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A Method of Identifying Influential
Data in Fuzzy Clustering

Hideyuki Imai, Akira Tanaka, and Masaaki Miyakoshi

Abstract—n multivariate statistical methods, it is important to Il. Fuzzy C-MEANS ALGORITHM
identify influential observations for a reasonable interpretation . . . .
of the data structure. In this paper, we propose a method The FCM algorithm is to solve the following problem:
for identifying influential data in the fuzzy C-means (FCM)
algorithm. To investigate such data, we consider a perturbation minimize J,, (U, V) u md1st (zi, v 1
of the data points and evaluate the effect of a perturbation. As m( Z Z i) iva) ()
a perturbation, we consider two cases: one is the case in which
the direction of a perturbation is specified and the other is the where
case in which the direction of a perturbation is not specified. By
computing the change in the clustering result of FCM when given
data points are slightly perturbed, we can look for data points

=1 a=1

N the number of datal = {1, ---, N };
the fixed and known number of clus-

o)

that greatly affect the result. Also, we confirm an efficacy of the ters;
proposed method by numerical examples. m  the arbitrary chosen scalan > 1;
Index Terms—Fuzzy c-means algorithm, perturbation, sensi- 1, =+, v € R¥ data points in a feature space, which is
tivity analysis. the k-dimensional real Euclidean space
RF;
vy, -+, v, € R the unknown prototypes (cluster cen-
I. INTRODUCTION ters):
HE fuzzy C-means (FCM) is a generalization of the dist(z;, v,) the distance between; andw,.
ISODATA, a widely used clustering method, to the fuzzy
set theory. FCM was first proposed by Dunn [1] and later V= Cak i
developed by Bezdek [2]. FCM enables us to make flexible =[vy, - v ak x cma ”X_
partitions of a finite data set in a feature space. Therefore, U = (tai) € Mye: @ac x N matrix
FCM is used in many fields such as data analysis or image M. ={U = (uqi)|uas’s satisfy the following
segmentation and can be extended to fuzzy C-variates [3], conditions 1), 2), and 3)

fuzzy C-elliptotype clustering [4], fuzzy C-regression model

[5], and so on. , .
In FCM, noisy data points or outliers may greatly influence =) “ai € 0,1, Va=1,.-, ¢ Vi€l

the result. Therefore, some methods to detect appropriatez) Ea 1 “‘” =1,vie I

clusters in noisy data have been investigated [6]-[9]. In [6], ad) 0< E =1 Uai <N, Va =1,

concept of noise cluster is introduced and the noise clusteri‘rligth'_S paper, we use the Euclidean dlStanC@i'ﬂS(:vi, Va);

algorithm is proposed. The algorithm obtained in [9] is morat is

immune to noise by a possibilistic approach and, in [7] & 1/2

and [8], clustering algorithms based on the robust statistics dist(z:, va) = [Z (zis — vas)Q]

are presented. Furthermore, it is shown that some structural P

noise can be captured by fuzzy relations [10]. However, it

.. i L . here:ci = (.’IZZ‘S), Vo = (Uas).

is important to identify such data points as greatly affe The scalarm, called the weighting exponent of FCM,

the clustering result. In this paper, we propose a methodﬁ?

identifying influential data in FCM by evaluating the effect o he;erren;'&fsl’sﬂ;ﬁefﬁazrl:gss’sOr:atpde CﬁLuSiJ:T:qng t\é\gb;?nssstrgsg
a perturbation of data points. 9, 5,

to {0,1},Vi € I,Va = 1,---, ¢, and whenm is large,
the result is quite fuzzy; that isy.;'s tend to(1/c), Vi €
Manuscript received June 1, 1995; revised October 25, 1996. This reseaf¢hv v = 1, , C.
was supported in part by Grant-in-Aid for Scientific Research, Ministry (§mce it is dlf‘fICU|t to find the solution of (1), Dunn [1] and
of Education, Science, Sports, and Culture, Japan, Grants 07558149
0940048, BEZdek [2] proposed an algorithm based on the alternating
H. Imai and M. Miyakoshi are with the Division of Systems and Informatiodeast-squares method. Since the algorithm is based on a
Engineering, Hokkaido University, Sapporo, 060 Japan. nonlinear optimization, the obtained results may fail to give
A. Tanaka is with Matsushita Communication Industrial Co., Ltd., Yoko; . . .
hama, 224 Japan. the global minimum solution. The convergence properties of
Publisher Item Identifier S 1063-6706(98)00846-7. FCM are investigated by many researchers [11]-[15].
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In what follows, we assume that the global minimum Because the objective functiod,,(#) is regarded as a
solution (U*, V*) is obtained by some numerical method. function on®, we denote/,,(6) defined on® as follows:

N e¢—1 k
. SENSITIVITY ANALYSIS OF FCM T (0) = Z Z (Uai)™ Z (Tis — Vas)?
=1 a=1 s=1
A. Sensitivity Analysis N — . _
. L. L L “FZ 1—Zum‘ Z(wis—vcs)270€@.
A descriptive statistical method such as a cluster analysis is pet ! —

used in the early stage of data analysis. The practical data mUﬁI'
include observations that greatly affect the result. It is pointed

out that the investigation of such observations are report dD6 ¢
to be important for a reasonable interpretation of the dat €
structure [16]. For example, one data point far from other dajfi

ere, we assume to obtain the global minimum solution
e.

inition 4: Let H(#) be a{(c—1)x N +cx k} x {(c—

x N 4 ¢ x k} matrix defined as follows:

may cause inadequate results in FCM. 87, 8%
One way to evaluate an influence of some data points is Oup Ouy,  Oup Oven

to compute the results when these data points are removed. H) = . . .

However, since it requires high computing costs to obtain aQ'jm ' a2'jm

an accurate result, some approximation for evaluation have
been considered. For example, in Hayashi's methods of quan- _ 7
tification, principal component analysis, and factor analysi#at is,H(6) is the Hessian matrix of ,,,(¢). The elements of
the method of searching influential data is investigated #(6) are explicitly found in the Appendix.

[17]-[19]. Such a method is based on the perturbation expanSinceé is the global minimum solution of ., ()

sion of characteristic roots and vectors of a certain symmetric 0T .
matrix, such as a covariance or correlation matrix [20]. 857” 6

B. Identifying Influential Data in FCM holds andH(ﬁ*) is a nonnegative definite matrix.
In this section, we consider a method for identifying influ- Now we evaluate the _effect of perturbation. _Let a npnv0|d
. . ; subsetS C I be a set of indexes of the data points, which we
ential data points in FCM. . ) .
wish to perturb. By renumbering data points, we can assume

OverOury OV Ok

)=o0.

Definition 1: Let A = [a{, -+, a.] be an N x ¢ matrix . .
whereay, .-+, a. € RY, [tﬁen vec(fi) is an NV x ¢ vector 'thatS = {1, -+, I}. Then, the perturbed data poins i € I
defined as is represented by

xi+ed; +0(?), i=1,---,1
vec(A) = [a), ---, al]. i:{xiv () i=l+1, -, N
Definition 2: An (N + k) x ¢ vector@ is defined as where the unit vectod;, 7 = 1, ---, [ is the direction of
the perturbation ofr; and O(¢?) denotes the vector whose
0 = {[vec(U)]’, [vec(V")]'} elements are alD(£2); that is, bounded for smak?. As the
=[UiL, vy Uel, * oy UIN, 0y UeN directiond;, we consider the following two cases.
VILy -y ULk, Vels =+ -y Vet - 1) All d;,¢ = 1,---,1 are specified, which means that
an evaluation of the effect of the particular direction of
Sinceu;., i € I are not independent, we define a vecfor perturbation is needed. For example, we wish to evaluate
as follows. the effect when some components of data points are

Definition 3: Let@ be a{(c—1) x N +¢x k} vector, made perturbed.

by deletingucy, - - -, uen from @; that is 2) All d;,¢ =1, ---,1 are not specified. In this case, we
B wish to obtain the directions of perturbatiah), : =
O=[u11, -, Ue—1,1, "5 UIN, "+ Uer 1, N 1, ---, [, which make the effect of perturbation maxi-
Ullv"'vvlkv"'vvclv"'7Uck]/ mum.
For the case 1), we obtain Theorem 2 and Corollary 1 and
and for the case 2), we obtain Corollaries 2 and 3.

Definition 5: Let J,,(8, ¢), for @ € ©, ¢ € R denote the

0 = {0 ¢ R~V N+exky s satisfy the followi o : :
{oer [uai’s satisfy the following objective function for perturbed data poinjg ¢ € I.

conditions 1), 2), 3), and 4) For the perturbed data poinig, ¢ € I, the problem to be
solved is
1) e €0,1,Va=1,--+,c—=1,Vi eI T
2) 22—1 wei < 1,Vi € I mlgérglze JIm(8, ). 2

3) E;‘j Ugs < 1,3 € T,

il Notice that the objective function without perturbation is
4) 0< Ei:luai <N, Ya=1, --,c—1.

Jm(8). To clarify that@” is the solution of (2) in the case of
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Fig. 1. Butterfly data.
Fig. 3. The result of FCM for butterfly datar( = 2.0).
0.9
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Fig. 2. The result of FCM for butterfly datan{ = 1.5).

Fig. 4. The result of FCM for butterfly datan( = 2.5).

e = 0, we letd, denote the solution of (2) instead &t and
Uy wir Vo, i dENOte the elements 6. Our aim is to evaluate since all elements o(faQJm/aoag) (@5, 0) are linear combi-
the difference betweea0 and the solution of (2). About the nations ofd;, i = 1, -- -, I. m

solution, the following theorem holds. In (3) of Theorem 1, the influence of perturbation on
Theorem 1:If either of the following two conditions uic, ¢ € I is not evaluated. Noticing that

1) m > 2 . .
2) upai € (0, 1), Vie LVa=1,---,c—1 D uoai =Y uaile) =1, Viel
is satisfied and ifH(6,) is nonsingular, then a=1 a=1
g, _ then we obtain
ol c—1

can be analytically solved #= 6(¢) in the neighborhood of

Ugi(€) — up, o = Z [u

a=1

s
i

(€)

— U5, aile + O(e?

@,¢) = (6", 0) andd (0) = 6. Moreover,
From Theorem 1 and above, we get the following corollary.

0" () — 0y = H1(8,)L(0;)vec(D) - e + O(e2)  (3) Corollary 1: Let
where L() denotes d(c— 1) x N + ¢ x k] x (I x k) matrix . e—1 =1 & ko7
defined in the Appendix. ~1(60)L(6) = [E’ LB T g

Proof: If either condition 1) or 2) is satisfied, thei(8; ) . N c
exists and is nonsingular by the assumption. Then, by ttien
implicit function theorem [21], we obtaifl = 6(¢) and . . 5
0" (e) — 0, = Pvec(D) -+ O(e7) 4)

—k —% ok a Jrn

0 (5) - 00 - (00) aoa (007 )5 + 0(52)' where
The elements of92.7,,,/300¢) (B, 0) are explicitly found in ~ P=[E, —-FE;1 ... Ey\ -E\N1 F ... F!]

the Appendix. By the definition of.(,) in the Appendix
3 Jm
900e

andO(e?) denotes ar{N + ¢) x k vector whose elements are
all O(e?) and1 denotes &c — 1) vector whose elements are

L(8;)vec(D) ol ore

(8, 0) =
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Fig. 5. The effect of perturbation for butterfly data: (= 1.5).
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Fig. 6. The effect of perturbation for butterfly data: (= 2.0).

By using (4), we can compute the change in the clusterimd influence. For example, to consider the changes both in
result of FCM when perturbation , -- -, d; are added to the prototypes and in membership grade, the identity matrix should
data pointszy, - -, ;. be used ad¥. To consider the only changes in prototypes,

Now, we consider the case that the directions of the p rg Ig} should be used wherB, .. is the (k x ¢) x (k x ¢)
turbationd;, ¢ = 1, ---,1 are not specified. As a measurgdentity ‘matrix.
of influence,[0" () — 5] W6 (¢) — ;] is used wherdV is ~ When we evaluate the influence by the weighted
a given nonnegative definite matrix. By choosing a suitabpseudonorm of vector mentioned above, then we get the
matrix W as a weight, we can consider various measuréslowing corollaries.
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Fig. 7. The effect of perturbation for butterfly data: (= 2.5).
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Fig. 8. The effect of perturbation for butterfly data: (= 1.5).

Corollary 2: The coefficient of e? of the pseudonorm to \;, then the coefficient of? of [8* () —

[07(e) — 6o} W0 (e) — 6] is
d;

GQPwP| o,
d;

d, dd; =1,VieSs.

6 7 8 9 10 11 12 13 14 15
Number of perturbed data

SIW ()-8 is
maximized byd; = I; and the maximum value is equal }q.
Now, we evaluated the effect of the perturbation of each
data point of Butterfly. In this example, we perturb one data
point at a time for all 15 data points.
By using Corollaries 2 and 3, we can compute the maximal

Corollary 3: If S = {i;} and we let\; be the largest change in the clustering result of FCM when the data points
eigenvalue of” W P andl; be the corresponding eigenvectoare perturbed.
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TABLE |
THE BUTTERFLY DATA

TABLE IV
MAXIMUM EFFECT OF PERTURBATION AND |ITS DIRECTION

Data Membership grade Data Maximum effect and its direction
m = 1.5 m =20 m=25 m=15 m =20
¢ ;i uyi Ui Ul Ui Ui w2 [ 7 . b qQ°
T (—3.0,20) | 0977 0023 ]0.866 0.134 [ 0.773 0.227 1) ggjg E?'ggg’g'ggéi 8'82(1) g?'gég’g'ggéi
2 (=3.0,0.0) | 0.999 0.001|0.973 0.027 | 0.912 0.089 - b UL, UL ’, AR
3 (=3.0,-2.0) [ 0.977 0.023]0.866 0.134 | 0.773 0.227 3 | 0.045 (0.999,-0.034)  0.030 (0.924, -0.382)
4 (=2.0,1.0) | 0997 0.003 | 0.947 0.053 | 0.872 0.128 4 0.048 (1.000,—0.000) | 0.042 (0.979,0.204)
5 (=20,00) |1.000 0.000 | 0.999 0.001 | 0.992 0.008 5 10.049 (1.000,0.000) | 0.050 (1.000,0.000)
6 (=2.0,-1.0) | 0997 0.003 | 0.947 0.053 | 0.872 0.128 6 |0.048 (1.000,0.000) |0.042 (0.979,-0.204)
7 (-1.0,0.0) |0.982 0.018 | 0.883 0.117 | 0.798 0.202 - .
8 (0.0,0.0) | 0.500 0.500 { 0.500 0.500 | 0.500 0.500 é g'ggf (1'388’8'888) 8'(15;2 (1'838’8'883)
9 (1.0,0.0) |o0.018 0982]0.117 0.883 | 0.202 0.798 o (1.000,0.000) | 0. (1.000,0.000)
10 (2.0,1.0) [0.003 0996 | 0.053 0947 | 0.128 0.872 9 ]0.042 (1.000,0.000) |0.118 (1.000,0.000)
11 (2.0,0.0) | 0.000 1.000 | 0.001 0.999 | 0.008 0.992 10 | 0.048 (1.000,0.000) | 0.042 (0.979,—0.204)
12 (2.0,-1.0) | 0.003 0.997 | 0.053 0.947 | 0.128 0.872 11 {0.049 (1.000,0.000) | 0.050 (1.000,0.000)
13 (3.0,2.0) 0.023 0.977 | 0.134 0.866 | 0.227 0.773 12 ]0.048 (1.000,-0.000){0.042 (0.979,0.204)
14 (3.0,00) |0.001 0.999|0.027 0.973|0.088 0912 13 | 0.045 (0.999,—-0.034) | 0.030 (0.924, —0.382)
15 (3.0,-2.0) {0023 0977 ]0.134 0.866 | 0.227 0.773 14 {0048 (1.000,0.000) | 0.041 (1.000,0.000)
15 [0.045 (0.999,0.034) | 0.030 (0.924,0.382)
TABLE Il Data | Maximum effect and its direction
PrOTOTYPES OF CLUSTERS —
Cluster Prototypes 1 0.027 (0.853, —0.522)
number | m=1.5 m =20 m =235 2 ]0.050 (1.000, O.OQQ)
1 (-2.166, 0) | (-2.145, 0) | (-2.121, 0) 3 8822 (80%1323’065;;1))
2 2.166, 0) | (2.145,0) | ( 2.121,0 4 1005 776, =0
(2166.0) | (2.145.0) | ( ) 5 |0.083 (1.000, 0.000)
6 |0.053 (0.776,0.631)
T 10142 (1.000, 0.000)
TABLE IIl ! :
EVALUATION OF A PERTURBATION WITH A DIRECTION (O, 1) 8 0.282 (1.000,0.000)
9 ]0.142 (1.000, 0.000)
Data Effect of Perturbation 10 | 0.053 (0.776,0.631)
m=1.5 m = 2.0 m=2.35 11 | 0.088 (1.000, 0.000)
1 [2951e—04 | 4.491¢ — 04 | 3.8271e — 04 12 10.053 (0.776,-0.631)
2 4.229¢ — 04 | 1.253e — 03 | 2.5313¢ — 03 13 040‘57 (0.853,0.522)
3 | 2.951e - 04 | 4.491e — 04 | 3.8271e — 04 B (()Oéosgo, 160;)3%
4 [3962¢ 04| 1.088¢ ~ 03] 2.0439¢ — 03 2 - (0.853, ~0.522)
5 |4.246e—04 | 1.543e — 03 | 5.9102¢ — 03
6 3.962¢ — 04 | 1.088¢ — 03 | 2.0439¢ — 03 In Corollary 3, it is shown that the maximal value of the
7 3.805¢ — 04 | 5.713¢ — 04 | 6.5676e — 04 coefficient is the largest eigenvalue BfW P. Nevertheless,
8 2.535¢ — 05 | 1.922¢ — 05 | 1.7425¢ — 05 if we wish to perturb multiple data points, maximizing the
9 3.805¢ — 04 | 5.713e¢ — 04 | 6.5676e — 04 coefficient is not reduced to the ordinary eigen problem as in
10 | 3.962e — 04 | 1.088¢ — 03 | 2.0439¢ — 03 Corollary 3. To maximize the quadratic form in Corollary 2,
11 | 4.246e — 04 | 1.543¢ — 03 | 5.9102¢ — 03 we use the numerical optimization stated in [22].
12 1 3.962¢ — 04 | 1.088e — 03 | 2.043%¢ — 03
13 | 2.951e — 04 | 4.491e — 04 | 3.8271e — 04 IV. NUMERICAL EXAMPLE
l‘f ?'229"‘_04 1.253¢ — 03 ?‘5?136_03 In this section, we confirm the efficacy of the method
15_]2.951e~04 ] 4.491e— 04 | 3.8271e — 04 proposed in this paper by numerical examples. As a weight
W stated in the previous section, we use {é x ¢ + &k x
| ¢) x (N x ¢+ k x ¢) identity matrix; that is, the change both
- B, . in prototypes and membership grade is considered.
Example 1: The data set used in this example consists of
<_40 0 . the 15 points ink? listed in Table | and illustrated graphically
) in Fig. 1, which is called Butterfly [2], [23]. Table Il shows the
2 5 7 8 9 I 14 results of FCM with weighting exponents = 1.5, m = 2.0,
-0 -0 -0 O O =
and m = 2.5 where the cluster number = 2. These are
6 12 illustrated in Fig. 2 f» = 1.5), in Fig. 3 (m = 2.0), and
- A in Fig. 4 (m = 2.5). In these figures, the numbers near the
3 15 data points are the grades in cluster 1 (rounded off of the
- O

Fig. 9. Directions that make effect of perturbation maximum £ 1.5).

third decimal place) and the filled rectangles are prototypes
of each cluster, which are listed in Table II. This result is the
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Fig. 10. The effect of perturbation for butterfly data: (= 2.0).
1 13 TABLE V
0 Keund NUTRIENTS IN MEAT, FisH, AND FowL
4 Food Ener- Pro- Fat Cal- Tron
~—0 100/7 gy tein ciumm
BB (Beef, braised) 11 29 28 1 26
5 5 7 8 9 11 14 HR (Hamburger) 8 30 17 1 27
-— -0 -0 O—w O—m O—m O—» BR.(Beef, roast) 13 21 39 1 20
BS (Beef, steak) 12 27 32 1 26
6 12 BC { Beef, canned) 6 31 10 2 37
<0 oug CB ( Chicken, broiled) 4 29 3 1 14
CC ( Chicken, canned) 5 36 7 2 15
3 15 BH ( Beef heart) 5 37 5 2 59
Pusel O LL ( Lamb leg, roast) & 29 20 1 26
LS { Lamb shoulder, roast) 9 26 25 1 25
Fig. 11. Directions that make effect of perturbation maximum=£ 2.0). HS ( Smoked ham ) 11 29 28 1 25
PR ( Pork roast) 11 27 29 1 25
PS ( Pork simmered) 11 27 30 1 25
. L L . BT ( Beef tongue) 6 26 14 4 25
(U, v, wr_nch minimizes the ob!ef:'Flve fur?c.tlodm among v ( veal cutlet) 6 33 9 1 27
100 experiments with a random initial partition matfix®. FB ( Bluefish, baked) 4 31 3 6
At first, we consider the case where each direction ofﬁg((gl‘::: raw) 0 : oo YW
. . . . ; ¥ S, C ¥
perturbationsd;, ¢ = 1, ---, 15 is specified. Table Ill Shows ¢ ( Crabmeat, canned) 3 20 9 5 8
the coefficient? of the norm[@*(e) — 65])'[0" () — 65] when ~ HF ((Haddock. fried) 4 23 5 2 5
. ; : Ly MB ( Mackerel, broiled) 6 27 13 1 10
Fhe ith datg pqmt is perturbeq WI'[.H = (0, 1). These aré  \1c ( Mackerel, canned) 5 23 9 20 18
illustrated in Fig. 5 f» = 1.5), in Fig. 6 ¢n = 2.0), and in PF ( Perch, fried) 6 23 11 2 13
F|g 7 (m — 25) SC ( Salmon, canned) 4 24 5 20 7
A b £ the tabl d th fi th f DC ( Sardines, canned) 6 31 9 46 25
s can be seen from the tables and these figures, the effect§¢: ( runa, canned) 5 3% 7 1 12
of perturbation are not so large for all 15 data points for RC ( Shrimp, canned) 3 33 1 12 26

the weighting exponents: = 1.5, m = 2.0, andm = 2.5.
Especially, the effect of data eight is significantly small.

Second, we consider the case in which the direction of(ax = 1.5), Figs. 10 and 1174 = 2.0), and Figs. 12 and 13
perturbation is not specified. By Corollary 3, we can find thén = 2.5), respectively.
direction of a perturbation which maximizes the coefficient of From these table and figures, in the caserof= 1.5, we
2 of the norm[0*(e) — 6]’ [0" (<) — 6] when one data point find that the perturbation of the data point (0, 0) has a large
is perturbed. Table IV shows the maximum coefficients areffect on the result when the direction of the perturbation is
these vectors wheith data point is perturbed. The maximumalmost (1, 0). However, in the case @f = 2.0 andm = 2.5,
coefficient and the directions are illustrated in Figs. 8 andtBe effect of the perturbation of the data point (0, 0) is not so
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Fig. 12. The effect of perturbation for butterfly datae (= 2.5).

TABLE VI
ResuLT oF FCM WitTH ¢ = 2 AND m = 1.5

Food | Membership grade | Food | Membership grade
U4 Uog Uy Uy
BB | 0.9840 0.0160 VC | 0.5770 0.4230
HR | 0.9857 0.0143 FB | 0.0168 0.9832
BR | 0.8604 0.1396 AR | 0.6899 0.3101
BS | 0.9668 0.0332 AC | 0.6662 0.3338
BC | 0.9006 0.0994 TC | 0.0199 0.9801
CB | 0.0091 0.9909 HE | 0.0265 0.9735
CC | 0.0382 0.9618 MB | 0.0529 0.9471
BH | 0.7548 0.2452 MC | 0.0882 0.9118
LL | 0.9941 0.0059 PF | 0.0347 0.9653
LS 0.9895 0.0105 SC | 0.0411 0.9589
HS | 0.9789 0.0211 DC | 0.3786 0.6214
PR | 0.9767 0.0233 UC ] 0.0383 0.9617
PS | 0.9724 0.0276 RC | 0.1161 0.8839
BT | 0.8189 0.1811
TABLE VI
PROTOTYPES OF CLUSTERS
Cluster Prototypes
nunmber | Energy Protein  Fat  Calcium  Iron
1 8.487 27.04 20.73 2.952 30.44
2 4.534 27.56 6.355 7.630 14.96

1

13

\O o/(
N 0/
) o}

2 5 7 8 9 11 14

-0 -=-—C -=-—O O—w O—w O—» O—w
6 12
s ~
3 15

Fig. 13. Directions that make effect of perturbation maximum= 2.5).

k-means algorithm in [22]. Food energy, protein, calcium, and
iron show percentages of content to their recommended daily
dietary allowance; fat shows the weight (grams) of content of
each food (rounded off of the first decimal place) [22]. For

example, braised beef (BB) delivers about 11% of the daily
allowance of calories and 28 grams of fat.

Tables VI and VII show membership grade and prototypes
of each cluster by FCM with cluster size= 2 and weighting
exponentm = 1.5. The membership grade in cluster 1 is
illustrated in Fig. 14.

In the same manner of Example 1, we consider the case that
one data point is perturbed at a time for all 27 data points and
a direction of perturbation is not specified. Therefore, we find
the direction of perturbation which maximizes the coefficient

large as one ofn = 1.5. This makes sense that the sensitivitpf £2 of the norm[6* (e) — 65]'[0* () — 6] by Corollary 3. The
generally decreases as — oo.

Example 2: Data used in this example consists of the 2f@erturbation and the third column shows direction maximizing
points in k>, listed in Table V. This data is investigated forthe coefficient.

second column of Table VIII shows the maximum effect of
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Fig. 16. Membership grade in cluster 1 (percentage of iron of VC is changed).

These results are illustrated in Fig. 15. From these results, APPENDIX
we find that the effect of veal cutlet (VC) is quite large and the
percentage of iron seems to cause the large effect. To confimCalculation of Hessian of ,,,(0)
the effect of veal cutlet, we now change the percentage of| o H(8)be the Hessian matrix of,,(6); then we get
iron of veal cutlet from 27 to 28 and apply FCM algorithm. _ _
The membership grade and prototypes are found in Tables IX A O Bu - Br
and X, respectively, and the membership grade in cluster
1 is illustrated in Fig. 16. From Table IX, we find that the H(@) |1 O Ay Byi1 -+ Bne
membership grade in the cluster 1 for veal cutlet changes to “ |Bu -+ Biy D O
0.4848 and the membership grade in the cluster 2 is larger than . -
one in the cluster 1. The results is counter to one for original By -+ By O ' D
(unchanged) data; so we confirm that the percentage of iron e ¢ ¢

of veal cutlet greatly affects the results. where
277 277
g [ PIm | g [ &Tm
8u,gi8uwi 8u,gi8vat
V. CONCLUSIONS [ 8T
In this paper, we propose a method of identifying influential C | OVasOVat |

observations in FCM. As the direction of a perturbation, We The elements ofd;, B;., D, are as follows:
consider both specified and unspecified cases and confirm the __
927
effectiveness of the method. In a numerical example, we deal m
with the influence of a single individual. We must develop an 93i0t;

efficient algorithm for finding the maximum of the quadratic ( k
form stated in Corollary 2. m(m — 1){(ug:)™? Z(ﬂfis — vgs)?
In examples, we evaluated the effects of perturbation by ‘ s
both changes in membership grades and changes in prototypes. _ (t0) ™2 Z i — ves)2), 8=~

From the practical point of view, various measures of influence
may be considered, for example, only changes in prototypes.
Moreover, we will investigate the issue of fuzziness in fuzzy m(m — 1) (ue)™ 2 Z Tis — Ves)?, B #E
clustering from the viewpoint of the sensitivity analysis. \

99
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TABLE VIII TABLE IX
MAXIMUM EFFECT OF PERTURBATION AND ITS DIRECTION ResuLT oF FCM witTH ¢ = 2 AND m = 1.5
(PERCENTAGE OFIRON OF VC |s CHANGED)
Food Energy Protein Ifat Cal. fron Food Membership grade Food Membership grade
BB | 0.021 | (0.2275  0.1064  -0.0153 0.1757  0.9516 ) Ui Uai Ui Ui
BB 0.9847 0.0153 vC 0.4848 0.5152
HR | 0.023 [ (0.2240 0.1314 0.0969  0.1742  0.9449 ) HR 0.9844 0.0156 FB 0.0171 0.9829

BR | 0.8633  0.1367 AR | 0.6860  0.3140
BS | 0.9681 0.0319 AC | 0.6623  0.3377
BS | 0.017 | (0.2263  0.1022 -0.0179 0.1763  0.9523 ) BC | 0.8941  0.1059 TC | 0.0204  0.9797
CB {0.0088  0.9912 HF | 0.0271  0.9729
CC | 0.0366  0.9634 MB | 0.0529  0.9471

BR [ 0.010 | (0.2545 0.0790 0.1228 09551 -0.0421)

BC | 0.011 | (0.0179  -0.1736  0.1927 0.9525 0.1586 )

CB | 0.024 | (-0.0216 -0.0894 -0.0621 0.2707  0.9562 ) BH 1§ 0.7501 0.2499 MC | 0.0885 0.9115
, o , ) X N LL | 0.9939 0.0061 PF | 0.0346 0.9654
CC | 0.021 | (-0.0213 -0.0263  0.2450  0.9671  0.0593 ) 1S | 0.9901 0.0099 s | 0.0421 0.9579
BH | 0.006 | (0.1700  0.1771  ©0.1355 0.9511 -0.1285) HS | 0.9798 0.0202 DC | 0.3783 0.6217
o - ) . o PR | 0.9777 0.0223 UC | 0.0374 0.9626
LL 0.024 (()..3.”() 0.0966 -0.0200 0.1765 0.9516 ) PS 0.9735 0.0265 RC 0.1113 0.8887
LS | 0.022 | (02443 0.0837  -0.0210  0.1521  0.9538 ) BT | 0.8078  0.1922
HS | 0.020 | (0.2310  0.1001  -0.0137 0.1734  0.9520 )
. e o o TABLE X
PR | 0.019 | (0.2360 00935  -0.0133  0.1785  0.9504 ) ProTOTYPES OFCLUSTERS (PERCENTAGE OFIRON OF VC |s CHANGED)
PS | 0.018 | (0.2422  0.0884  -0.0180 0.1760  0.9499 ) Cluster Prototypes
BT | 0.052 | (0.1578 02074  -0.0278 0.1350  0.9556 ) number | Energy Protein  Fat  Calcium Iron
1 8.523 26.99 20.88 2.959 30.40
vC 0.118 (0.1721 0.2012 0.0404 0.1170 0.9563 ) 2 4.543 27.60 6.369 7.574 15.08

FB | 0.021 | (-0.0219  -0.0773 0.2326  0.1262 0.9610 )

-0.025: 5 9526 -0.176 . — -
AR | 0.008 | (02230  -0.0253  0.1057  0.9526 -0.1761 ) B. Calculation of9?7,, /080e
AC | 0.011 | (0.2200  -0.0468  0.0596 0.9472  -0.2206 ) Let
TC | 0.022 | (-0.0313 -0.0631 0.1995 0.2516  0.9444 )
(927 . c—1 c—1 k k !
HF | 0.020 | (-0.0187 -0.0752 0.2230 0.1601  0.9585 ) ™ (g, 0) = ,-(A),\ ,-(«)7 5 o
> ="« 1 2 2y’
900s "’ L cee gt
MB | 0.021 | (0.0320 0.0714 01132 0.9758  0.1700 ) 91 UJS c
. -0.0203 0. . . 1022
MC | 0.016 | (-0.0203 0.2213  0.1326 0.9605 0.1022 ) where
PF | 0.022 | (0.0011 00100 02361 0.9368 -0.2579 )
B ym—1 L N .
sc | 0021 | (-0.0180 -0.1854  0.0801  0.1895  0.9607 ) (u1i) Z (wij = vig)di
j
D | ooos | (01811 0.1956  0.0957  0.9589  0.0182 ) W _
g, = —z«m

UC | 0.022 | (-0.0103  -0.0308 0.2463 0.9678 0.0415 )

(o1, )™ Y~ (@ij = vem1,5) di
L i
(ue)™ 1D (@i = vey) di

;

RC | 0.009 | (-0.1363 0.1134 0.1785 0.9625 -0.1018 )

—+ 2m : s
P ()™ 1Y (wij — vej) dij
8u,gi8vat L J
—2m(ug) ™ Hxiw —va), a#c,a=p i=1-1
= 07 a#cvc)é#ﬁ 951)20, L:l+1,,N
2m(ue)™ N —vet), a=c T 1
N -2 Z(U/ai)mdil
— 2 Ui nl, s=1 =1
Pm zi:( ) @) _
avasavat N “ 1 '
2 zz:(ucz) ) S 7£ t _9 Z(uai)"ldik
L =1 u

whereue; = 1 — 57 . andue = 1 — 357 .
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C. Definition of L()
We obtainL(8;) as follows:

(23]

[14]

L 0
[15]
_ o) L(l)
L) = |, L) 126]
11 1
[17)
2 ) s

where [19]

LW = _

i 2m

uﬁ_l(xil —v11) u?z_l(azzk — V1k) [20]

: : [21]
wel i (win = vem1g) o ul i (wi = vemin) | )
wl N —ver) o upt (@i — Ven) (23]
+ 2m : : ;
wl N —ver) e upt (@i — Ven)
LE) = — 2(uai) I
and I is the k£ x k identity matrix.
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