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A Fuzzy Classifier with Ellipsoidal Regions

Shigeo Abe, Senior Member, IEEE, and Ruck Thawonmas, Member, IEEE

Abstract— In this paper, we discuss a fuzzy classifier with
ellipsoidal regions which has a learning capability. First, we
divide the training data for each class into several clusters.
Then, for each cluster, we define a fuzzy rule with an ellipsoidal
region around a cluster center. Using the training data for each
cluster, we calculate the center and the covariance matrix of the
ellipsoidal region for the cluster. Then we tune the fuzzy rules, i.e.,
the slopes of the membership functions, successively until there
is no improvement in the recognition rate of the training data.
We evaluate our method using the Fisher iris data, numeral data
of vehicle license plates, thyroid data, and blood cell data. The
recognition rates (except for the thyroid data) of our classifier are
comparable to the maximum recognition rates of the multilayered
neural network classifier and the training times (except for the
iris data) are two to three orders of magnitude shorter.

Index Terms—Blood cell classification, Fisher iris data, fuzzy
classifiers, license plate recognition, membership function, neural
networks, rule extraction, thyroid data, tuning.

NOMENCLATURE

a;;(>0) Tuning parameter for cluster ij.

Bi;(1)  Maximum value of V;;(z) which is smaller than
Us;; (D).

cij Center of cluster %j.

6 ‘Parameter to control the margin of o;; setting.

Dec(l) Number of misclassified data that are cor-
rectly classified when the value of «;; is in
(Laj (1), Li; (1 = 1)].

dij(x)  Weighted distance between = and ¢;;.

v;(1)  Minimum value of K;;(x), which is larger than
Li;(1).

hij(z)  Tuned distance.

Inc(!)  Number of misclassified data that are correctly
classified when «;; is in [Us;(1 — 1), Us;(1)).

K;j(z) Upper bound of a;; that makes misclassified
become correctly classified.

Lis(z) Lower bound of a;; to keep z correctly classified.

L;ij(I)  Lower bound of «;; that allows [ — 1 correctly
classified data to be misclassified.

m;;(z) Membership function of cluster 45 for input z.

max Upper bound of the number of data belonging to

each cluster.

Nuin Lower bound of the number of data belonging to
each cluster.

N;j Number of data belonging to cluster 7.

Qi; m X m covariance matrix of cluster 3j.
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Ui;(z)  Upper bound of o;; to keep z correctly classified.

U;;(1)  Upper bound of a;; that allows [ — 1 correctly
classified data to be misclassified.

Vij(z)  Lower bound of ¢;; that makes misclassified =
correctly classified.

X Training data that are correctly classified using
the set of fuzzy rules {R;;}.

Y Training data misclassified using the set of fuzzy
rules {Rij}.

I. INTRODUCTION

ULTILAYERED npeural network classifiers have a
learning capability, but analysis of the trained classifier
is difficult. To solve this problem, many types of fuzzy
classifiers [1]-[5] with a learning capability have been
proposed. In general, fuzzy regions which approximate class
regions can be classified into 1) ellipsoidal regions [5]; 2)
hyperbox regions whose surfaces are parallel to one of the
input variables [1], [3]; and 3) polyhedron regions whose
surfaces are expressed by a linear combination of input
variables [4]. A typical classifier using ellipsoidal regions is
the radial basis function classifier [5], which can be considered
as both a neural network classifier and a fuzzy classifier.
There are two measures to evaluate a classifier: the training
time and the generalization ability. The generalization ability
is defined as the recognition rate of the data that are not
included in the training data. In the following, we measure
the generalization ability of a classifier by one set of the test
data that are gathered independently from the training data.
The training time of the.fuzzy classifier with hyperbox
regions [3] is extremely fast since it is only necéssary to
calculate the minimum and maximum values of the training
data in each input variable; the 100% recognition rate is
achieved for the training data as long as there are no identical
data in different classes. But, the major drawback of this
classifier is that when the characteristics of the training data
and the test data differ, the recognition rate of the test
data is lower than that of the multilayered neural network
classifier. To overcome this problem, we developed the fuzzy
classifier with polyhedron regions, which are approximated
by shifting the separation hyperplanes extracted from the
trained multiléyered neural network classifier [4]. The average
recognition rate of this classifier for the test data was shown to
be better than that of the neural network classifier. But, since
this fuzzy classifier is based on the neural network classifier,
its training is slow. o
In this paper, we discuss a fuzzy classifier with ellipsoidal
regions which will realize both high-speed learning and high-
generalization ability. To improve ease of analysis of the

1063-6706/97$10.00 © 1997 IEEE
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classifier, it consists of only two layers: the input layer and
the output layer, which consists of the fuzzy rules with
ellipsoidal regions. We first divide a data set belonging to
a class into several clusters. Then we define a fuzzy rule
for each cluster, approximating each cluster by an ellipsoidal
region with a center and a covariance matrix. The degree
of membership of an input for a fuzzy rule is calculated
as follows. If the input is at the center of the cluster, the
degree of membership is one and as the input moves away
from the center the degree of membership decreases. The
idea of fuzzy rule tuning is as follows. We only tune the
slope of the membership function. By decreasing the slope
of the membership function of a fuzzy rule belonging to
some class, the degree of membership for that class increases.
Thus, the formerly misclassified data belonging to that class
may be correctly classified, while the correctly classified data
belonging to other classes may be misclassified. We calculate
the net increase of the number of correctly classified data.
Likewise, we calculate the net increase of the number of
correctly classified data by increasing the slope. We then
modify the slope so that the recognition rate of the classifier
is maximized. In this way, we successively tune the slopes
of all the fuzzy rules. We iterate the tuning until there
is no improvement in the recognition rate of the training
data. With this tuning, the recognition rate of the training
data is monotonically improved. The fuzzy rule tuning that
allows formerly correctly classified data to be misclassified
automatically excludes outliers. We can similarly tune the
slopes of the membership functions of the fuzzy classifiers
with hyperbox regions [1], [3] and polyhedron regions [4].

In Section II, we describe the classifier architecture which
consists of two layers. In Section III, we describe the cluster-
ing method in which the training data of each class are divided
by the axis that minimizes the size of the existing regions of
-the clustered training data. In Sections IV and V, we discuss
fuzzy rule extraction and fuzzy rule tuning. In Section VI,
using the Fisher iris data, numeral data for vehicle license plate
recognition, thyroid data, and blood cell data, we compare the
performance of the proposed classifier with that of other fuzzy
classifiers and the neural network classifier.

II. CLASSIFIER ARCHITECTURE

Consider classification of an m-dimensional input vector x
into n classes. Assume that class i (1 = 1,---,n) is divided
into several clusters 5 (j = 1,---), where cluster ij denotes
the jth cluster for class i. For each cluster 5, we define the
following fuzzy rule: ’

Ri;: If z is ¢;; then x belongs to class ¢ 8]
Wwhere ¢;; is the center of cluster 4j. The membership function
m;;(x) of (1) for input z is given by

mi;(z) = exp(—hZ;(z)) )
2

hii(z) = 4;(@) 3)
Qg

d?i(z) = (2 — ¢;5)' Q5" (z — cij) @
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Fig. 1. Architecture of a fuzzy classifier.

where d;;(x) is the weighted distance between z and ¢;; =
(€ij,1s° 5 €ijm)t, hij(z) is the tuned distance, a;;(>0) is a
tuning parameter for cluster ¢j, Q;; is the m x m covariance
matrix of cluster 77, the superscript ¢ denotes the transpose of a
matrix, and the superscript —1 denotes the inverse of 2 matrix.
An increase of o;; decreases the slope of the membership
function m;;(x) or increases the value of m;;(z). And a
decrease of o;; increases the slope of my; (z) or decreases
the value of m;;(x). As is discussed later, by calculating the
covariance matrix @Q;; using the training data, estimation of
the covariance matrix [5] is not necessary.

Fig. 1 shows the architecture of the fuzzy classifier. For
input z, if the membership function my(z) is the largest,
input z is classified into class k. The exponential function in
(2) makes the output range of (2) lie in [0, 1]. Thus, if we
classify input z using the input of the exponential function in
(2), we need to find the smallest h;;(z). This is the simplest
architecture that is conceivable.

III. CLUSTERING

If we compare the multilayered neural network classifier and
the radial basis function classifier, which has an additional
layer with linear output functions in Fig. 1, we find the
generalization ability of the former classifier is better than that
of the latter, but the former requires more learning time. This is
because the former classifier uses the sigmoid function, which
works to separate the input space by a separation hyperplane
formed by weights; the sigmoid function is a global function,
while the Gaussian function used in the latter classifier is a
local function. Thus, using the local function, the classifier
outputs can easily fit the desired outputs of the training data.
This leads to overfitting and worsens the generalization ability
of the classifier. Thus, to obtain the generalization ability
comparable to the neural network classifier, the region that
the Gaussian function covers needs to be as large as possible.
Therefore, when we divide the data belonging to the same
class into clusters, the number of data belonging to a cluster
should not be too small.

There are several clustering techniques [6]-[9]. Most of
them are iterative methods; that is, they iterate the procedure
until the clustering is converged. In addition, most of them
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do not have a mechanism to control the number of data
belonging to a cluster. Thus, the number of data belonging
to one cluster may be very small, while that of another cluster
may be very large. If we determine the parameters in (2) to
(4) using a relatively small number of data, we should not
expect a good generalization ability. Thus, we need to cluster
the training data for each class considering both the degree of
data gathering and the number of data included in the cluster.

Here we discuss a simple clustering algorithm that divides

the training data by one input axis at a time. As a measure of
the degree of data gathering, we use the size of the hyperboxes
that include the training data. Consider the training data with
two-dimensional inputs, as shown in Fig. 2. In Fig. 2(a) and
(b), the training data are divided by the z; axis and the z axis,
respectively. The total size of the hyperboxes that includes the
training data in Fig. 2(b) is smaller than that in Fig. 2(a). Thus,
we consider that dividing the training data by the zj axis is
more favorable. But if the number of the data included in either
class is smaller than the specified number we do not choose
this axis for division. It may be better to divide the data by
a hyperplane expressed by a linear combination of the input
variables. But here, for simplicity, we do not consider this. In
the following, we show the more detailed algorithm.

1) Let Npax and N, be the upper and lower bounds of
the number of the data belonging to each cluster. First,
assume that each class has one cluster.

2) Select a cluster, e.g., cluster 75, whose number of data
exceeds Npmax. Calculate the center c;; by calculating
the average values of the data belonging to the cluster

S

") xeclusters;

=N )

Cijjk =

where N;; is the number of the data belonging to cluster
17. The size of the two hyperboxes that include the
training data belonging to cluster ¢j, when the training
data are divided by the axis xx = c;;,k, is given by

m
Sijk = H

max x; — min ]
o1\ Te clusterij; zec clusteri;.
- Tk 2Cijk Tk 2Cijk
m
+ H max I — min z; |.(6)
i1\ xe clusterij e clusters; :
- Tr < Cijk Tr < Cij,k
We select such & that minimizes
min Sij,k €))
k=1,-m

Nij,1 > Nmin,Nij,2 > Nmin

where V;;; and N;; o are the numbers of data satisfying
Tk > e, and xk < ¢4k, respectively. If there is no
such k that minimizes (7) we do not divide cluster ¢j.

3) Iterate step 2) until there is no cluster whose number of
data exceeds Npyax and which is dividable.
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Fig. 2. Concept of clustering. (a) Division by 1 = ¢;; 1. (b) Division by
T2 = Cij52.

In our simulation discussed in Section VI, we set Nyax =
Nuin/2. To determine the optimal Np,,x, we need trial and
error. But, as is shown in Section VI, for most problems,
clustering of the training data is not necessary; that is, one
cluster for one class.

IV. Fuzzy RULE EXTRACTION

For each cluster, we define the fuzzy rule R;; given by
(1). At this stage, we approximate the fuzzy regions without
considering the overlaps between the fuzzy regions of different
classes. These overlaps are resolved by tuning the parameters
Qg

First, for the cluster 7j, we calculate the center ¢;; using
(5). Then, we calculate the covariance matrix ();; by

Gi=m >

»
7 geclusteri;

(z — €ij)(z — ¢ij)* (8)

If the covariance matrix @);; is singular, we set all the off-
diagonal elements of @);; to zero so that Q;; becomes regular.
By making the covariance matrix diagonal, the principal axes
of the associated ellipsoidal region are parallel to the input
axes.

In conventional methods, the covariance matrices are esti-
mated during training. But, since we know which training data
are included in which cluster, we can calculate the covariance
matrix for each cluster using the training data included in the .
cluster. .

The fuzzy classifier with the ellipsoidal regions given by
(1)—(5) and (8) is equivalent to the Gaussian classifier in which
the probability distribution function for a cluster is calculated
assuming that the training data belonging to that cluster obey
the Gaussian distribution. But, since the data belonging to a
cluster do not necessarily obey the Gaussian distribution, we
need to tune the fuzzy rules so that the recognition rate of the
training data is maximized.

V. Fuzzy RULE TUNING

A. Concept

Since the fuzzy rules are defined without considering the
overlaps between classes, we need to tune the fuzzy rules to
improve the recognition rates for both the training data and
test data. In the following, we tune the fuzzy rules so that the
maximum recognition rate is obtained for the training data.
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But, since we tune the fuzzy rules using only the training data,
this strategy does not necessarily lead to the improvement of
the generalization ability, i.e., overfitting occurs, as is the case
with the training of the neural network classifier. One way to
solve this problem is to stop tuning when the recognition rate
of the test data begins to decrease. But in our paper, to show
the effect of tuning both for the training data and the test data
we do not use this strategy; we tune the fuzzy rules until the
recognition rate of the training data is maximized.

If we tune the centers and the covariance matrices of fuzzy
rules we need to resort to the steepest descent method, which
is very time consuming. Instead, we tune only one parameter
for each fuzzy rule R;;, i.e., o;;, so that the recognition rate of
the training data is maximized. If we increase «;;, the degree
of membership given by (2) increases, and if we decrease it,
the degree of membership decreases. To explain the concept
of tuning, we consider a two-class case with one rule for each
class, as shown in Fig. 3(a). (In the figures that follow, instead
of the Gaussian function, we use the triangular function as the
membership function.) In this case, datum 1, belonging to class
1, is misclassified into class 2. This datum can be correctly
classified if we increase c1; so that the membership function
lies between the shaded regions without causing datum 2 to
be misclassified. This can also be achieved when we decrease
a91.

Fig. 3(b) shows a more complicated situation. Datum 1 is
correctly classified into class 2, while data 2, 3, and 4 are
misclassified into class 2. If we increase «;; or decrease oo,
datum 1 is first misclassified, but if we allow datum 1 to
be misclassified we can make data 2, 3, and 4 be correctly
classified. Fig. 3(b) shows this when a7 is decreased so that
the degree of membership for class 2 lies between the shaded
regions. Then, by allowing one datum to be misclassified,
three data are correctly classified, i.e., the recognition rate is
improved by two data.

Our tuning algorithm determines, for each fuzzy rule R;;,
the optimum tuning parameter c;;, allowing the data that
are correctly classified before tuning R;; to become mis-
classified after tuning R;; as long as the recognition rate
of the training data is improved. We call the update of all
a;;(i = 1,---,n,j7 = 1,---) one iteration of tuning and, if
there is no improvement in the recognition rate for the two
consecutive iterations or the recognition rate of the training
data reaches 100%, we stop tuning. To allow the data that
are correctly classified before tuning some fuzzy rule to be
misclassified after tuning that fuzzy rule is, so to speak, to
prevent the tuning process from leading to convergence to a
local minimum. But, of course, since the tuning process is
nonlinear, we cannot guarantee that this method always gives
the optimal solution.

The special feature of the fuzzy rule tuning is that outliers
[Datum 1 in Fig. 3(b)] are automatically eliminated by allow-
ing the data that are correctly classified before tuning to be
misclassified after tuning. The elimination of outliers was not
considered in [1], [3], and [4].

In Section V-B, we calculate the upper bound and the lower
bound of a; that allow the { — 1(>0) data that are correctly
classified to become misclassified and, in Section V-C, we

M :Class 1
@® :Class 2
Class 2
1 —

B

=

g

g

S AN

Gt

[e]

g

&

(=}

0 L —@
X
Input
(a)
M :Class 1
@ : Class 2
Class 1 Class 2
1

o
2
2

&

Q
=
Yt

(=]

8

5o

[
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0
1 234 5 *1
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()

Fig. 3. Concept of tuning. (a) If the slope of the membership function for
class 1 is decreased so that the resulting function lies between the shaded
regions, datum 1 can be correctly classified. (b) If the slope of the membership
function for class 2 is increased so that the resulting function lies between the
shaded regions, datum 1 is misclassified, but data 2, 3, and 4 are correctly
classified.

check how many data that are misclassified are correctly
classified if «;; is changed within the bounds calculated in
Section V-B. Then in Section V-D, «;; is determined so that
the recognition rate of the training data is maximized.

B. Upper and Lower Bounds of a;;

We calculate the upper bound U;;(!) and the lower bound
L;;(l) of a; allowing the [ — 1(>0) data that are correctly
classified to be misclassified. We divide a set of input data into
X and Y, where X consists of the data correctly classified
using the set of fuzzy rules {R;;} and Y consists of the
misclassified data. Then, we choose z(€ X) that belongs to
class ¢ and that satisfies

hij(z) < %17161;1 hix(z). ©



362

If (9) does not hold, = remains to be correctly classified even
if we change «;;. If = further satisfies

h2.(x) = 4%(z) < min h2 (z) < min k% (z) (10)
1] - 0 oski op = sty ik

there is a lower bound L;;(x) to keep = correctly classified

(see Fig. 4(a)—in the text, we use the tuned distance h;;(z),

but in the figure, we use the membership function m;;(z) for

ease of understanding)

L _ %@ (1D
(%) = TR, @) <%
oL
If (10) is not satisfied, namely
dz
hfj(z) = IOJCSE) < r,?;n hZ (z) < mln hZ »(T) (12)

;5 can be decreased without making = become misclassified
[see Fig. 4(b)].

Now, the lower bound L;;(1), which is defined as the lower
bound that does not make any correctly classified data become
misclassified, is

Lij(l) = g;nea;(c Lij(.’lt). (13)
To clarify the discussion, we assume that L;;(x) is different
for different £ .Then, (13) is satisfied by one z. Similarly,
L;;(2), which is defined as the lower bound that allows one
correctly classified datum to be misclassified, is the second
maximum among L;;(z) and is given by

Li;(2) = Lij(z).

(14)
TeX,Li; (.'I});éL@_, (1)

In general,
Li;(1) =

In the similar manner that we determined the lower bound
L;;(l), we can determine the upper bound U;;(I). We choose
z(€ X), which belongs to class o(# 4). Let cluster op have
the minimum tuned distance hop(Z):

hop (x)

Lij(z). (15)

max
TeX,Lij(T)#Li; (1), Li; (1-1)

= min heq(Z). (16)
q

Since the tuned distance h;;(z) is larger than h,,(z), the upper

bound U;;(z) of a;; in which x remains correctly classified

is (Fig. 5)

d; (=)
Uj(z) = —2-—. 17
i(2) min A2 (z) an
q
Now the upper bound U;;(1), which is defined as the upper
bound that does not make any correctly classified data be
misclassified, is

Ui (1) =

Here, we also assume that U;;(z) is different for different x;
then, (18) is satisfied by one z. Similarly, U;;(2), which is
defined-as the upper bound that allows one correctly classified

ml}ré Usj(x). (18)
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Fig. 4. Lower bound of c;;. (a) If the slope of the membership function for
cluster ¢j is increased so that the resulting function lies between the shaded
regions, « is not misclassified. (b) Since m;x () is larger than mop(z),
increase of m;;(x) does not cause misclassification of z.

datum to be misclassified, is the second minimum among
U;;(z) and is given by

Ui;(2) = (19)

Uij(z).

TeX,Uij (@#Uu(l)

In general,
Ui;(1) =
Thus, «;; is bounded by

. <L,;j(l) < Lij(l — 1) <
- < U,;j(l -1)< Uij(l) <

Ui 7 (:r: ) . (20)

min
reX,U;; (E)#Uij(l),“-,Uij(l—l)

- < Lij(l) <oy < Uz](l)
(21)

If we change o;; in the range of (L;;(1), U;;(1)), the correctly
classified data remain to be correctly classified where (a, b)
denotes an open interval and if we change o;; in the range of
[U:5(1 = 1),U;;(1)) or (Li;(1), Lsj (L — 1)], the I — 1 correctly
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Fig. 5. Upper bound of ;. The slope of m;;(x) can be decreased in the
shaded regions without causing misclassification of x which belongs to class o.
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Fig. 6. Resolution of misclassification by decreasing the slope. If the slope
of m;;(x) is decreased within the shaded regions, datum z, which belongs
to class ¢, is correctly classified.

classified data are misclassified where [a,b] denotes a closed
interval.

C. Resolution of Misclassification by Changing o;;

For z(€ Y) which is misclassified into class ¢ or which
belongs to class i but is misclassified into class o (# %), we
check whether it can be correctly classified by changing a;.
First, we consider increasing a;;. Let , which belongs to class
i, be misclassified into class o. This datum can be correctly
classified if

d;(x)

aij > Vii(®) = mln min h2,(z) »(T)

(22)

irrespective of the values of h;x(z)(k # ¢) where V;;(z) is the
lower bound of ;; that makes the misclassified = correctly
classified (see Fig. 6).
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Cluster op Cluster ik

Cluster ij

Degree of Membership

Input

Fig. 7. Resolution of misclassification by increasing the slope. If m; i(z)is
increased within the shaded regions, datum z, which belongs to class o, is
correctly classified.

Let Inc(l!) denote the number of the misclassified data
that are correctly classified if we set the value of «;; in

[Us;(1 = 1),U;5(1)). We increase Inc(l) by one if Vj;(z) is
included in (oyj, U;;(1)) and we define
17 == 7 . 2
A Vij(i’%lg}l{fej(l) Vis(@) @)
If a;; is set to be larger than max(8;;(1), Us;(I — 1)), Inc(l)

data are correctly classified although the [ — 1 correctly
classified data are misclassified.

Let z, which belongs to class o, be misclassified into class <.
Then, similar to the above discussions, we check whether £ can
be correctly classified by decreasing «;;. First, the minimum
tuned distance for class o should be the second minimum
among 7 classes, namely, ¢ in the following equation needs
to be o:

min Ak () < min hg.(z). (24)
k qF# i

Second, h;;(x) needs to be the minimum in class ¢, and the

second minimum in class  is larger than the minimum tuned

distance in class o

hz-j(a:) < min hop<$) < mir_l hik(z). 25)
P k#j
Then, the datum can be correctly classified if (Fig. 7)
| a2 (z)
oij < Kij(z) = mln h2 () (26)

where K;;(z) is the upper bound of «;; that makes misclas-
sified z become correctly classified.

Let Dec(!) denote the number of the misclassified data
that are correctly classified if we set the value of «;; in
(L5 (1), L;j(l — 1)]. We increase Dec(l) by one if K;;(z) is
included in (Lij(Z),Ot,'j). We define
@7

wl) =, B Kij(@)
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@ : Correctly classified

M : Misclassified

Current o Tuned o;
L LD l UyD) l Uy
} } } %
%2 KD Bii(1) B2)

Fig. 8. Determination of tuned a;;. If the current c;; is modified to the
tuned o in (8:;(2), Us;(2)), one correctly classified datum is misclassified
but four misclassified data are correctly classified.

If o;; is set to be smaller than min(~;;(l), Ls;(1 — 1)), Dec(l)
data are correctly classified although the [ — 1 correctly
classified data are misclassified.

D. Modification of o;

For Inc(l),! = 1,---,lp, where lp is a positive integer,
we find [ that satisfies

m;’a.x(Inc(l) -1+1). (28)

Similarly, for Dec(l),l = 1,---Ipr, we find [ that satisfies
mlax(Dec(l) —-1+1). (29)

If there are plural I’s that satisfy (28) or (29), we chose
the smallest [. First, we consider the case where (28) is
larger than or equal to (29). If we increase «;; so that it
is larger than (;;(1) in (asj, Us;(1)), the net increase of the
correctly classified data is Inc(l) — [ 4 1. Thus, we set o;; in
(85 (1), Ui;(1)) as follows (see Fig. 8):

aij = Biy (1) + 6(Ui; (1) — 5{;’(1)) (30)

where § satisfies 0 < § < 1. Here, (3;;(I) > Us;(I — 1) holds,
otherwise [ cannot satisfy (28).

Likewise, if (28) is smaller than (29), we decrease a;; so
that it is smaller than v;;(1) in (Lq;(1),7:;(1)] as follows:

i = Yig (1) — 8(vi5 (1) — Ls;(1)).

The parameter § is used to control the recognition rate of the
test data (the recognition rate of the training data is the same
irrespective of the value of §). According to our experiments,
the value of § did not affect the recognition rate of the test data
significantly, but a small value of § sometimes gave a better
recognition rate of the test data. Thus, in the experiments in
Section VI, we used 0.1.

€2y

E. Tuning Algorithm

According to the above discussion, the tuning algorithm
becomes as follows.

1) Set a positive number to parameter {57, where [p; — 1 is
the maximum number of misclassifications allowed for
tuning a;;, set a value in (0, 1) to ¢ in (30) and (31),
and set the same positive initial value (usually 1) to a;;.
In our experiments /s = 10 is sufficient.
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TABLE 1
PERFORMANCE FOR THE IRIS TEST DATA
Classifie; No. W . Rules  Time(s
N.N. 2.2 (1-3)! 2 units 2
Hyperbox 2-6 17-5 <1
Ellipsoid ___1(1)2 — 2(0)? 3 2

0!: Minimum and maximum numbers of misclassified data
()2: Number of the misclassified training data

2) For a;(i = 1,---,mn,j = 1,---), calculate
Lij(l),U,;j(l),IHC(l),DeC(l),ﬂij(l), and ’yz-j(l) for
l=1,--,lp. Find [ that maximizes (28) or (29), and
change a;; using (30) or (31).

3) Iterate Step 2) until there is no improvement in the
recognition rate.

In the following, we count one execution of Step 2) as one

iteration.

VI. PERFORMANCE EVALUATION

We evaluated the performance of the fuzzy classifier with

-ellipsoidal regions using the iris data [10], numerical data for

license plate recognition [11], [12], thyroid data [13], and
blood cell data [14], and compared the performance with
that of the multilayered neural network classifier, the fuzzy
classier with hyperbox regions [3], and the fuzzy classifier
with polyhedron regions [4]. Unless otherwise stated, we set
a;j = 1,6 = 0.1,1y = 10, and Npin = Nmax/2. Except for
the thyroid data, without clustering the training data belonging
to a class, the recognition rates of the test data for the
fuzzy classifier with ellipsoidal regions were comparable to
the maximum recognition rates for the remaining classifiers.
Thus, except for the thyroid data, we did not cluster the data
belonging to a class and the number of fuzzy rules created was
the number of classes. For evaluation of the fuzzy classifier
with hyperbox regions, we used a 16-MIPS workstation. For
all other evaluations, we used a 60-MIPS mainframe computer
and the calculation times listed in the following tables are the
CPU times.

A. Iris Data

The Fisher iris data [10] consist of 150 data with four input
features and three classes. In our study, the training data were
composed of the first 25 data of each class, while the test data
were composed of the remaining 25 data of each class.

Table I shows the performance of the neural network clas-
sifier, the fuzzy classifier with hyperbox regions, and the
fuzzy classifier with ellipsoidal regions. The three-layered
neural network classifier with two hidden units was trained
ten times using different initial weights distributed in [—0.1,
0.1]; for each training the number of epochs was 1000 and
the learning rate was set to 1.0 with zero momentum. The
minimum number of misclassified test data was one and their
average number was 2.2. Using the fuzzy classifier with hy-
perbox regions, we previously found the minimum number of
misclassified test data was two and the corresponding number
of rules was 17 [3]. The left-hand side of the No. Wrong
column (see Table I) for the fuzzy classifier with ellipsoidal
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TABLE 1T
PERFORMANCE FOR THE NUMERAL TEST DaTA USING 12 INPUT FEATURES

Classifier Rate (%) No. Rules Time (s)
N.N. 99.41 (99.76—-98.90)1 6 units 79

Hyperbox 99.63 10 <1

Ellipsoid 99.63 (99.75)2 — 99.39 (99.88)2_ 10 4

O!: Minimum and maximum recognition rates
()2 Recognition rate of the training data

TABLE I
PERFORMANCE FOR THE NUMERAL TEST DATA USING SIX INPUT FEATURES
Classifier Rate (%) No. Rules Time (s)
N.N. 97.78 (98.66-96.83)1 6 units 417
Hyperbox 98.05 16 <1
Ellipsoid 98.29 (97.90)2 — 98.41 (99.26)2 10 3

0*: Minimum and maximum recognition rates
(2: Recognition rate of the training data

regions lists the numbers of the misclassified data for the test
data and the training data without tuning fuzzy rules and the
right-hand side lists the numbers of misclassified data for the
test and the training data after tuning fuzzy rules. Without
tuning, the number of the misclassified test data was one. With
one iteration of tuning, all the training data were correctly
classified, but the number of the misclassified test data was
increased to two. Namely, overfitting occurred. Therefore, for
the iris data, tuning was not necessary. The fuzzy classifier
with ellipsoidal regions realized the best performance of -the
neural network classifier with comparable computation time.

B. License Plate Recognition System

The data used in this study were originally collected to
develop a license plate recognition system [11], [12]. Numerals
from O to 9 were considered. Each of these data consisted of
12 input features extracted from the images of running cars
as taken by a television camera. There were 1630 data, which
were divided into 810 training data and 820 test data.

Table II shows the results for the three-layered neural net-
work classifier, the fuzzy classifier with hyperbox regions [3],
and the fuzzy classifier with ellipsoidal regions. The neural
network classifier with six hidden units was trained 100 times
with different initial weights; the maximum number of epochs
was set to 10000.

For the fuzzy classifier with ellipsoidal regions, without
clustering the number of fuzzy rules was ten. For the test
data, the best recognition rate of 99.63% was obtained without
tuning. This was the same recognition rate as the fuzzy
classifier with hyperbox regions; it was comparable to the
maximum recognition rate of the neural network classifier,
while the computation time was 20 times faster.

To produce a difficult classification situation, we used only
the first and eighth to twelfth features. Table III shows the
results. The best recognition rate of 98.41% was obtained by
tuning the fuzzy classifier with ellipsoidal regions. This was
better than that of the fuzzy classifier with hyperbox regions;
it was comparable to the maximum recognition rate of the
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TABLE IV
PERFORMANCE FOR THE THYROID TEST DATA
Classifier Rate (%) No. Rules _Time (s)
N.N. 98.00 (98.48-97.78)! 3units 60.8 min
Hyperbox 99.15 10 <5
Ellipsoid 86.41 (86.77)2 = 95.60 (96.02)2 3 25

O Minimum and maximum recognition rates
(2 Recognition rate of the training data

TABLE V
PERFORMANCE OF THE Fuzzy CLASSIFIER WITH ELLIPSOIDAL
REGIONS FOR THE THYROID DATA BY CHANGING I

Iy Init. (%) Final (%) Iterations Time (s)
1 86.41 (86.77) 87.08 (87.67) 2 10
5 86.41 (86.77) 94.37 (94.99) 8 29
10 86.41 (86.77) 95.60 (96.02) 7 25
15 86.41 (86.77) 95.62 (96.05) 5 19
20 86.41 (86.77) 95.60 (96.05) 5 19

(: Recognition rate of the training data

TABLE VI
PERFORMANCE OF THE Fuzzy CLASSIFIER WITH ELLIPSOIDAL REGIONS
FOR THE THYROID DATA BY CHANGING Nmax (Nmin = Nmax/2)

— Npgy No. Rules Init.(%) Final (%) Iterations Time (s)
- 3 86.41 (86.77) 95.60 (96.02) 7 25

1000 7 87.95 (88.04) 96.00 (96.92) 4 46
750 9 86.44 (87.35) 96.76 (97.14) 3 50
500 12 87.54 (86.90) 96.70 (97.59) 4 70
250 25 §7.78 (87.04) 96.79 (98.01) 4 174

0: Recognition rate of the training data

neural network classifier and the computation time was more
than one hundred times faster.

C. Thyroid Data

The thyroid data classify input data, consisting of 21 fea-
tures, into three classes. The training data and the test data
consist of 3772 and 3428 data, respectively. The characteristics
of the data are that the input features include 15 discrete
features and more than 92% of the data belong to one class.
Table IV shows the results. The three-layered neural network
classifier with three hidden units was trained ten times; the
number of epochs was 10000 and the computation time was
60.8 min for each simulation, 608 min in total. The fuzzy
classifier with hyperbox regions showed the best recognition
rate. The recognition rate of the fuzzy classifier with ellipsoidal
regions improved drastically by tuning, but it was less than
those of the neural network classifier and the fuzzy classifier
with hyperbox regions.

Table V shows the effect of I3, on the recognition rate
without clustering. In the table, the Init. column lists the
recognition rates of the test data and the training data without
tuning fuzzy rules, and the Final column lists the recognition
rates of the test and the training data after tuning fuzzy
rules. For [p; = 1, the final recognition rate of the test data
was 87.08% and there was little improvement, but when we
increased [, the recognition rate was drastically improved.
When [); was equal to or larger than ten, the recognition



366

TABLE VI
PERFORMANCE FOR THE THYROID TEST DATA USING Six CONTINUOUS INPUTS

Classifier Rate (%) No. Rules Time (s)
N.N. 96.42 (96.53-96.38)! 3units 23 min
Hyperbox 97.11 44 <5

Ellipsoid 94.31 (94.88)2 —> 95.83 (96.34)2 3 4
(!: Minimum and maximum recognition rates
(0%: Recognition rate of the training data

TABLE VIO
PERFORMANCE OF THE Fuzzy CLASSIFIER WITH ELLIPSOIDAL
REGIONS FOR THE THYROID DATA BY CHANGING Nmax
(Nmin = Nmax/2, Sxx CONTINUOUS INPUTS)

Nypge No.Rules  Init.(%) Final (%) lterations Time (s)

- 3 9431 (94.88) 95.83 (96.34) 5 4
1000 8 85.91 (83.99) 96.32(96.90) 5 10
750 9 85.71 (83.54) 96.47 (96.74) 4 10
500 13 83.46 (81.39) 96.44 (96.74) 4 12
250 5 89.93 (90.03) 96.44 (96.92) 3 6

Q: Recognition rate of the training data

rates were almost the same. Thus, it was a good choice to
set I3y = 10.

To improve the recognition rate of the fuzzy classifier with
ellipsoidal regions, we clustered the training data. Table VI
shows the results for [3; = 10. The maximum recognition rate
of 96.79% for the test data was obtained when Ny .x = 250,
but it was still lower than that of the neural network classifier
or the fuzzy classifier with hyperbox regions. The recognition
rate of the training data for Ny.x = 250 was 98.01%.

The poor performance of the fuzzy classifier with ellipsoidal
regions indicated that the distribution of the data for each
class was not Gaussian. This could be understood by the low
recognition rates of 86.41% for the test data and 86.77% for
the training data before tuning, as listed in Table IV. One of
the reasons that the distribution of the thyroid data was not
Gaussian was that 15 out of the 21 inputs were discrete. To
eliminate the effect of discrete inputs, we compared the per-
formance of the neural network classifier, the fuzzy classifiers
with hyperbox regions and ellipsoidal regions only using the
six continuous inputs that were the first and the 17th to the
21st inputs. Table VII shows the results for the neural network
classifier, the fuzzy classifier with hyperbox regions, and the
fuzzy classifier with ellipsoidal regions without clustering. The
training conditions of the neural network classifier were the
same as those with the 21 inputs. The recognition rates of
the test data dropped by about 2%; this meant that the 15
discrete inputs worked to improve the recognition rates of the
test data. For the fuzzy classifier with ellipsoidal regions, the
initial recognition rates improved to 94.31% for the test data
and to 94.88% for the training data, and the final recognition
rates were a little better than those, as listed in Table IV, when
the 21 inputs were used. Thus, for the fuzzy classifier with
ellipsoidal regions, the discrete inputs did not work to improve
the recognition rates at all.

Table VIII shows the performance of the fuzzy classifier
with ellipsoidal regions when the six continuous inputs were
used. The cases are the same with those listed in Table VI. The
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TABLE IX
PERFORMANCE FOR THE BLOOD CELL TEST DATA
Classifier Rate (%) No. Rules _Time (s)
N.N. 87.44 (90.46)! 15 units 133 min.
Polyhedron 90.58 (91.68)! 302 133 min.
Hyperbox 86.52 217 <5
Ellipsoid 87.45 (92.64)2 — 91.65 (95.41)2 12 29

(!: Maximum recognition rate
(2: Recognition rate of the training data

TABLE X
PERFORMANCE OF THE Fuzzy CLASSIFIER WITH ELLIPSOIDAL
REGIONS FOR THE BLOOD CELL DATA BY CHANGING Ips

/¥4 Init.(%) Final (%) Iterations Time (s)
1  87.45(92.64) 87.77(93.15) 2 15

5 87.45(92.64) 90.32(95.00) 4 30
10 87.45(92.64) 91.65 (95.41) 4 29
15 87.45(92.64) 91.39 (9541) 3 26
20 87.45(92.64) 91.55(95.38) 5 34
25 87.45(92.64) 91.29 (95.29) 4 28
30 87.45(92.64) 91.55(9538) 4 31

: Recognition rate of the training data

parameter [, was set to ten. The reason that the number of
the fuzzy rules for Ny,., = 250 was five and less than that for
Npax = 500 was that the clusters with more than 250 training
data were not divided because of the lower bound N ;, = 125.
When the training data were clustered the recognition rates of
the test data were comparable to those of the neural network
classifier and the fuzzy classifier with hyperbox regions.

D. Blood Cell Data

The blood cell data consist of 3097 training data and 3100
test data. The blood cell classification involves classifying
optically screened white blood cells into 12 classes using 13
features. This is a very difficult problem; class boundaries for
some classes are ambiguous because the classes are defined
according to the growth stages of blood white cells.

Table IX shows the results for the neural network classifier,
the fuzzy classifier with polyhedron regions [4], the fuzzy
classifier with hyperbox regions, and the fuzzy classifier
with ellipsoidal regions. The neural network classifier with
15 hidden units was trained 25 times with different initial
weights; the number of epochs was 15000 which required
133 min of CPU time. The fuzzy classifier with polyhedron
regions was derived from the neural network classifier. This
derivation was done within a minute. The fuzzy classifier with
polyhedron regions had the best recognition rate among the
three classifiers. The recognition rate of the fuzzy classifier
with hyperbox regions was 3-4% lower, but the fuzzy rule
extraction was extremely fast. For the fuzzy classifier with
ellipsoidal regions, the recognition rate of the test data, after
fuzzy rule tuning, was comparable to the maximum recognition
rate of the fuzzy classifier with polyhedron regions, while the
computation time was more than 200 times faster and the
number of rules was only one-twentyfifth.

Table X shows the performance of the fuzzy classifier with
ellipsoidal regions when [p; was changed. The training data
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Fig. 9. Convergence process of the blood cell data (17 = 10).

were not clustered; hence, the number of fuzzy rules was 12.
The initial recognition rate of the test data exceeded that of
the fuzzy classifier with hyperbox regions and the average
recognition rate of the neural network classifier. When [y
was larger than five, the recognition rates of the test data were
almost the same. Thus, in this case also, it was reasonable to
set {py = 10. Fig. 9 shows the convergence process when
Iy = 10. At the first iteration, the recognition rates of
both the training and test data were improved drastically and
subsequent improvement by the following iterations was small.

To check the effectiveness of the nondiagonal covariance
matrices, we evaluated the recognition rate of the test data
with {3y = 10 and setting the off-diagonal elements of the
covariance matrices to zero. The initial recognition rate was
80.10% and by tuning the recognition rate was improved to
84.19%. The recognition rate was less than 7% below that
with the nondiagonal covariance matrices. This meant that
the principal axes of the distribution of the blood cell data
belonging to a class were not parallel to the input variables
and this explained the reason why the recognition rate of the
test data by the fuzzy classifier with hyperbox regions was not
good, although the recognition rate of the training data was
100%——namely, overfitting. occurred.

VIL DISCUSSION

Except for the thyroid data, without clustering the training
data, the fuzzy classifier with ellipsoidal regions we have
proposed achieved a recognition rate of test data that was
comparable to or better than the maximum performance ob-
tained by the neural network classifier, the fuzzy classifier
with polyhedron regions, or the fuzzy classifier with hyperbox
regions. Especially for the blood cell data, the recognition
rate of the test data outperformed that of the fuzzy classifier
with hyperbox regions. For the fuzzy classifier with hyperbox
regions, the recognition rate of the training data was always
100% if there were no identical training data in different
classes. But since the principal axes of the distribution of the
training data belonging to a class were not parallel to the input
variables, a 100% recognition rate of the training data led to
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inferior recognition rate of the test data; namely, it caused
overfitting. Although the recognition rate of the training data
by the fuzzy classifier with ellipsoidal regions was 95.41%
at best, as listed in Table X, the drop of the recognition
rate of the test data was not significant when [, was larger
than one. As discussed in Section VI-D, this was because by
the nondiagonal covariant matrices the robust classifier was
created even when the principal axes of the distribution of the
training data were not paralle] to the input variables.

For the thyroid data, the fuzzy classifier with hyperbox
regions outperformed the neural network classifier and the
fuzzy classifier with ellipsoidal regions. The differences of the
thyroid data from other data were that 1) most of the inputs
were discrete; 2) more than 92% of the data belonged to one
class and, hence, the numbers of data for the other two classes
were small; and 3) the centers of classes were very close
to one another. One of the reasons that the fuzzy classifier
with ellipsoidal regions showed poor performance was that
because of the discrete inputs, the distribution of the training
data belonging to a class was not Gaussian. When we deleted
the discrete inputs, the recognition rate of the test data was still
slightly lower than that of the fuzzy classifier with hyperbox
regions. For the fuzzy classifier with hyperbox regions, the
recognition rate -of the training data was always 100%, as
stated above. For the thyroid data this worked to improve
the recognition rate of the test data since characteristics of
the training data and test data were similar. While for the
fuzzy classifier with ellipsoidal regions, since the centers of the
different classes were so close, the ellipsoidal regions of the
different classes overlapped significantly; thus, the recognition
rate of the training data was 96.92% at best when the six
continuous inputs were used (see Table VIII).

From the above discussions, we note the fuzzy classifier
with ellipsoidal regions will perform well when the distribution
of the training data belonging to a class is Gaussian and
it is especially advantageous over the fuzzy classifier with
hyperbox regions when the principal axes of the distribution
of the training data belonging to a class are not parallel to the
input variables.

Development of a pattern classification system needs repe-
tition of training, by changing the input variables to determine
the necessary input variables for classification, changing the
training data and the test data or gathering additional data to
obtain high generalization ability, and even by changing clas-
sifiers since no single classifier can give high generalization
ability for all classification problems. Thus, the training time
of the classifier used in the development needs to be as short
as possible. The training of the fuzzy classifier with ellipsoidal
regions is slower than that of the fuzzy classifier with hyperbox
regions, but much faster than that of the neural network
classifier or the fuzzy classifier with polyhedron regions and
the training time is not a problem. Thus, the fuzzy classifiers
with ellipsoidal regions and hyperbox regions are suited for
the development of large-scale classification problems.

VIII. CONCLUSIONS

We discussed a fuzzy classifier with ellipsoidal regions
which has a learning capability. First, we divided the training
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data for each class into several clusters. Then, for each cluster,
we defined a fuzzy rule with an ellipsoidal region around a
cluster center. Then we tuned the fuzzy rules successively
until there was no improvement in the recognition rate of
the training data. We evaluated our method using the Fisher
iris data, numeral data of vehicle license plates, thyroid data,
and blood cell data. The recognition rates, except for the
thyroid data, of our classifier were comparable to the maximum
recognition rates of the neural network classifier, and the
training times, except for the iris data, were two to three orders
of magnitude shorter. The fuzzy classifier with ellipsoidal
regions is especially suited when the distribution of the training
data belonging to a class is Gaussian and the principal axes
of the distribution of the training data belonging to a class are
not parallel to the input variables.
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