to the estimations of economist el 
for variables 1‘1 to vlo.(b) Quantiles corresponding to the estimations of 
economist eg for variables to ~-10 .  

Fig. 3. 
variables s 1 -s 10. 

PDF‘s derived from the quantiles supplied by economist el for 

Fig. 4. 
variables s 1 --.r 10. 

PDF’s derived from the quantiles supplied by economist e2 for 

.55, M(e1) = M(e2) =, 68, and W ( e 1 )  = W ( e 2 )  = .37. 
In this formulation the two economists are considered to be 
equally calibrated and precise, and the quality function does 
not discriminate between them. We can see through this simple 
example that the calibration function is questionable, since it 
uses so little information from the estimations. We can also 
see that it does not succeed well at capturing the concept of 
plausibility, since it does not reward el for considering the 
intervals where the realizations actually occur as the most 
plausible ones. 

Let us now consider the case of a third economist who 
supplied the estimation (4, 7, 8) for variable 211, q” for 
variables 212 to 215, q’ for 216 to 219, and (2, 3, 6) for 2110. The 
PDF‘s derived from these estimations are depicted in Fig. 5. 

We see here that e3 is even less accurate than ez; both 
estimations for variables 212 to 219 coincide, but the estimations 
of e2 for 211 and 2110 are much more accurate than those 
of e3. C(e3) = .82 > C(e2), i.e., e3, however, is better 
calibrated than e2. This result is consistent with respect to 
calibration, since the realizations of e3 are more distributed 
within the intervals. It is, however, not consistent with a 
reasonable concept of accuracy, since for economist e3 there 
are realizations in the intervals that he considered the least 
plausible. 

We might expect that the informativeness function would 
somehow be able to compensate for the disagreement between 
calibration and accuracy. M(e3) = .7, however, which means 
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and 1x1 when SI = 51, su = xu (empty response). A 
reasonable specificity index is then 

(3.9) 1x1 - IEl 
_1, ,*I , . i.+ ~1_1, . 1 ,(n, !. 

S d e ,  U) = f(lEl) = (1 - E )  , I X ( .  
i *I 85 : 1 5  (( 

I 

On the whole, the overall rating of the expert with respect “I : k 3 \ m  ,I ;:!I:,’’- k3” ,:,I”*’- x f , i  

to a single seed variable can be defined as 

&(e,  U) = A(e ,  8). w) (3.10) 

which requires him to be both accurate and informative to 
45 45 i score high. By convention, one may take &(e, w) = 0 if 

x* 
want to allow for residual uncertainty in the accuracy index. 

&(e, v) can be extended as follows: 

05 
5 : o  [slr s,,] instead of &(e,  w )  = E . Sp(e ,  U), if we do not 

25 45 : 
: “I 

n l > - r , a i a u , ”  < , , I , ,  I 6 7  8 9 1 0  

Fig. 5.  Estimations of economist e3 for variables L , ~ - u ~ o .  When the seed variable is not precisely known, the index 

that e3 is also more informative than el  and e2. We see 
here that although el and e2 clearly give better estimations 
than e3, economist e3 is considered better than el and e2 

in relation to the informativenesskalibration paradigm. This 
distortion comes partly from the fact that in this paradigm 
there exists no individual quality index. As a consequence, it 
may happen that a source which gives precise information only 
when it is inaccurate, and accurate information only when it is 
imprecise, is considered to be “good.” It is important to note 
that problems such as those described here may be absent in 
a particular experiment; should they occur, however, they will 
not be detected, when the method is applied blindly. 

B. The Possibilistic Approach 

To build scoring indexes that reflect these issues in the 
possibilistic framework, let us first consider a seed variable 
U whose value x* is precisely known, and let E be the fuzzy 
set supplied by an expert e, to describe his knowledge about U. 
Let p~ be the membership function of E (so that p~ = T ~ ) .  In 
this situation overconfidence cannot arise. It is easy to see that 

The greater p ~ ( x * ) ,  the more accurate is the expert. 
Indeed if p ~ ( x * )  = 0, E totally misses IC* while if p ~ ( x * )  
= 1, x* is acknowledged as a usual value of ‘U. Hence, a 
natural measure of accuracy is given by 

A ( e ,  U) = P E ( $ * ) .  (3.7) 

If E is a crisp interval [a, b] the wider E, the more 
imprecise (hence under-confident) the expert. The width 
of E is then IEl = b - a. When E is fuzzy the width of 
E is generalized by 

This is a generalized fuzzy cardinality (where cardi- 
nality becomes the Lebesgue measure). Other extended 
cardinalities exist to evaluate imprecision (see [23]). In 
our situation, where E is a finite nested random set, 
[El = Ci=l ,m IAilpi [cf. (2.1)] can be established [5]. 
This evaluation must be rescaled so as to account for 
the residual uncertainty E and so that it yields one when 
sl = sTL (precise response, for which ) E )  = E . 1x1) 

If the actual value of a seed variable value is described by 
a histogram leading to a probability distribution P then 

&(e,  U) = P ( E )  . S d e ,  U) (3.11) 

where P( E) is the probability of the fuzzy event E [38], 
i.e., P ( E )  = Jx p ~ ( v ) d P ( v ) .  
If the actual value of a seed variable is described by a 
possibility distribution T: = p~ then 

(3.12) 

where II* is the possibility measure attached to T: 

and A is the symmetric difference of fuzzy sets. More 
specifically, n * ( E )  = supz min[pF(x), p E ( X ) ]  is the 
possibility of the fuzzy event E [39], and ~ E D F ( X )  = 
I p ~ ( x )  - p ~ ( x ) (  (see [ll]). II*(E) evaluates the extent 
to which the expert’s response is consistent with the 
available information about w, and f (  IEAFI) [see (3.9)] 
penalizes both underconfidence and overconfidence on the 
expert’s part. When the possibility (or the probability) 
distribution of v reduces to deterministic information 
( w  = x*) then the above indexes collapse into the first 
definition (3.10) up to the scaling factor in (3.9) that can 
be added if needed. 

Global measures of accuracy, precision, and quality to an 
expert e can be obtained using the simple arithmetic mean 
over the individual scores. If m is the total number of seed 
variables, then 

1 
A ( e )  = - .  A(e,  vj ) ,  

j = l , m  

(3.13) 

(3.15) 

It is important to note that generally &(e) # A ( e )  . S p ( e ) .  
Thus an expert e is rated by the set {&(e, v j )  I j  = 1, m} 

of evaluations. Ranking of experts can be obtained based on 
the average rating of each expert. The standard deviation is 
also useful to check the significance of the gaps between 
average ratings of experts. Based on these evaluations a set 
K of experts can be divided into groups of equal reliability. 
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Moreover, the fuzzy set R of reliable experts can be defined 
by the membership function 

p R ( e i )  = Q ( e i ) ,  i = 1, . . .  ! IC (3.16) 

if there are IC experts. The cardinality of R, say 

IRI = P R ( e i )  (3.17) 
i=l,  k 

gives a good idea of the number of reliable experts in the 
group. The reader can check that the drawbacks of calibration, 
pointed out in Section 111-A disappear in the market share 
example, if the possibility distributions supplied by the three 
experts have shapes similar to the ones in Figs. 3-5. In 
particular A(e1)  > A(e2)  > A(eg) .  

Iv. THE POOLING OF EXPERT JUDGMENTS 

A. The Probabilistic Approach 

When several experts supply probability distributions, their 
responses are pooled so as to derive a single distribution that 
reflects the opinion of the group. It is clear, however, that 
the opinion of reliable experts should be more important than 
those of unreliable ones. There are two main approaches to 
the pooling of probability distributions, the direct aggregation 
of distributions such as the consensus method justified by 
Wagner and Lehrer [32], and recently used by Cooke [l], and 
the Bayesian approach, exemplified by the works of Winkler 
[33], Moms [25], and Apostolakis and Mosleh [26] (see 
French [19] and Cooke [4] for critical surveys). Most direct 
aggregation methods use a generalized mean operation acting 
on distributions, followed by a renormalization. These methods 
often suffer from defects such as sensitivity with respect to 
marginalization and the lack of independence preservation. 
Only the weighted arithmetic mean possesses the so-called 
“strong setwise function property” [24], [32]; it prescribes 
that for any event the aggregated probability should depend 
only on the expert probabilities of that event, which ensures 
insensitivity with respect to marginalization. 

In the consensus method each expert ei supplies a PDF 
pi, and the resulting distribution is a weighted average p = xi wipi where the weights wi reflect the reliability of experts. 
No renormalization is needed, and the basic problem is to find 
the weights. Cooke [l] has developed a theory of weights 
that derive from proper scoring rules which tend to force 
experts to be calibrated and informative. In this approach, 
additional methods are obtained if a significance level is taken 
into account and used to discard experts with low scores. 

In the Bayesian methods, the a priori opinion of the analyst 
about the true value of w is updated on the basis of expert 
opinions, expressed either as point-values or distributions, de- 
pending upon the specific method. In the work of Apostolakis 
and Mosleh [26], the credibility of experts, from the standpoint 
of the analyst, is modeled by conditional probabilities of what 
an expert will claim the true value of w is, given this true 
value. Once the expert point-values are known, the a priori 
probability distribution of w, as given by the analyst, is updated 

through Bayes’ theorem. The model tries to account for the 
dependence between experts via a correlation coefficient. 

The probabilistic pooling approaches can be criticized for 
several reasons [ 151 : 

The consensus method has a basic flaw in the context 
of reliability: it is a voting-like procedure. Indeed, if two 
reliable experts have conflicting opinions about the value 
of w such that one gives a small value to v, and the 
other gives a high value to U, the mean of the distribution 
obtained by the consensus method will be an intermediate 
value, i.e., a value which both expert agree is not the true 
one. When such conflicts occur, different expert opinions 
are usually not combined in real world applications. The 
pieces of information are propagated separately when 
conflicting. Hence expert judgment approaches usually 
do not solve the problem of conflicting experts and try to 
avoid such situations during the selection of experts. What 
is needed is a method which, in the best case guesses the 
true value and discards the wrong expert, or, in the worst 
case, proposes a cautious response that fits the available 
data (e.g., w is either small or large, but certainly not 
medium). The weighted average method sounds more 
natural when expert opinions express preference and the 
preference of a group must be estimated. It does not seem 
to be useful when a true answer is to be determined 
instead of a preferred one. 
The weighted average method may affect the variance 
in the sense that the variance of the result may become 
smaller than the one of any input distributions. This 
phenomenon is acceptable it the experts are independent. 
Experts, however, often share a great deal of technical 
background, and the expert independence assumption is 
highly questionable. 
The main defect of the Bayesian method seems to be, as 
usual, the need for a priori knowledge about the value of 
U. In other words, the analyst who looks for expert advice 
must be an expert himself. In many cases, however, the 
analyst has no idea about the value of w and he may 
learn little more than the extent to which the experts are 
reliable. Techniques as the one by Cooke [l], nonetheless, 
have inspired the method described in this paper. The 
Bayesian methods, being unable to update from the state 
of complete ignorance, require an a priori probability. 
The Bayesian approach, as construed by Mosleh and 
Apostolakis [26] has the merit of handling dependency 
among experts via correlation coefficients. As pointed 
out by Cooke [4], however, this Bayesian method places 
heavy assessment burden on the analyst. Moreover, in 
the case of several conflicting experts, voting-like effects 
resulting in values that no expert supplies can be observed 
with the Bayesian method (see [15] for a more detailed 
analysis of the Bayesian method). 

The possibilistic approach that is proposed in this paper tries 
to cope with most of the difficulties faced by the probabilistic 
approach. Its main features are faithfulness of the representa- 
tion of subjective data, no need for a priori knowledge, and a 
variety of pooling methods whose choice depends upon the 
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reliability of experts and the level of conflict among their 
opinions. 

B. The Possibilistic Approach 

7rc,(db)  = T C ~ ( C C >  = .1 from which we can conclude only 
that TCt (lw) = .1 instead of the one derived previously. 

One may be tempted to discard the rule as being self- 
contradictory. A closer examination of the situation, however, 

.. 

The basic principle of the possibilistic approach to the 
pooling of expert judgments is that there is no unique mode 
of combination that fits all situations: the choice of the 
combination mode depends on an assumption about the re- 
liability of experts, as formulated by the analyst. This point of 
view strikingly differs from the one adopted in probabilistic 
approaches, and applies beyond the possibilistic setting. No a 
priori knowledge about the variable under study is needed, 
and the experts are viewed as a set of parallel sources 
to be combined in a symmetric way only if all experts 
are equally reliable. There are basically two extreme modes 
of symmetric combination, the conjunctive mode when all 
experts agree and are reliable, and the disjunctive mode when 
experts disagree and at least one of them is considered to 
be reliable. These modes are implemented, respectively, as a 
fuzzy set intersection and a fuzzy set union. A third mode 
of symmetric combination is averaging, which considers the 
expert opinions in a more statistical way. This set-theoretic 
view on combination of uncertain pieces of information, 
introduced in [81 and [lo], has been applied to multiple source 
interrogation systems [29]. In the case of expert knowledge, 
the pooling mode depends upon the results of the assessment 
step and the extent to which expert responses on the inquired 
variable agree with one another (see [14] for discussion of 
a variety of combination rules in possibility theory, some of 
which have been used in the present study). 

Conjunctive Mode: Let ~i be the possibility distribution 
supplied by expert i ,  for i E K. If all the experts are considered 
to be reliable (e.g., all the ratings p ~ ( i )  are high) then the 
response of the group of experts is defined by 

T C ( X )  = min T~(Z). (4.1) 
aEK 

This mode makes sense if all the ~i overlap significantly, 
for instance if 32, T C ( X )  = 1, expressing that there is a 
value of U that all experts consider as having a high degree 
of possibility. If T C ( Z )  is significantly smaller than one this 
mode of combination makes no sense since in that case one 
of the experts may be wrong. Note that when all experts agree 
perfectly ( ~ i  = T C ,  V i ) ,  there is no reinforcement effect. 
Generally, agreement between experts is due to common 
background, and the idempotence of min deals with this kind 
of redundancy. If the experts can be considered as independent, 
the minimum can be replaced by product. This pooling method 
is sensitive to marginalization and can be criticized on this 
basis. 

Example (Adaptedfrom 141): Two experts judge the state 
of a flashlight that was kept unprotected. It either works (w) or 
not ( 7 2 0 ) .  The two experts agree that it is very unlikely that it 
works  tu) = T ~ ( w )  = .2; 7 r l ( ~ w )  = T ~ ( T W )  = 11. Hence, 
T C ( W )  = -2, TC(-W)  = 1. But suppose -tu means either dead 
battery (db) or corroded contacts ( C C )  but not both. Experts 
may disagree on the failure cause, e.g., T I ( & )  = 1, ~ ~ ( c c )  = 
.1 and ~ 2 ( d b )  = .l, T ~ ( C C )  = 1. Using the min rule we get 

reveals that the reason for the inconsistency is a superficial 
agreement on the failure of the flashlight which hides a deeper 
disagreement. Only an aggregation on the set {tu, db, cc} 
highlights this disagreement. The example shows that it is bet- 
ter to pool the distributions than the set-functions. Moreover, 
TCI is strongly subnormalized, in such a case the min rule 
does not apply since one of the experts is wrong. In fact, 
each time the sensitivity to marginalization manifests itself, 
it corresponds to a conflict between experts and the min rule 
should not be applied. 

When the resulting possibility distribution is subnormalized 
but the assumption of reliable experts is taken for granted, it 
makes sense to renormalize the distribution, by dividing TC by 
its height ~ ( T c )  = sup TC.  The drawback of renormalization, 
however, is that it obliterates the conflict between experts. A 
more faithful normalization technique is to use 1 - ~ ( T c )  as 
a residual uncertainty and compute TC‘ = TC + 1 - ~ ( T c ) .  

Disjunctive Mode: A rather cautious optimistic assumption 
about a group of experts is that one expert is right, but it is not 
known which. This assumption corresponds to the following 
aggregation 

R g ( 2 )  = max Ti(.). (4.2) 
aEK 

This is a very conservative pooling mode that allows for con- 
tradiction among experts but may not lead to an informative 
result, although not necessarily a vacuous one either. Note that 
if the reliability of experts is unknown and that it is not even 
certain that one of them is right, then the only pooling method 
that remains is to look for consensus among experts and to 
discard outliers. 

Averaging Mode: This mode corresponds to viewing ex- 
perts as random sources and hence potentially unreliable. 
Values of the parameters that experts agree are possible are 
considered more plausible than values that most expert reject. 
The following averaging rule is then applied 

(4.3) 

Note that this value is normalized only if the conjunctive 
rule gives a normalized result. The lack of normalization 
indicates that all experts may be wrong. The two modes 
of renormalization still apply, if this option is ruled out. 
Generally, in the case of disagreement among experts, a 
multimodal possibility distribution is obtained as with the 
disjunctive mode. 

in- 
termediary mode of pooling the ~ i ’ s  consists in assuming that 
j experts out of K are reliable, selecting a subset J K 
of experts such that JJJ = j, assuming that they are the 
reliable ones and combining their opinions conjunctively. 
Assuming finally that at least one of these subsets J contain 
reliable experts, the intermediary results can be combined 

Pooling Based on Numerical Quantijiers: Another 
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disjunctively the following formula is obtained [ 171 

(4.4) 

The choice of j can be guided by the value [RI obtained from 
the assessment step. Indeed IRI gives a rough idea of the 
number of reliable experts in K ,  so that j could be chosen 
close to IRI. Clearly, 7 ~ ( k )  = 7rc and ~ ( 1 )  = TD, i.e., this 
mode of aggregation subsumes the two previous ones. The 
above combination rule is equivalent to certain rules proposed 
by Yager [36] in the past, and can be easily calculated, as 
follows: 

1) Rank-order the 7ra(x) such that 7ral  (x) 2 Ta2 (x) 2 . . . 2 
Tak(x ) ,  and 

2) Then ~ ( j ) ( x )  = Ta,(x) .  

This scheme can be extended to fuzzy quantifiers, to model 
assumptions such as “most experts are reliable,” “approxi- 
mately j experts are reliable,” etc. [17], [36]. Again, the choice 
of the fuzzy quantifier can derive from the fuzzy cardinality 
of the fuzzy set R of reliable experts. 

Consistency-Based Trade-offs: Another way to trade-off 
between the conjunctive and disjunctive modes of pooling is to 
use a measure c of conflict between two experts and to define 

7 r ~ ( x )  = c max(7r1. 7 r 2 )  + (1 - c) min(7rl. 7 r 2 ) .  

This index gives the conjunctive (disjunctive) mode if c = 
O(c = 1). It is easy to define conflict measures between 7r1 

and 7r2 namely [14] 
c = 1 - cons(7r1, 7 4 ,  where cons(7rl. 7 r 2 )  = 
sup, min [ 7 r l ( x ) ,  7 r 2 ( x ) ]  is the level of consistency 
between 7r1 and 7r2 [39]. 
c = 1 - J ( 7 r 1 ,  7 r 2 )  where J ( 7 r 1 ,  7 r 2 )  is the Jacquard index 
defined by a quotient of fuzzy cardinalities 

where p~~ = 7r1 and p~~ = 7r2 .  The extension of 
this index to n sets Fl: . . . , F, is obvious, changing 
F 1  n F 2  into Fl n ...  n F, and Fl U F2 into Fl U 
. . .  U F, in the expression of J(7rlr  7 r 2 ) ,  so as to 
form J ( 7 r 1 ,  7 r 2 ,  . . . , T,). An alternative consistency- 
dependent rule is described in [14], and an extension to 
more than two sources is proposed in [16]. 

Discounting Experts: If the degree of certainty that a given 
expert is reliable is known, say wi then it is possible to account 
for this information by changing 7ri to 7r: = max (ri, 1 - wi) 
(see, e.g., [ l l ] ) .  When wi = 1 (reliable expert), 7ri = 7ri and 
when wi = 0 (unreliable expert), then 7ri = 1. Note that wi = 
0 does not mean that the expert lies, but that it is impossible 
to know whether his advice is good or not. Once discounted, 
expert opinions can be combined conjunctively. It is difficult, 
however, to quantitatively relate wi to the rating p ~ ( i )  except, 
of course in the fact that a higher p ~ ( i )  corresponds to a 
higher w;. Moreover, the result of a conjunctive combination 
of discounted possibility distributions is rather difficult to 
interpret in the case of conflicting opinions of equally reliable 
experts, since the resulting possibility distribution can be 
overwhelmed by uncertainty levels. 

Priority Aggregation of Expert Opinions: As pointed out 
earlier, the fuzzy set R of reliable experts is useful to partition 
the set K of experts into classes K1, K 2  , . . . , Kp of equally 
reliable ones, where K j  corresponds to a higher reliability 
level than K 3 + 1 ,  for j = 1, . . . , q.  In this case, the symmetric 
aggregation schemes discussed above can be applied to each 
class K 3 .  The combination between results obtained from 
the K j ’ s  can be performed using the following principle: 
the response of K 2  is used to refine the response of K 1  

insofar as it is consistent with it. If 7r1 is obtained from K 1  

and 7r2  from K 2 ,  the degree of consistency of 7r1 and ~2 is 
cons(7r1, 7 r 2 )  = sup, min[.rrl(x). 7 r 2 ( 2 ) ]  and the following 
combination rule has been proposed [12], [37] 

7 r - 2  = min { T I .  max [7r2 ,  1 - cons(7r1, 7 ~ 2 ) ] } .  (4.5) 

Note that when cons ( T I ,  7 r 2 )  = 0, K 2  contradicts K1 and 
only the opinion of K 1  is retained ( T I - 2  = T I ) ,  while if 
cons(7r1, 7 r 2 )  = 1 then 7 r - 2  = min(r1, 7 r 2 ) .  7r1-2  can be 
similarly combined with 7r3, ~ ( 1 - 2 ) - - 3  with 7r4 and so on. A 
similar result can be obtained if, instead of cons ( T I ,  7 r 2 ) ,  we 
use a Jacquard index J(7r1. 7 ~ 2 ) .  

Remark: One may wonder about the consistency between 
the basic aggregation rules (4.1) and (4.2) and the probabilistic 
interpretations of the possibility distributions as upper proba- 
bility bounds. Clearly, the results are only approximations. 
For instance, the min-rule (4.1) correspond to performing the 
intersection of the sets of probabilities corresponding to each 
possibility distribution and considering the possibility distri- 
bution that is the best inner approximation to the result of the 
intersection (see, e.g., [ 131). Other probabilistic justifications 
for fuzzy set connectives can be found in [20] and [21]. 

v. COMPARISON OF EXPERT JUDGMENT 
SYSTEMS: PRINCIPLES AND SET-Up 

A procedure for processing expert-supplied information, in a 
given uncertainty model, can be divided into three parts. In the 
first part of the process the domain of expertise is established, 
with the determination of the experts and the seed variables 
that will be used to calibrate them. The second part of the 
process consists of the calibration of the experts based on the 
principles of the uncertainty model adopted. The basic phases 
of this part are: 

i) elicitation of variables values by experts, 
ii) assessment using the &(e. U) indexes on seed variables, 
iii) pooling of the experts’ estimations, and 
iv) comparison of the performance of pooling methods on 

At this point in the process the analyst will use the best 
method as determined by step iv) to produce the values for 
the variables of interest. 

An expert judgment system devised on this procedure, 
called EXCALLBR, has been implemented in the probabilistic 
framework [4]. Based on the ideas presented in this paper (see 
also [22]), a possibilistic expert judgment system has also been 
implemented [27]. An ideal way of comparing the probabilistic 

seed variables. 
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transformation T1 [ 181 

TI:  ~ ( x )  = ~ ( x ' )  = 1: p(v) dv + 1:" p(v) dv 

where x' is such that p(x') = p(x) < ~ ( z o ) ,  and there is no 
y such that x < y < x', and p(y) < p(x). The possibility 
distribution 7r is the most specific one among those which 
dominate p (i.e., II(A) 2 P ( A )  for all events A), by virtue 
of the possibility-probability consistency principle (see [39] 
and [7]). 

Conversely the transformation T2 can be used to transform 
a possibility distribution into a PDF, where T2 is given by [ 181 

Probabi Ihstic 
Expen 
Assessmem Assessment 

Assessment Mcdel 

Fig. 6.  Cross-reference experiment between the probabilistic and possibilis- 
tic expert judgment models. R(x )  da 

T2:p(x) =l - 
IAa I 

and possibilistic approach is to set up an experiment in which 
the experts give possibilistic and probabilistic data for the same 
set of variables. The results in one framework can then be 
transformed into the second framework and compared with 

where A ,  = {x/T(x) 2 a) .  The characteristics of Our data 
allow US to use the discrete equivalent of T2 

n 
- ai+1 

p(x) = PA, lAil the results obtained directly in the second framework. i=l 
A slightly different experiment might consist of using the 

same set of data in both the probabilistic and possibilistic 
frameworks. Of course, the initial data would have to be 
transformed to fit one of the frameworks. Such an experiment 
is not capable of analyzing human preference with respect to 
the different elicitation paradigms; it can, however, give us an 
important insight into the relationship between the probabilis- 
tic and possibilistic treatment of data. Fig. 6 illustrates this 
experiment using probabilistic data as input. 

An experiment such as the one depicted in Fig. 6 has 
been set up to evaluate the ideas presented in this paper and 
conducted by IRIT and the Joint Research Center of the C.E.C. 
Two sets of data, DSM [21 and ESTEC [3], were analyzed 
by the possibilistic expert judgment system and the proba- 
bilistic system EXCALIBR. The experts and the combination 
methods proposed by each system calibrated in both systems. 
Transformations between possibilistic and probabilistic data 
were provided by the possibilistic system. Note that in both 
systems the combination and model assessment module can be 
used iteratively, and the analyst may experiment with various 
combinations methods before making his final choice. 

To make the features of each system easier to grasp we 
demonstrate the experiment with a very simple set of data. 
Such a toy example has been chosen to make calculations easy 
to follow and should not be taken as a basis for real comparison 
between the systems. Moreover, it only illustrates part of the 
features of each of the systems above, the full capacities of 
each system can be found in the referenced literature. We 
shall present first the methods used in the transformations 
between the probabilistic and possibilistic framework followed 
by the basic notation used in the remainder of the text and our 
simple example. Its application in both the possibilistic and 
probabilistic systems is demonstrated in the following sections. 

A. Transformations Between Possibility and Probability 

Let p be a unimodal PDF, and let xo be the mode of p. A 
possibility distribution can be derived from p by applying the 

where A I ,  . . .  , An correspond to cy1 = 1 > a2 > .. .  > 
a, > a,+l = 0, and function PA, (x) is such that P A ,  (x) = 1 
when x E Ai and zero otherwise. This transformation obeys 
Laplace's principle of indifference applied to all level-cuts of 
T. It corresponds to picking at random a value in [O,  11 and 
at random an element in the corresponding level cut. It is 
identical to what Smets [31] calls the pignistic transformation 
of a belief function into a probability measure, when restricted 
to a possibility measure. Note that T2 is not the converse 
of T 1 because different informational principles govern each 
transformation [ 181. 

B. Basic Notation for the Experiments 

Suppose that a given experiment involves n experts and m 
variables. We will denote an expert i by ei, and a group of ex- 
perts by Q k .  The true value and the range of seed variable vj are 
respectively denoted by x'(vj), and [xl, xu](wj). Let q(e;, vj )  
represent a group of quantiles of a subjective probability 
distribution yielded by expert ei for variable vj. Then p (  e;, vj)  
denotes the PDF obtained from q(ei, vi) using the uniform 
mass distribution hypothesis, and 7r(e;, v j )  denotes possibility 
distribution derived from p(e i ,  wj) using transformation T1. 
€(e;, vj) denotes the residual uncertainty factor supplied by 
the expert e; in relation to variable wj. The argument w; will be 
dropped when no confusion is possible. The pooling methods 
will be denoted by type/method/group; a probabilistic pooling 
method m applied to a group of experts g k  on a given variable 
will be denoted by p / m / g k .  Analogously, the result of the 
application of a possibilistic method n will be denoted by 
T / n / g k .  

C. The Example 
Before describing a real experiment, we describe a simple 

example to facilitate the assimilation of the notation used here 
and to clarify the characteristics of each system. We have 
10 seed variables, and two experts who give estimations in 
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x: x* X*  X *  
2 s  w 

Fig. 7. Expects' estimations and true values of variables. 

the form of 5%, 50%, and 95% quantiles of a subjective 
distribution, i.e., q(e,, vJ) = (q5%, ~ 5 0 % ,  qg5%). The true 
value of each seed variable is given in the form of a real 
number. The data of the simple example is summarized as 
follows: 

Number of experts: n = 2. 
Number of test variables: ni = 10. 
Variable domain: [q, x,](vJ) = [0,10], 
Real value of variables: 

1 5 j 5 10. 

x*(w~) 2.5. 
2*(w2)  = 2*(w3) = 2 * ( 1 / 4 )  = 2*(wg) = 3.5.  
2*(wg) = 2*(w7) = z*(wg) = 2*(?J9) = 4.5. 
2*(w10) = 7.5. 
Input expertel:q(el, vJ) = (1. 4, 8). 

Input expertep:q(e2. U]) = (3. 4. 7), 
Group of experts used in the experiment: g1 = {el, e2). 

In Fig. 7 we illustrate in a condensed manner the estimations 
given by the experts el and e2 for variables v1 to q o ,  as well 
as the variables true values. 

1 5 j 5 10. 

1 5 j 5 10. 

VI. THE POSSIBILISTIC SYSTEM PEAPS 

A. The Elicitation Step 

In the elicitation step we will distinguish two subphases: 
system knowledge elicitation and expert knowledge elicitation. 
In the first subphase we will acquire the necessary variables 
and their basic attributes, such as range, their role in the 
procedure (seed, target variable or both), and the representation 
model in which each seed variable is encoded (real number, 
PDF or possibility distribution), and the value itself. In the 
second subphase we will acquire the expert's estimate for each 
variable, the model he is using to represent it, and his confi- 
dence in it. The system provides the means of transforming 
a PDF into a possibility distribution when the PDF is given 
in the form of a discrete distribution, a set of quantiles, or a 
linear by parts continuous function. 

In our simple example the variable ranges were given; 
in practice they can be estimated from the information sup- 
plied by experts using conservative extrapolations. From the 
quantiles given by each expert, we derive a PDF taking as 
hypothesis that the distribution is uniform (see Fig. 8). Then 
we transform the PDF into a possibility distribution using 
transformation T1 as illustrated in Fig. 9. 

It is important to note that the uniform mass distribution 
hypothesis is completely arbitrary; there are an infinite number 
of PDF's compatible with a given group of quantiles. 

8 , '  1 1 4  < 1 i II " i" 

Fig. 8. PDF constructed with the 5%, 50% and 95% quantiles. 

x&-d 
85 

Fig. 9. 
.5, and .95 quantiles. 

Possibility distributions constructed from PDF derived from the .05, 

TABLE II-A 
MEAN OF EXPERTS ASSESSMENTS (GLOBAL MEASURES) 

Possibilistic Evaluation 

TABLE II-B 
STANDARD DEVIATION OF EXPERT'S ASSESSMENTS 

B. The Assessment Step 

In this step the experts' assessments are compared to the 
true values of the seed variables as described in Section 11. 
For each expert ei and seed variable wj we calculate the 
precision measure Sp(ei, vj) ,  the accuracy measure A(ei, wj), 
and the quality measure &( ei , v j  ). We then calculate the mean 
for the individual accuracy, precision and quality measures 
[i.e., the global measures A(ei), Sp(ei), and Q(ei)], and the 
corresponding standard deviations, denoted, respectively, by 
gA(e i ) ,  osp(ei), aQ(ei). For each measure we then establish 
a ranking on the experts. 

As an example, let us verify the assessment of expert 
el in relation to variable 216: his accuracy is A(e1, 216) = 
~ ~ ~ , ~ ~ ( 4 . 5 )  = .55, his precision is Sp(e1, 216) = 1 - (.1 + 
3 * 1 + 4 * .55 + 2 * .05)/10 = .46, and his quality is 
&(el, 216) = .55 * .46 = .253. In Table II we depict the mean 
and standard deviation for each expert's assessments over the 
total set of seed variables. 

We can see that, considering the whole set of seed variables, 
even if expert el is more accurate than expert e2, his low 
performance on precision leads us to consider him less "good" 
than expert e2. Note that here &(ei) # A(ei) . Sp(ei). 
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Using the possibilistic criteria cr (A for accuracy, Sp for 
precision, and Q for quality) a series of orderings order,, on a 
given group are determined. In our example, the orderings are 

OrderA(g1) = ( e l ,  e2) ,  
ordersp(g1) = ( e l ,  e217 
OrderQ(g1) = ( e l ,  e2).  

On a given group of experts we can identify subsets 
of homogeneous experts. Let order,,(gk) be the ordering 
induced on the experts in group gk by criterion cr (A, S p ,  
or Q), such that ei is classified better than ei+l. Experts ei 
and ei+l are in the same homogeneous group in relation to a 
given discrimination factor p, if 

4 e i )  - cr(e i+i )  _< P . [acr(ei) + acr(e i+i ) ] .  

We establish the homogeneous groups by comparing first of 
all the two best classified experts with respect to criterion cr,  
i.e., the first two experts in order,,. We also compare the 
second expert with the third, and so on. By increasing factor 
p we obtain a coarsening of order,, denoted by order,,-p. 
In order,,-,(gk) we will then have L homogeneous subsets 
K z ,  1 5 1 5 L, where Kl is superior to Kl+l with respect 
to criterion cr and factor p. 

For instance, taking p = 0 and the accuracy index, we have 
orderA-o(g1) = (K1, K2) = ( { e l } ,  { e z } ) ,  i.e., we obtain two 
homogeneous subsets, each one consisting of a single expert. 
When p = 1 we have orderA-l(g1) = (K1) = ( { e l ,  e 2 } ) ,  
i.e., with this factor the group is considered homogeneous. 
For group 91, we have 

orderA-O(gl) = ( { e l } ,  { e 2 } )  
orderA-l(g1) = orderg-l(g1) 

= ( { e l ,  e2) )  
ordersp-o(g1) = orders , - l (gl)  

= ({e217 {el)). 

= orderQ-o(g1) 

Note that order,,(gk) represents an order induced on g k .  and 
orderc,-p(gk) represents an order induced on a partition of 
g k ;  this partition itself being determined by order,, ( g k ) .  

Let g be a set of experts and uj be a variable. The conflict 
inside g with respect to uj can be measured by Kj(g) = 
1 - J j  ( g ) ,  where J j ( g )  is the Jacquard index on g for variable 
wj (see Section IV-B). The global conflict index is denoted by 
K ( g ) ,  and is the mean of the individual indexes n j ( g ) .  In our 
example, the conflict on group g1 with respect to each variable 
is Kj(g1) = 1 - (3.15/5.5) = .4273, and consequently n(g1) 
= .4273, which represents a rather large conflict. 

C. The Pooling Step 

In this step the analyst may choose to combine the opinions 
of a group of experts regarding the value of a variable. He is 
presented with a set of choices that tries to model the possible 
situations he may be faced with according to the reliability 
he grants to the experts. He may regard the reliability of the 
experts as known, either based on his own experience or on 

TABLE 111 

PEAPS Symetric Aggregation Methods: rdmidgk, rdmadgk. rdtraddgk 

Let x i  represent the distribution given by expert e, for a given variable v defined on X. We 
have: 

rdmin/gk: V x E X. x'(x) = min,,, g x  ~ ( x ) .  

V x E X ,  n(x) = x(xJ I h(x') 

Ymax/gk: V x E X, x(x) = maxepsk n,(xJ 

rdtraddgk: V x E X, n'(x) = [ ( I  - x(gk)) minCitBk n,(x)l + Ir(gt). max,,,Ek n,(xll 

V x E X, x(xJ = n'(x) + ( 1  - h(x')) 

one of the measures yielded by the assessment step, or he 
may consider that information concerning the experts does not 
allow him to have them ranked. In any case the system uses 
combination methods that should optimally reflect what the 
analyst could possibly learn about the unknown variable by 
consulting the experts. The choice of combination methods 
offered by the system is based on the development of an 
interface for combining pieces of information derived from 
distinct data banks [29], but other operations can easily be 
incorporated. 

In the present experiment two groups of combination meth- 
ods have been used. In the first group we have the symmetric 
operations min, max, and trade-off. These methods are denoted 
by r / m / g k ,  where m stands for the chosen method. Using any 
of these methods the opinions of all the experts in a group are 
taken into account equally. The basis of the second group 
of pooling methods is the asymmetric operation (4.5) that 
weights more heavily the opinions of experts which are better 
ranked in relation to an evaluation criterion cr and a factor p. 
The methods in this group are denoted by T / C T - p / g k ,  where 
cr E {A, Sp, Q } .  In Table III we summarize the various 
pooling methods and the normalization operation associated 
with each symmetric method. 

Let ri represent the distribution given by expert e; for a 
given variable 'U defined on x. Let order,,-,(gk) represent the 
ordering of the experts with respect to criterion cr and factor 
p. The asymmetric pooling process is divided in two phases 
(see Table IV), symmetric aggregation inside homogeneous 
subgroups Kk, and asymmetric combination of the obtained 
partial results. Let Kk be a homogeneous set of experts and ri 
the possibility distribution. Distributions ? ~ i  supplied by expert 
e; E Kk for a given variable Y are combined using the trade- 
off method Tl trade ,  without the normalization step. In the 
second step, the resulting set of distributions is aggregated 
applying a pairwise top-down procedure that favors the best 
ranked set of experts. Let T K k  be obtained by r / t r a d e / K k .  
The combination of two homogeneous groups Kk and Kk+l is 
made by (4.5). The mechanism for determining T' is illustrated 
in Fig. 10, for a group of five experts partitioned in five 
singletons Kk = { e k }  (i.e., each homogeneous group contains 
a single expert). 

The first step of the mechanism implementing an asymmet- 
ric method yields a distribution that summarizes the collective 
opinion of a group of n closely ranked experts, none of 

Authorized licensed use limited to: UNIVERSITE PAUL SABATIER TOULOUSE 3. Downloaded on April 15,2010 at 08:55:47 UTC from IEEE Xplore.  Restrictions apply. 



SANDRI ef al.: ELICITATION, ASSESSMENT AND POOLING OF EXPERT JUDGEMENTS 325 

TABLE IV 

I 1 PEAPS A\ymmetric Aggregatlon Methods: rdA-p/gk, TdSp-plgt, d Q - p / g k  

Fig. 10 Pairwise top-down combinations of unequally ranked distributions. 

Fig. 11. 
ii/A-O/gi IO the distributions furnished by el and e2. 

Application of rules ii/ min /gl. r/ m a x  /gl ,  r / t r a d e / g l ,  and 

Fig. 12. Illustration of realization frequencies produced by EXCALIBR. 

whom is regarded as completely reliable. The second step 
comes down to discounting the information of the less reliable 
distribution (here rz) by the degree of conflict with the 
more reliable one. We note here that, instead of the Jacquard 
index ~ 1 . 2 ,  we could also use sup, min[rl(w), r2 (w) ]  as a 
discounting factor. 

In our example, the pooling methods r/Sp-O/gl, 
r /Sp-l /gl ,  and r/Q-O/gl yield the same distributions 
of expert e2 alone. Pooling methods r /A-l /gl  and r /Q-l /gl  
yield the same distributions as r/trade/gl. Fig. 11 illustrates 
the application of rules r/ min 191, r/ max 191, r/trade/gl, 
and r/A-O/gl. 

D. The Model Assessment Step 

When a series of estimations on test variables is available, 
the procedure allows for a quality assessment of the results 
of any of the described combination mechanisms by treating 
the aggregated result as a "virtual" expert and comparing it 
with the observed true values. The three average scores of the 
"model" are computed and may be compared with those of the 
participating experts, to see whether the aggregation results 

TABLE V 
ASSESSMENT OF POSSlBILISTlC METHODS BY PE,"S 

Possihilistic Evaluation 
Possibilistic Methods 

4384 
675 432 

7054 5868 4139 

rdtradelg,, rdA- l/gl, rdQ-I/g~ 6916 5845 4078 

775 45 3487 

behave better globally than any of experts taken individually. 
By varying the composition of the expert pool and/or the 
combination mechanism, the analyst may search for some 
optimal processing, yielding results that are more reliable than 
the individual expert input data. 

In our example the model assessment yields the following 
measures in Table V. 

We see that the methods presented in Table V behave well 
in practice. Some even perform better than individual experts 
(compare with Table II). Since the normalization step is not 
effective in this example, the accuracy coefficient increases 
from r/ min /g1 to r/ max /g1, and the specificity coefficients 
vary in the inverse order. The experts agree most of the 
time, which ensures that r / m i n / g l  has the best overall 
performance. 

VII. THE PROBABILISTIC SYSTEM EXCALIBR 

A. The Elicitation Step 

In this system, experts' knowledge is obtained by means 
of either dichotomic tests (qualitative method) [4], or by the 
elicitation of a set of quantiles (quantitative method). The 
first elicitation method is outside the scope of this paper. 
Here we report an experiment using the second method with 
the elicitation of three quantiles: (q5%, q50%, qg5%). Before 
the elicitation the analyst determines for each test-variable 
the choice between two scales: uniform or loguniform. The 
bounds of the variables depend on the particular subset of 
experts being analyzed. Since the bounds of each variable 
may differ, once the bounds are determined the system uses 
a transformation that standardizes all the distributions to the 
[0, 11 interval. 

B. The Assessment Step 

EXCALIBR uses two basic functions to evaluate an ex- 
pert: the mean relative information measure M(e)  and the 
calibration measure C(e). The product of these two measures 
produces the global measure called the unnormalized global 
weight; this measure also serves to determine the weight the 
expert will have in the combination step. These functions 
were analyzed in Section 111-A and correspond, respectively, 
to formulas (3.4), (3.3, and (3.6). In our example, each expert 
ei supplied the set of three quantiles qe, = (q5%, q50%? q957a) 
as his estimation for each variable vj. Thus, B = 3 and 
(q1, q2 ,  q 3 )  denotes (45%, q50%, 495%). We have four inter- 
quantile intervals [ q b - l .  q b ] ,  1 < b 5 4 = B + 1, where 
qo = XL, q ~ + l  = x,. To each interval [qb-l, q b ] ,  1 5 b 5 4 
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Fig. 13. 
ods. 

Results produced by the application of probabilistic pooling meth- 

TABLE VI 
EXPERTS' ASSESSMENTS IN EXCALIBR 

Probabilistic Evaluation 

we associate a probability mass pb, where p l  = .05, p2 = .45, 

It is important to note that the informativeness index M 
depends on the size of the interval [Q, xu].  In EXCALIBR 
the domain of the variables changes for each group of experts, 
which means that the informativeness M(ei )  may change 
depending on the groups in which ei takes part. To deal with 
this problem, we have introduced in all experiments a dummy 
virtual expert, so imprecise as to guarantee that the bounds 
of each variable are determined by the assessments of the 
dummy expert. In our example, we created a dummy expert 
that forced the bounds of all variables to be [Q, xu](u j )  = 
1.3, 8.71, 1 L j 5 10. The informativeness of expert el  using 
(3.3) and (3.4) is then 

p3 = .45, and p4 = .05. 

M ( e 1 )  = * 10 (ln 8.4 + /31 9 In %dv 05 + l4 $ 
10 
. l I l L d v ! + ! l  45 - lnpdv!+!  45 45 18'7 g 1 n S d v )  

3 4 .7 .7 
= .027. 

Each rb in (3.5) stands for the distribution of the expert's 
successes on each quantile interval [qb-l, qb]. Since expert 
el  had five out of 10 variables with true values occurring in 
interval [q5%, q50%] = [q l ,  q2] then r (e1 )  = .5. The experts' 
frequencies r (e1 )  and r (e2 )  and the ideal frequency pb are 
depicted in Fig. 12. 

The calibration index of expert e l ,  with P = 1, is (?(el) = 
1 - x${ 2.10. [2. .54n (.5/.45)]. 1) = 1 - xi(20. .1053) = .55. 
The quality of the expert el  is thus calculated using (3.6) which 
yields W ( e 1 )  = .027 . .55 = .015. In Table VI we show the 
experts' evaluation in our example. 

Note that in the probabilistic case expert e2 is considered to 
be better calibrated than expert e l ,  whereas in the possibilistic 
assessment, e2 is considered to be less accurate than el  (see 
Table 11). These differences have not interfered, however, with 
the quality assessment; in both models expert e2 is considered 
globally better than e l .  
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TABLE VI1 

T,' = W(e,), if C(e,) > a 
= 0 otherwise 

Globul Weighrs wirhout 0p:imizarioii: p/unnJgk. 
Same as above with 0 5 a 5 I supplied by the user 

C. The Pooling Step 

The analyst may choose between Bayesian updating or the 
classical model. In Bayesian updating a noninformative prior 
is used with a multinomial likelihood function; this method is 
not considered in the present paper. Opinion aggregation in 
the classical model is performed via weighted average. If Fi 
is the cumulative distribution function given by expert ei for 
a given item vj, then the decision maker's (DM) cumulative 
distribution for that item is defined by 

where ~i 2 0, xi q = 1. It is also possible to weight 
individual items, but this approach will not be treated here. 

Weights ri can either be calculated by the system or given 
by the user; the latter case will not be discussed here. The 
analyst can choose a group gk of experts to which weights 
will be assigned and then select one of the following weighting 
methods p / m / g k  given in the table below. In the first method, 
the system distributes equal weights among a group of experts 
specified by the analyst. The global weights method uses the 
expert's quality index and a significance level a acting as a 
selection threshold. This method p/Opt/gk leaves to the system 
the burden of determining a such that the calibration index 
C ( D M ) ,  corresponding to the virtual expert D M ,  is maximal. 
The last method is based on the global weights method, but 
here the signification level is chosen by the analyst. (See Table 
VII.) 

In OUT example, method p /op t /g l  takes only expert e2 into 
account (expert e l  is rejected), and thus r ( e 2 )  = 1. Using 
method p / u n n / g l  with a = 1, the weight of each expert ei 
corresponds to his normalized quality evaluation, i.e., r ( e i )  = 
W ( e i ) /  xi W ( e i ) .  In method p / e q u / g l ,  each expert receives 
weight r ( e i )  = 1/2. Table VIII summarizes the weights given 
to the experts by each pooling method. The results of the 
application of these methods to the estimations given by 
experts el  and e2 are shown in Fig. 13. 

D. The Model Assessment Step 

In EXCALIBR, the user chooses a group of experts and a 
pooling method and the system derives the weight of each 
expert, and the weight of the method itself, considered as 
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TABLE VIII 
WEIGHTS USED BY THE PROBABILISTIC METHODS 

TABLE X 
EXCALIBR’s EVALUATION OF ALL EXPERTS (REAL AND VIRTUAL) 

. .  
i 9 ;  ’!i 7 ;  

x @ b  I r : : . : . ,  1 : . m  I I ,, , 2 : 3 : , : 5  0 7 : ”  Y 10 . . .  . . .  . . .  
s’, $,5,, i,,, 

Fig. 14. Quantiles derived from possibilistic pooling methods. 

TABLE M 
ASSESSMENT OF PROBABILISTIC METHODS 

Probabilistic Evaluation 

Probabilistic 
Methods 

a virtual expert.’ This makes the evaluation of a group of 
pooling methods a bit cumbersome, since each result has to 
be collected separately. 

The evaluation of methods p lop t ,  p l u m ,  and p / e q u  for 
group g1 = { e l ,  e2)  is shown in Table IX. Here the best 
method is p / o p t / g l ,  which corresponds to taking only the 
assessments of expert e2 into account. 

E. Cross Comparison of Expert Judgment Systems 

To compare the possibilistic results in the probabilistic 
system, we used the multimodal equivalent of transformation 
T2 described in Section V and we extracted the quantiles 
(q5%,  q50%,  q9570) from the results of the conversion. Fig. 14 
shows the quantiles resulting from the possibilistic combina- 
tion methods applied to the pieces of information given by 
experts e l  and e2. The evaluations of all experts-real or 
virtual-in the probabilistic framework are shown in Table X. 

Note that even if r / S p - 0 ,  r/Q-0, and r / S p - 1  have the 
same possibility distribution as the one given by expert e2, 
their transformation into probability distributions do not pro- 
duce the same quantiles. This is due to the fact that the trans- 

’ From the literature we have not been able to determine if the informativity 
of a pooling method m is calculated directly from the PDF yielded by the 
application of m, or if this PDF is first transformed into quantiles, which are 
then retransformed into a new PDF. 

Probabilistic E ’i .68 .I82 

.059 
,027 
.I30 

‘uation 
W 

.531 
,524 
,442 
,305 
.128 
,123 
,032 
,015 
,002 

‘j F,; y 
. . .  . . .  . .  . . .  . . .  . . .  . . .  . . .  . . .  . .  
. . .  . . .  . . .  4+ . . .  e 

I/ I 2 . I  . d  . <  6 I . ”  , ,<, , , . , . , . , , , . , , , 
8 ,  1 ? . . . 1 . ’  * 7 ’ ”  v 111 

Fig. 15. Possibility distributions derived from the conversion of probabilistic 
results. 

TABLE XI 
EVALUATION OF ALL EXPERTS (REAL AND VIRTUAL) BY PEMS 

Possibilistic Evalu 

,7054 ,5868 
.6452 

,6976 3345  
,775 ,4901 
.775 .675 

ion 

Q 
,4384 
,432 
.4 139 
,4097 
.4078 
,3798 
.3565 
,3481 

formations probability + possibility and possibility + prob- 
ability do not stand in inverse relation to one another. That is 
why the probabilistic evaluation of methods r / S p - 0 ,  r /Q-0 ,  
and 7r/Sp-1 differs from the one of expert e2. 

Fig. 15 shows the result of the conversion probability + 

possibility related to the probabilistic pooling methods p / u n n  
and plequ.  Method p /op t  corresponds to using the pieces of 
information given by expert e2 exclusively. The evaluation of 
all experts-real or virtual-in the possibilistic framework is 
shown in Table XI. 

We can see that in general the possibilistic methods evaluate 
better than the probabilistic ones with respect to both systems. 
Note that with respect to the possibilistic evaluation, r/ max 
is more imprecise than p lequ ,  whereas r/ max is considered 
to be more informative than p / e q u  in the probabilistic frame- 
work. This inversion problem occurs because the conversion 
of r/ max generates a very “thin” PDF which compares badly 
with the original p lequ ,  which did not suffer any “thinning” 
conversion. 

It is also important to note that the probability + possibility 
transformation generates a very imprecise distribution. We 
are tempted to think that this conversion, therefore, would 
cause the probabilistic methods to perform poorly in the 
possibilistic evaluation. If the conversion produces a decrease 
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(c) variable 3, (d) variable 4, (e) variable 5,  (f) variable 6, (g) variable 

in precision, however, it also forces the accuracy to increase, 
counterbalancing the final evaluation. The conversions are 
also responsible for some inversions of evaluations between 
methods defined inside the same framework. This, is for 

instance the case with the possibilistic methods r/A-0 and 
r l t r a d e .  In the possibilistic evaluation r/A-0 is slightly more 
precise than .?r/trade, whereas it is a bit less informative than 
a l t r a d e  in the probabilistic evaluation. This can be explained 
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"5 "6 "7 

(45%.950%.995%) (45%.950%.995%) (45%.950%.995%) 

el (40ooo. 75000.. 8ooo0) (3., 15.. 40.) (IO.. 60.. 100.) 

e2 (~oooooo., 1~00000.. 2000000.) (IO.. 20.. 35.) (25.. 125.. 250.) 

e4 (4oooO. sooo~.. 70ooo.) (4.. 8.. 20.1 (63.. 500.. 1000.) 
e5 ( 1 1 0 ~ 3 0 . .  1400000.. 1700000.) (5.. IS.. 30.) (25. 125.. 400.) 
e6 (1500000.. 168oooO.. 175oooO.) (15.. 20.. 25.) (SO.. 100.. 200.) 
e7 (1200000.. 1300000. 1600000.) (15.. 20.. 35.) ( I O . .  100.. 250.) 
eg ( l z m . ,  1600000.. 2000000.) (5. 15 40.) (IO.. 50.. 100.) 
eg (800000.. 98oooO. 1000000.) ( 1 5 .  25.. 40.) (SO.,  100.. 250.) 
e10 (72ooo0.. 816000.. 864000.) (15.. 20.. 30.) (3., 4.. IO.) 

e) (65000.. 75000 85800.) ( I O ,  15.. 25.)  (25., 125., 2 0 0 . )  

"8 

(95%.950%.995%) 

(5 . .  14, 25.) 
(50.. 70.. 90.) 

(30.. 80.. 95.) 
(80.. 88.. 92.) 
(83, 85.. 87.) 
(86.. 88.. 92.) 
(75.. 82.. 90.) 

(80.. 93.. 97.) 

(W., 95.. 99.) 

( 8 2 ,  84.. 87.) 

as follows. Let us suppose that we have two possibility 
distributions 7r1 and 7r2. To evaluate them in the probabilistic 
framework, we convert them into PDF's pl and p z .  Then, from 
p l ( p 2 )  we extract a set of quantiles ql(q2). To evaluate the 
informativeness of q1 and q 2  we generate new PDF's p i  and 
pk by distributing the mass in a uniform way inside the inter- 
quantile intervals. The inversion is a consequence of the loss of 
information produced by the quantile extraction. This problem 
could be solved if we could evaluate the informativeness 
directly from pl and p2, or if it a larger number of quantiles 
was extracted. 

el 

e2 

e3 

e4 

e5 

e6 

e7 

e8 

9 
e10 

VIII. REAL WORLD EXPERIMENT 
The DSM and ESTEC experiments are part of the project 

"Expert opinions in safety studies" developed by the Safety 
Science Group from the University of Technology of Delft 
(Netherlands) and the Industrial Safety Department from the 
Dutch Organization for the Applied Scientific Research TNO 
[2], [4]. We discuss here only the DSM experiment. 

V, v2 v3 "4 

(4sw45on.495n) (45n.95on.995a) (9541.45oa.995s) (qs%.q5oa495n) 

( I O ,  25.. 75.) (3., 15.. SO.) (50.. 70.. 80) (100.. 4500.. 9000.) 
(20.. 35. so) a, 5.. IO.) (75., 85.. 95.) (6~00.. iooo~., 13500) 
( I O ,  20.  25.) (s., IO, 15.) (80.. 8 8 ,  92.) (1000.. 5000, 15000) 
(5.. 20..  5 0 )  (5., IO. 50.) (70.. 85, 100.) ( ~ 0 0 0 .  ~ooo~., 2ooo0.) 
(IO..  .30., 5 0 )  (5 ,  io.. 20.) (87, 92.. 98.) (1000.. 1 ~ 0 0 ,  2500.) 

(10.. 15.. 20.) (2.. 4, 8.) (70, 80.. YO.)  (2oooO.. 25000.. 5oooO.) 
( 5 0 ,  60.. 80.) (4.. 5.. 8.) (85 . .  YO., 91 ) (3000, 5000. 8000.) 
( 5 0 ,  75.. 100.1 (2.. s., I O )  (84. 87.. Y O )  (2500.. 4000, 16000.) 
(IS., 20.. 30.) ( I . .  3.. 6) (90.. 94.. 96.) (1500.. 2800.. 3500.) 
(15.. 20..  30.) (3., 7.. IO.) (70.. 80.. 90.) (1000.. 5000.. iooo~.) 

A. The DSM Data 

The DSM experiment represents an implementation of the 
classical combination model in probability theory concerning 
the utilization of expert judgment in the determination of 
the causes of irregularities in flanged connections in a Dutch 
chemical plant. For this experiment 10 experts answered 14 
questions; eight questions had known values and were used 
to evaluate of the experts. The experts supplied, for each 
question x, a set of three quantiles (q5%, q50%, qg5%), which 
summarized a subjective probability distribution concerning 
their opinions with respect to question x. The details of this 
experiment are described in [2]. 

The information given by the experts concerning the eight 
test variables were used in a cross-evaluation experiment 
between the probabilistic (EXCALIBR) and possibilistic 
(PEARS) approaches to expert judgment. Table XI1 depicts 
the original data for the eight test variables. 

In EXCALIBR the interval [XI, xu], corresponding to the 
domain of a given variable, is always calculated as a function 
of the limit values found in the estimations given by the group 
of experts. Since the informativeness measure depends on this 
interval, the results of the evaluation cannot be compared on 
an equal basis if we are not able to compare all the experts 
at the same time. Due to screen visualization problems, only 

EXCALIBR 

[l.e-13. 1143.951 
[l.e-13, 549.91 
[l.e-13, 1121.521 
[l.e-13, 574639.1 
[l.e-l3. 2294200.1 
[l.e-13. 439.971 
[l.e-l3. 10999.991 
[l.e-l3, 1132.9951 

TABLE XII-B 
ORIGINAL DATA: QUANTILES SUPPLIED BY THE EXPERTS FOR VARIABLES 0 5  TO 08 

PEAPS 
[O, 109.51 

[0, 54.91 
[45, 105.1 
[0, 54990.1 
[O, 2196ooo.l 
lo, 43.71 
[O. 1099.71 
[O, 108.41 

TABLE Xm 
TRUE VALUES AND DOMAINS OF VARIABLES 

I 
L 
"I 

v2 
v3 
"4 

"5 

"6 

"7 

vs 

XI*  

5 1 .  
3.  
86.6 
7000. 
1500000. 

15 

6.3 
8 I .4 

a restricted number of experts (or methods) can be evaluated 
at the same time in EXCALIBR. 

In DSM each method in each mathematical model was 
tested with three groups of experts, chosen from the original 
set. Table XI11 shows the real value of each variable, as well 
as the interval [XI. xu], used by each system. In PEAPS, we 
fixed an interval [xl, xu] for each variable, and in EXCALIBR 
we introduced a dummy virtual expert whose assessments 
determined the bounds of the variables. The use of different 
[xl, xu] by each system does not influence the final values; 
in fact, we are interested only in the ranking produced in 
each system by the performance measures and not in the 
numerical values of these measures. Fig. 16 illustrates the 
quantiles supplied by the experts for the test-variables matched 
against the true value of these variables. 

The experiment was implemented with three groups of 
experts 

g1 ={el, e2, e3, e4. e5, e6, e7, e8r e9, e101 
g2 = (e2r e81 
g3 = {e27 e8r e?). 

The mean conflict in each group was calculated taking 
the mean of the individual conflict for each variable. The 
individual conflict ~j = 1 - J j  is the complement of the 
degree of coherence in the group with respect to variable vj ,  
given by the Jacquard index. The mean conflict for groups 
91, g27 and g3 are 

K ( g 1 )  = .921, 
K(g2) = .369, 
K(gg) = .538. 
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W i )  
e2 .54 
eg . I 4  
e10 .02 
e4 .02 
e3 ,001 
e7 ,001 
e5 ,001 
el ,001 

e9 .0001 
e6 .0001 

Wi) Wei) 
e9 4.077 e2 1.69800 
e104.066 eg 0.47838 
e3 3.915 e100.08131 

e7 3.817 e4 0.06265 
e6 3.737 e3 0.00392 
e5 3.457 e7 0.00382 
e l  3.452 e5 0.00346 
eg 3.417 el 0.00345 
e2 3.144 e9 0.00041 
e4 3.132 eg 0.00037 

B. DSM Treatment by EXCALJBR 
Table XIV shows the experts evaluation (in decreasing 

order, for each index) according to EXCALIBR. 
The relative order of the experts in each group with respect 

to the probabilistic criteria of calibration (orderc), mean 
informativeness (orderM), and expertise (orderw) are 

orderc(g1) = (e2, '38, e7, {e41 elo}, {el, e3, e5, e6}1 e9) 
orderM(gi) = (eg, eio, e3, e7, e6r e5, el ,  e8, e2, e4) 
orderw(g1) = (e2, elo, e4, e3, e7, el ,  e9, e6) 
orderc(g2) = (e2, e8) 
orderM(g2) = (e8, ez) 
orderw(g2) = (e2, e81 
orderc(g3) = (ez, e8, e7) 
o r d e r ~ ( g 3 )  = (e71 -58, e2) 
orderW(g3) =(e21 e8, e7)- 

The probabilistic pooling methods p/equ/gr,, p/unn/gk, 
and p/opt/gk, 1 I k I 3, were applied to the data in Table 
XII; the normalized weights determined by the application of 
these methods are shown in Table XV. 

p/equ p/UM 
e l  0.1 e2 0.716 

e3  0 . 1  e10 0.034 
e4 0.1 e4 0.026 
e5 0.1 e7 0.016 
e6 0.1 e3 0.00165 
e7 0 .1  e5 0.001459 
eg 0.1 el 0.001455 
e9 0 .1  e9 0.000172 
e I 0  0.1 e6 0.000156 

e2 0.1 eg 0.201 

C. Treatment of the DSM data by PEAPS 

The values in Table XII have been transformed into pos- 
sibility distributions which have then been evaluated in the 
possibilistic model. Table XVI shows the experts evaluation 
according to PEAPS. The standard deviation relative to the 
performance measures are found in Table XVII. 

The experts relative order with respect to the criteria of 
global precision (orders,), global accuracy (orderA), and 
global quality (orderQ) are 

orderSp(gl) = (e91 e73 e3, el0, e6, e53 e8r el ,  e27 e4) 
orderA(gl) = (e81 e2,  e71 e4, el01 e67 e5, e l ,  e3, e9) 
orderQ(g1) = (e8, e2, e73 el07 e61 e41 e51 '337 e l ,  e9) 

orderSp(g2) = (e81 e2) 
orderA(g2) = (e8, e2) 
orderQ(g2) (e8, e2) 

orderSp(g3) = (e7, e8, e2) 
orderA(g3) (e8, e21 -57) 

oTderQ(g3) = (e8, e2, e7). 

@opt 
e2 0.7464 
eg 0.2535 
e l  0.0 
e3 0 .0  
e4  0 .0  
e5 0 . 0  
e6 0 .0  
e7 0 .0  
e9 0 . 0  
eloO.O 
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Normalized weights 3 considering the experts in 82 

e2 0.5 e2 0.716 e2 1.0 
p/equ p/Um @opt 

eg 0 . 5  eg 0.0 eg 0.201 

p/equ p/unn 
e2 0.33 e2 0.7674 

e7 0.33 e7 0.01714 
eg 0 .33  eg 0.2154 

@opt 
e 2  1.0 
e8 0.0 
e7 0.0 

TABLE XVI 
EXPERTS EVALUATION ACCORDING TO PEAPS 

o&i) 
eg ,1181 
e7 .0857 
e3 .0706 
el0.1043 
eg ,1169 
e5 .I296 
eg ,1774 
el ,2104 
e2 ,1314 
e4 .I907 

e8 ,8312 
e2 .7687 
e7 ,4875 
e4 ,475 

e5 .4187 
e l  ,4125 

eo -1812 

o&,) 
eg ,2656 
e2 .3039 
e7 ,3026 
e l o  .2412 
e6 ,3588 
e4 ,2971 
e5 ,2687 
e3 ,2554 
e l  ,1854 
e9 ,2957 

Sp(ei) 
eg 3409 
e7 ,8274 
e3 ,8264 
e10.8208 

e5 .7446 
eg .7243 
el ,6905 
e2 ,6800 
eg .6249 

e6 .7920 

e2 ,5085 
e7 .3984 
e lo  ,3373 

e., .2946 
e5 ,2892 

e l  .2223 

e6 ,3132 

TABLE XVII 
STANDARD DEVIATION OF THE PRECISION, ACCURACY, AND QUALlTY INDEXES 

e2 .4284 
e7 ,3833 
e4 ,4652 
e I 0  ,3338 

e5 .4174 
e l  ,4155 
e3 ,3505 

e6 ,4817 

Using the information given in Tables XVI and XVII and 
taking zero and one as values of p, the experts have been 
classified in each group gk into homogeneous subsets 
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The possibility distributions have been pooled using 
the methods r/ min / g k ,  r/ max / g k ,  r / t r a d e / g k ,  r / A  - 
f J / g k ,  r/sP - a / g k ,  r /Q - f J / g k ,  with the standard deviation 
values p = 0 and p = 1. 

D. Cross Evaluation on DSM 

The results of the application of probabilistic and possi- 
bilistic pooling methods were evaluated in both systems, after 
all necessary conversions. Table XVIII shows the evaluation 
of all experts and methods according to EXCALIBR. Table 
XIX shows the evaluation according to PEAPS of all the 
experts and methods, except the probabilistic method plunn. 
Since the results are so numerous, we illustrate here only 
part of the pooling results; complete data can be found in 
[28]. Fig. 16 shows the quantiles given by all the experts for 
variables v1 to 218 and also the results, in terms of quantiles, of 
the pooling methods r/ min 192, r lA-Olg2,  r/ max 193, and 

From Tables XVIII and XIX we can see that, given the 
initial data, the pooling methods yield better overall per- 
formance than those based individual experts. These results 
justify the use of expert judgment pooling techniques in the 
DSM experiment. In the following, we analyze the results in 
more detail, and formulate a conclusion for the experiment. 

plequlgn .  

E. Discussion 

1) The expert rankings with respect to the informativeness 
criterion in EXCALIBR (orderM) ,  and the precision criterion 
in PEAPS (orders,) are very similar. Indeed, we can see 
that the five most precise experts according to PEAPS are 
the same as those considered to be the most informative ones 
according to EXCALIBR. In particular, the expert considered 

TABLE XVIII 
GLOBAL EVALUATION ACCORDING TO EXCALIBR 

Probabilistic Evaluation 

54 
66 
66 
66 
66 
66 
66 
66 
66 
66 
66 
64 
54 
66 
66 
66 
53 
42 
23 
17 
14 
06 
06 
03 
02 
02 
02 
01 
01 
001 
00 I 
001 
00 1 
OOOI 
,000 I 

M 
3.953 
3.093 
3.057 
3.005 
3.002 
2.999 
2.994 
2.994 
2.989 
2.98 I 
2.948 
2.788 
3.144 
2.296 
2.294 
2.274 
2.579 
3.043 
2.786 
3.427 
3.417 
3.494 
3.019 
3.624 
4.066 
3.262 
3.132 
4.07 I 
3.032 
3.915 
3.817 
3.457 
3.452 
4.077 
3.737 

W 
2. I344 
2.0410 
2.0173 
1.983 I 
1.981 I 
1.9790 
1.9763 
1.9761 
1.9728 
1.9677 
I .9458 
1.7840 
1.6980 
1.5153 
I .5 I40 
1.5007 
1.3667 
1.278 I 
0.6408 
0.5826 
0.4783 
0.2096 
0.181 I 
0.1087 
0.08 13 
0.0652 
0.0626 
0.0407 
0.0303 
0.0039 
0.0038 
0.0034 
0.0034 
0.0004 
0.0003 

the most precise according to PEAPS is also considered the 
most informative by EXCALIBR, and the two most imprecise 
experts according to PEAPS are also the least informative ones 
according to EXCALIBR. This result demonstrates in practice 
that the possibilistic precision index and the probabilistic 
informativeness index are similar. 

2) The expert rankings with respect to the calibration cri- 
terion in EXCALIBR ( o r d e r c ) ,  and the accuracy criterion in 
PEAPS (orderA) ,  are very similar in most cases. This shows 
that the DSM data does not contain such strange cases as 
these pointed out in Section 111-A, where extremely inaccurate 
experts are considered to be well-calibrated (and vice-versa). 
This means that the well-calibrated experts have most of their 
realizations occurring in the central inter-quantile intervals 
in a balanced way (the experts are not biased). We note 
in particular that the least accurate expert is also the least 
calibrated one, and that the three most accurate experts are also 
the best calibrated ones. Moreover, the calibration criterion 
does not appear to discriminate as well as the accuracy one. 
It is possible, for instance, to distinguish experts el and e4 
with respect to the accuracy criterion (as well as experts 
e l ,  e3, e5, and e6) ,  but not with respect to the calibration 
criterion. 
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TABLE XM 
GLOBAL EVALUATION ACCORDING TO P E N S  

Po 

L 
,8872 
1 .  
,7687 
,8312 
,8312 
,8775 
,8175 
,7483 
,775 
,7687 
,8875 
,7212 
,7640 
,7187 
,6390 
.765 1 
,4875 
,7562 
,4522 
,425 
,4187 
,9846 
1 .  
,475 
,3356 
,4187 
.9855 
.4125 
.3  
,2003 
,1812 
,7840 

bilistic Evalu; 

7245 
5921 
1952 
1243 
6807 
6598 
6387 
1272 
6807 
6800 
5952 
7062 
6593 
6902 
7698 
6410 
8274 
5285 
8248 
8208 
7920 
3105 
3018 
6249 
8603 
7446 
2903 
8264 
6905 
,8027 
,8409 
,2741 

,n 

6233 
5921 
5822 
5782 
5719 
5617 
5407 
5402 
5268 
5085 
5059 
4934 
4893 
4787 
4734 
4723 
3984 
3939 
3732 
3373 
3132 
3049 
3018 
,2946 
,2903 
,2892 
,2853 
.2313 
.2223 
,1622 
,1561 
,0903 

z 

3) The expert rankings with respect to the expertise cri- 
terion in EXCALIBR (o rde rw) ,  and the quality criterion 
in PEAPS (OrderQ), do not present many differences. In 
particular, the two best experts according to PEAPS are the 
also the two best ones according to EXCALIBR; expert e9 is 
considered to be the worst one according to both systems. An 
examination of Fig. 16 verifies that expert eg is indeed inferior 
in relation to other experts. This shows that both the accuracy 
and the calibration indexes are capable of detecting extremely 
bad cases. The most noticeable difference between the rank- 
ings orderu.  and OrderQ has to do with expert e3, who 
is precise mostly when he is inaccurate. EXCALIBR is not 
capable of recognizing this phenomenon because the expertise 
criterion is based on the global evaluations of informativeness 
and calibration and not on the individual evaluations. This 
shows in practice that we can have an expert who is considered 
to be informative and well calibrated, but who is not precise 
and accurate in the same instances. 
4) With respect to the pooling methods, we verify again 

that the precision and informativeness orderings present a 
strong similarity. Indeed, if we divide the “virtual” experts 
into two groups according to their precision, we can see 
that the group which has the best performance in terms of 
this criterion contain the most informative experts according 

to EXCALIBR. The differences in each group result partly 
from the loss of information induced by the transformations 
probability + quantiles + probability. 

5 )  The most imprecise and the least informative virtual 
experts are those corresponding to the application of pooling 
methods on group 9 1 ,  the complete set of experts. This reflects 
the large conflict that appears with respect to most variables 
due to the large size of the group. In the probabilistic case, 
the weighted mean operations treat the conflict by generating 
“flat” distributions, which are penalized by EXCALIBR. In the 
possibilistic case, on the other hand, the conflict is treated by 
a normalization operation. This may considerably augment the 
imprecision of a “precise” method where conflict is produced, 
as compared to a less “imprecise” method where no conflict is 
produced. For instance, tly. application of the maximum rule 
on group g 1  yields results which are globally slightly more pre- 
cise than those produced by the minimum rule applied on the 
same group (see Table XIX). A formal classification of some 
methods according to their performance can be established. 
For instance, considering any given group of estimations, the 
minimum method is more precise and less accurate than the 
maximum method if a normalization step is not necessary. 
We can also formally characterize the performance of nested 
subsets of a group of estimations: a group will produce more 
precise and less accurate estimations than a subset of this group 
if a normalization step is not necessary. 

Method ~ / m a x  has no need for normalization but is still 
very imprecise for group 91, since for most variables the 
support of the estimation produced by this method is very‘ 
close to [zl, z,]. The only method which produces reasonably 
precise results for 91 is method r/Sp-0; this is explained by 
the fact that in this type of method, the final distribution is very 
much influenced by the first elements in the corresponding 
order. Since here the precision order is used, it is the most 
precise experts who influence the final result, thereby gener- 
ating very precise estimations. Note that in contrast, since the 
most precise experts are also the least accurate, r/Sp-O/gl is 
considered very inaccurate and its evaluation with respect to 
the quality criterion is one of the lowest. 

6) In this experiment, the possibilistic fusion methods look 
superior to the probabilistic ones, according to both the possi- 
bilistic and the probabilistic quality evaluation. The orderings 
given by the systems, however, are not the same. In the first 
place, we note that the best methods (with respect to the 
expertise index) according to EXCALIBR are also considered 
good by PEAPS (with respect to the quality index). This 
is especially true for groups g 2  and 93, which contain only 
highly-evaluated experts. For these groups the phenomenon 
described above, where a sometimes imprecise and otherwise 
inaccurate expert could be considered as informative and well- 
calibrated, does not occur. The best methods according to 
PEAPS are, in general, also ranked high by EXCALIBR (with 
the noticeable exception of 7r/A-O/g2, which will be examined 
in detail below). This is particularly true when we consider 
the groups composed exclusively of those experts who are 
undoubtedly trustworthy. 

7) The most startling result in the whole experiment is 
that the best method according to PEAPS-r/A-O/gy-is 
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very poorly evaluated by EXCALIBR. When we examine 
Fig. 16, however, comparing the quantiles corresponding to 
r/A-O/gz with those supplied by the best method according 
to EXCALIBR (r/ min 192). we see that the results of these 
methods are practically the same relative to calibration in 
EXCALIBR. For variables 212, 213, 215, and 218, the results of 
r/A-O/gz and r /min/g2 are exactly the same, while for 
variables 111, 214: 216, and 217, n/A-O/g2 yields more imprecise 
results and is duly penalized by the informativeness index 
(see Table XVIII). This is consistent with the possibilistic 
evaluation. The most important difference in performance 
between these methods lies in the calibration. Table XVIII 
shows that r/ min /g2 is considered to be three times better 
calibrated than r/A-O/g2, yet, as can be seen in Fig. 16 the 
only difference between these methods from the calibration 
point of view concerns variable VI .  Indeed, the values of 
variables 212 to 218 lie in the same inter-quantile intervals 
for each method: one value in [zlr q5%], four values in 
[q570, q 5 0 ~ ] ,  two values in [q50%, q95%], and no values in 
[495%, z,]. Variable 211 has its value in the interval [zl, q5%] 
with respect to r /min/g2,  and in [ q g 5 % ,  z,] with respect 
to r/A-0/g2. As a consequence, r/ min 192 has one value 
in [zlr qgyr,]  and one value in [495%, z,], whereas rlA-Olg2 
has three values in [zl, q5%], and no value in [qg5%: z,]. 
The calibration will thus reward r/min/gZ and penalize 
r/A-O/gs. Neither r/ min /g2 nor rlA-Olg2, however, have 
been very accurate (see Fig. 16). It is thus very disturbing 
that r / m i n / g 2  should be considered better than numerous 
others while rlA-Olg2 should be considered worse. This case 
illustrates the sensitivity of the calibration index with respect to 
small variations in the data in the probabilistic method. We see 
here that a single variable may completely alter the ranking 
of two experts (real or virtual). Moreover, due to a single 
variable, a very accurate and precise method may be ranked 
worse than some methods which are undoubtedly inferior to 
it. 

8) We note that possibilistic methods yielding different re- 
sults are sometimes considered as equally calibrated according 
to EXCALIBR. This problem is a consequence of the fact that 
the calibration index takes only part of the information into 
account, but also of the fact that information is lost in the 
transformations possibility + probability + quantiles. 

9) The accuracy of method r /max/gk  calculated by 
PEAPS, with respect to a variable U;, is equal to one each 
time that the realization of TJ; is found to be in the core of at 
least one of the distributions furnished by the experts in group 
gk. The global evaluation is maximal, however, only when the 
individual evaluations are maximal for all test variables. The 
examination of Table XM shows that methods r/ max /g1 
and r/ max /g3 obtain maximal values in global accuracy. 

10) It is interesting to investigate why rlA-Olg2 is con- 
sidered to be better than r / m i n / g 2  by the possibilistic 
evaluation. Let us recall that our asymmetric methods (for 
instance r/A-O), take the minimum of the estimations when 
there is no conflict, and favor the most reliable source (ac- 
cording to a given ordering) otherwise. Method r/A-0 is 
practically the same as r / m i n  for group g2, since e2 and e8 
yield nonconflicting distributions; r/A-O/gp is only slightly 

less precise than r/ min 192.  In this example, the difference 
in classification between these methods is caused by the 
evaluation of variable VI for which method r/ min /g2 has a 
very low accuracy. Method r/A-O/gz yields a distribution for 
211 which is more accurate than r/ min /g2 because the conflict 
in group 92 is very significant and because method rlA-Olg2 
favors expert eg's estimations (e8 is the most accurate expert) 
up to the conflict level. This shows that dissymehic methods, 
which are optimistic in case of agreement and conservative in 
case of disagreement, can be efficient in practice. Moreover, it 
is important to note that, contrary to the probabilistic approach, 
methods r/A-O/gz and r/ min /g2 are both well-classified 
relative to the possibilistic quality index. 

Based on the results shown here and the discussion above, 
we can see that taking the possibilistic pooling methods 
as good virtual experts is justified. In particular, methods 
r/A-O/gp, and r/ min /g2 should be preferred to r/ max 193, 
since the latter method exhibits good performance due to 
particularities in the probability/possibility transformations. 
Our choices are also justified when we analyze Table XVI. 
We can see there that e8 and e2 are the only experts who 
have an evaluation higher than .5 for both the precision and 
accuracy criteria. Moreover, from Fig. 16 we can see that if we 
considered an answer such that q5% < x* < qg5% as correct, 
then expert e8 gave wrong assessments only once (variable 
w7), and e2 only twice (variables 211 and v7), whereas all the 
other experts are wrong either four or five times. Therefore, 
only experts e8 and e2 should be retained for subsequent 
assessments in the field. 

IX. CONCLUSIONS 

A procedure for processing human-originated information 
has been devised, based on possibility theory and implemented 
on a computer [27]. This procedure performs the elicitation 
of seed variables by experts and evaluates their performance, 
applies several pooling methods whose utilities depend on the 
results of the expert evaluation, compares the performances of 
the pooling methods on seed variables, and finally applies the 
best one found to the analysis of unknown parameter values 
supplied by the experts. The study of a real-world experi- 
ment allowed us to verify in practice the applicability of the 
possibilistic approach in the expert judgment domain relative 
to the evaluation and the pooling methods. The possibilistic 
evaluation methods appears to be more discriminating than 
those used in the probabilistic approach. This difference has 
already been verified at a conceptual level, and the experience 
with the DSM data seems to confirm it in practice. The 
possibilistic evaluation does not overload the system analyst, 
can easily be checked by the experts, and does not lead to 
incoherencies. 

Relative to pooling, the possibilistic approach is richer than 
the probabilistic one and presents less difficulties relative to a 
possible dependencies among the sources. We have seen that, 
in practice, with only a small set of methods we can find 
satisfying ways of pooling expert opinions. In the particular 
experiment reported here, this was confirmed by both the 
possibilistic and the probabilistic evaluations. The only aspect 
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involved in the use of expert judgment which was not treated 
here is the elicitation of the experts’ knowledge. We believe, 
however, that this aspect represents the strongest advantage 
of the use possibility theory, as it lets the expert express 
his knowledge in a more natural way than those used in 
the probabilistic approach. Moreover, it allows the data to be 
used untouched in all phases of the expert judgment process, 
contrary to the probabilistic approach studied here, where the 
data is constantly transformed into PDF’s and quantiles. The 
possibilistic approach seems to behave well in all other aspects 
of the process (pooling and evaluation), and so it is thus 
expected that possibilistic elicitation in practical experiments 
will confirm the utility of possibility theory in expert judgment 
pooling systems. Since the experiments were carried out, new 
pooling methods have been found. Especially, a trade-off rule 
not based on weighted arithmetic average is described in [ 161. 
This rule is adaptive (depending on the amount of conflict) 
and applies to more than two sources. It should be added to 
PEAPS in the future. 

Of course the above results are in some sense preliminary 
and partial and should not be taken to cast any discredit on the 
probabilistic approach whose results are already satisfactory. 
Actually, most of the concepts developed in the possibilistic 
approach were directly inspired by Cooke’ s methodology 
which appears more convincing that most Bayesian techniques. 
What we suggest here is that this methodology can be ap- 
plied outside the probabilistic framework with equal success. 
Our main claim is that the possibilistic framework is more 
flexible than a pure probabilistic one for expressing expert 
opinions and pooling them. Given that possibility theory is 
less developed than probability theory, some of the pooling 
methods used here remain somewhat ad hoc, and much work 
remains to be done before a rigorous justification of the 
possibilistic method, similar to the one that already exists in 
the probabilistic setting, is fully developed. 
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