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A Method of Identifying Influential
Data in Fuzzy Clustering
Hideyuki Imai, Akira Tanaka, and Masaaki Miyakoshi

Abstract—In multivariate statistical methods, it is important to
identify influential observations for a reasonable interpretation
of the data structure. In this paper, we propose a method
for identifying influential data in the fuzzy C-means (FCM)
algorithm. To investigate such data, we consider a perturbation
of the data points and evaluate the effect of a perturbation. As
a perturbation, we consider two cases: one is the case in which
the direction of a perturbation is specified and the other is the
case in which the direction of a perturbation is not specified. By
computing the change in the clustering result of FCM when given
data points are slightly perturbed, we can look for data points
that greatly affect the result. Also, we confirm an efficacy of the
proposed method by numerical examples.

Index Terms—Fuzzy c-means algorithm, perturbation, sensi-
tivity analysis.

I. INTRODUCTION

T HE fuzzy C-means (FCM) is a generalization of the
ISODATA, a widely used clustering method, to the fuzzy

set theory. FCM was first proposed by Dunn [1] and later
developed by Bezdek [2]. FCM enables us to make flexible
partitions of a finite data set in a feature space. Therefore,
FCM is used in many fields such as data analysis or image
segmentation and can be extended to fuzzy C-variates [3],
fuzzy C-elliptotype clustering [4], fuzzy C-regression model
[5], and so on.

In FCM, noisy data points or outliers may greatly influence
the result. Therefore, some methods to detect appropriate
clusters in noisy data have been investigated [6]–[9]. In [6], a
concept of noise cluster is introduced and the noise clustering
algorithm is proposed. The algorithm obtained in [9] is more
immune to noise by a possibilistic approach and, in [7]
and [8], clustering algorithms based on the robust statistics
are presented. Furthermore, it is shown that some structural
noise can be captured by fuzzy relations [10]. However, it
is important to identify such data points as greatly affect
the clustering result. In this paper, we propose a method of
identifying influential data in FCM by evaluating the effect of
a perturbation of data points.
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II. FUZZY C-MEANS ALGORITHM

The FCM algorithm is to solve the following problem:

minimize (1)

where

the number of data, ;
the fixed and known number of clus-
ters;
the arbitrary chosen scalar, ;
data points in a feature space, which is
the -dimensional real Euclidean space

;
the unknown prototypes (cluster cen-
ters);

( ) the distance between and .

a matrix

a matrix

’s satisfy the following

conditions 1), 2), and 3)

1) ;
2) ;
3) .

In this paper, we use the Euclidean distance as( );
that is

where , .
The scalar , called the weighting exponent of FCM,

determines the fuzziness of the clustering. Whenis small
the result is the same as hard clustering; that is,’s tend
to , and when is large,
the result is quite fuzzy; that is, ’s tend to

.
Since it is difficult to find the solution of (1), Dunn [1] and

Bezdek [2] proposed an algorithm based on the alternating
least-squares method. Since the algorithm is based on a
nonlinear optimization, the obtained results may fail to give
the global minimum solution. The convergence properties of
FCM are investigated by many researchers [11]–[15].
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In what follows, we assume that the global minimum
solution is obtained by some numerical method.

III. SENSITIVITY ANALYSIS OF FCM

A. Sensitivity Analysis

A descriptive statistical method such as a cluster analysis is
used in the early stage of data analysis. The practical data must
include observations that greatly affect the result. It is pointed
out that the investigation of such observations are reported
to be important for a reasonable interpretation of the data
structure [16]. For example, one data point far from other data
may cause inadequate results in FCM.

One way to evaluate an influence of some data points is
to compute the results when these data points are removed.
However, since it requires high computing costs to obtain
an accurate result, some approximation for evaluation have
been considered. For example, in Hayashi’s methods of quan-
tification, principal component analysis, and factor analysis,
the method of searching influential data is investigated in
[17]–[19]. Such a method is based on the perturbation expan-
sion of characteristic roots and vectors of a certain symmetric
matrix, such as a covariance or correlation matrix [20].

B. Identifying Influential Data in FCM

In this section, we consider a method for identifying influ-
ential data points in FCM.

Definition 1: Let be an matrix
where , then is an vector
defined as

Definition 2: An vector is defined as

Since are not independent, we define a vector
as follows.

Definition 3: Let be a vector, made
by deleting from ; that is

and

’s satisfy the following

conditions 1), 2), 3), and 4)

1) ;
2) ;
3) ;
4) .

Because the objective function is regarded as a
function on , we denote defined on as follows:

Here, we assume to obtain the global minimum solution
.

Definition 4: Let be a
matrix defined as follows:

...
...

...

that is, is the Hessian matrix of . The elements of
are explicitly found in the Appendix.

Since is the global minimum solution of

holds and is a nonnegative definite matrix.
Now we evaluate the effect of perturbation. Let a nonvoid

subset be a set of indexes of the data points, which we
wish to perturb. By renumbering data points, we can assume
that . Then, the perturbed data points
is represented by

where the unit vector is the direction of
the perturbation of and denotes the vector whose
elements are all ; that is, bounded for small . As the
direction , we consider the following two cases.

1) All are specified, which means that
an evaluation of the effect of the particular direction of
perturbation is needed. For example, we wish to evaluate
the effect when some components of data points are
perturbed.

2) All are not specified. In this case, we
wish to obtain the directions of perturbation

, which make the effect of perturbation maxi-
mum.

For the case 1), we obtain Theorem 2 and Corollary 1 and
for the case 2), we obtain Corollaries 2 and 3.

Definition 5: Let , for denote the
objective function for perturbed data points .

For the perturbed data points , the problem to be
solved is

minimize (2)

Notice that the objective function without perturbation is
. To clarify that is the solution of (2) in the case of
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Fig. 1. Butterfly data.

Fig. 2. The result of FCM for butterfly data (m = 1:5).

, we let denote the solution of (2) instead of and
denote the elements of . Our aim is to evaluate

the difference between and the solution of (2). About the
solution, the following theorem holds.

Theorem 1: If either of the following two conditions

1) ;
2)

is satisfied and if is nonsingular, then

can be analytically solved as in the neighborhood of
and . Moreover,

(3)

where denotes a matrix
defined in the Appendix.

Proof: If either condition 1) or 2) is satisfied, then
exists and is nonsingular by the assumption. Then, by the
implicit function theorem [21], we obtain and

The elements of are explicitly found in
the Appendix. By the definition of in the Appendix

Fig. 3. The result of FCM for butterfly data (m = 2:0).

Fig. 4. The result of FCM for butterfly data (m = 2:5).

since all elements of are linear combi-
nations of .

In (3) of Theorem 1, the influence of perturbation on
is not evaluated. Noticing that

then we obtain

From Theorem 1 and above, we get the following corollary.
Corollary 1: Let

then

(4)

where

and denotes an vector whose elements are
all and denotes a vector whose elements are
all one.
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Fig. 5. The effect of perturbation for butterfly data (m = 1:5).

Fig. 6. The effect of perturbation for butterfly data (m = 2:0).

By using (4), we can compute the change in the clustering
result of FCM when perturbations are added to the
data points .

Now, we consider the case that the directions of the per-
turbation are not specified. As a measure
of influence, is used where is
a given nonnegative definite matrix. By choosing a suitable
matrix as a weight, we can consider various measures

of influence. For example, to consider the changes both in
prototypes and in membership grade, the identity matrix should
be used as . To consider the only changes in prototypes,

should be used where is the
identity matrix.

When we evaluate the influence by the weighted
pseudonorm of vector mentioned above, then we get the
following corollaries.
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Fig. 7. The effect of perturbation for butterfly data (m = 2:5).

Fig. 8. The effect of perturbation for butterfly data (m = 1:5).

Corollary 2: The coefficient of of the pseudonorm
is

...

Corollary 3: If and we let be the largest
eigenvalue of and be the corresponding eigenvector

to , then the coefficient of of is
maximized by and the maximum value is equal to.

Now, we evaluated the effect of the perturbation of each
data point of Butterfly. In this example, we perturb one data
point at a time for all 15 data points.

By using Corollaries 2 and 3, we can compute the maximal
change in the clustering result of FCM when the data points
are perturbed.
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TABLE I
THE BUTTERFLY DATA

TABLE II
PROTOTYPES OFCLUSTERS

TABLE III
EVALUATION OF A PERTURBATION WITH A DIRECTION (0, 1)

Fig. 9. Directions that make effect of perturbation maximum (m = 1:5).

TABLE IV
MAXIMUM EFFECT OF PERTURBATION AND ITS DIRECTION

In Corollary 3, it is shown that the maximal value of the
coefficient is the largest eigenvalue of . Nevertheless,
if we wish to perturb multiple data points, maximizing the
coefficient is not reduced to the ordinary eigen problem as in
Corollary 3. To maximize the quadratic form in Corollary 2,
we use the numerical optimization stated in [22].

IV. NUMERICAL EXAMPLE

In this section, we confirm the efficacy of the method
proposed in this paper by numerical examples. As a weight

stated in the previous section, we use the
identity matrix; that is, the change both

in prototypes and membership grade is considered.
Example 1: The data set used in this example consists of

the 15 points in listed in Table I and illustrated graphically
in Fig. 1, which is called Butterfly [2], [23]. Table II shows the
results of FCM with weighting exponents , ,
and where the cluster number . These are
illustrated in Fig. 2 ( ), in Fig. 3 ( ), and
in Fig. 4 ( ). In these figures, the numbers near the
data points are the grades in cluster 1 (rounded off of the
third decimal place) and the filled rectangles are prototypes
of each cluster, which are listed in Table II. This result is the
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Fig. 10. The effect of perturbation for butterfly data (m = 2:0).

Fig. 11. Directions that make effect of perturbation maximum (m = 2:0).

, which minimizes the objective function among
100 experiments with a random initial partition matrix .

At first, we consider the case where each direction of
perturbations , is specified. Table III shows
the coefficient of the norm when
the th data point is perturbed with . These are
illustrated in Fig. 5 ( ), in Fig. 6 ( ), and in
Fig. 7 ( ).

As can be seen from the tables and these figures, the effects
of perturbation are not so large for all 15 data points for
the weighting exponents , , and .
Especially, the effect of data eight is significantly small.

Second, we consider the case in which the direction of a
perturbation is not specified. By Corollary 3, we can find the
direction of a perturbation which maximizes the coefficient of

of the norm when one data point
is perturbed. Table IV shows the maximum coefficients and
these vectors whenth data point is perturbed. The maximum
coefficient and the directions are illustrated in Figs. 8 and 9

TABLE V
NUTRIENTS IN MEAT, FISH, AND FOWL

( ), Figs. 10 and 11 ( ), and Figs. 12 and 13
( ), respectively.

From these table and figures, in the case of , we
find that the perturbation of the data point (0, 0) has a large
effect on the result when the direction of the perturbation is
almost (1, 0). However, in the case of and ,
the effect of the perturbation of the data point (0, 0) is not so
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Fig. 12. The effect of perturbation for butterfly data (m = 2:5).

TABLE VI
RESULT OF FCM WITH c = 2 AND m = 1:5

TABLE VII
PROTOTYPES OFCLUSTERS

large as one of . This makes sense that the sensitivity
generally decreases as .

Example 2: Data used in this example consists of the 27
points in , listed in Table V. This data is investigated for

Fig. 13. Directions that make effect of perturbation maximum (m = 2:5).

-means algorithm in [22]. Food energy, protein, calcium, and
iron show percentages of content to their recommended daily
dietary allowance; fat shows the weight (grams) of content of
each food (rounded off of the first decimal place) [22]. For
example, braised beef (BB) delivers about 11% of the daily
allowance of calories and 28 grams of fat.

Tables VI and VII show membership grade and prototypes
of each cluster by FCM with cluster size and weighting
exponent . The membership grade in cluster 1 is
illustrated in Fig. 14.

In the same manner of Example 1, we consider the case that
one data point is perturbed at a time for all 27 data points and
a direction of perturbation is not specified. Therefore, we find
the direction of perturbation which maximizes the coefficient
of of the norm by Corollary 3. The
second column of Table VIII shows the maximum effect of
perturbation and the third column shows direction maximizing
the coefficient.
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Fig. 14. Membership grade in cluster 1.

Fig. 15. Effect of perturbation.
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Fig. 16. Membership grade in cluster 1 (percentage of iron of VC is changed).

These results are illustrated in Fig. 15. From these results,
we find that the effect of veal cutlet (VC) is quite large and the
percentage of iron seems to cause the large effect. To confirm
the effect of veal cutlet, we now change the percentage of
iron of veal cutlet from 27 to 28 and apply FCM algorithm.
The membership grade and prototypes are found in Tables IX
and X, respectively, and the membership grade in cluster
1 is illustrated in Fig. 16. From Table IX, we find that the
membership grade in the cluster 1 for veal cutlet changes to
0.4848 and the membership grade in the cluster 2 is larger than
one in the cluster 1. The results is counter to one for original
(unchanged) data; so we confirm that the percentage of iron
of veal cutlet greatly affects the results.

V. CONCLUSIONS

In this paper, we propose a method of identifying influential
observations in FCM. As the direction of a perturbation, we
consider both specified and unspecified cases and confirm the
effectiveness of the method. In a numerical example, we deal
with the influence of a single individual. We must develop an
efficient algorithm for finding the maximum of the quadratic
form stated in Corollary 2.

In examples, we evaluated the effects of perturbation by
both changes in membership grades and changes in prototypes.
From the practical point of view, various measures of influence
may be considered, for example, only changes in prototypes.
Moreover, we will investigate the issue of fuzziness in fuzzy
clustering from the viewpoint of the sensitivity analysis.

APPENDIX

A. Calculation of Hessian of

Let be the Hessian matrix of ; then we get

...

...

where

The elements of are as follows:
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TABLE VIII
MAXIMUM EFFECT OF PERTURBATION AND ITS DIRECTION

where .

TABLE IX
RESULT OF FCM WITH c = 2 AND m = 1:5

(PERCENTAGE OFIRON OF VC IS CHANGED)

TABLE X
PROTOTYPES OFCLUSTERS (PERCENTAGE OFIRON OF VC IS CHANGED)

B. Calculation of

Let

where

...

...

...

and .
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C. Definition of

We obtain as follows:

...

...

where

...
...

...

...
...

...

and is the identity matrix.
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