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Adaptive Fuzzy Control of Satellite
Attitude by Reinforcement Learning

Walter M. van Buijtenen, Gerard Schram, Robert Babuška, and Henk B. Verbruggen

Abstract—The attitude control of a satellite is often charac-
terized by a limit cycle, caused by measurement inaccuracies
and noise in the sensor output. In order to reduce the limit
cycle, a nonlinear fuzzy controller was applied. The controller
was tuned by means of reinforcement learning without using any
model of the sensors or the satellite. The reinforcement signal
is computed as a fuzzy performance measure using a noncom-
pensatory aggregation of two control subgoals. Convergence of
the reinforcement learning scheme is improved by computing the
temporal difference error over several time steps and adapting
the critic and the controller at a lower sampling rate. The results
show that an adaptive fuzzy controller can better cope with the
sensor noise and nonlinearities than a standard linear controller.

Index Terms—Autonomous control, neuro-fuzzy control, rein-
forcement learning, satellite attitude control.

I. INTRODUCTION

RECENT advances in the technology have led to higher
requirements on the performance of control systems.

Since many problems are inherently nonlinear and exhibit
uncertainty that cannot be modeled in the stochastic frame-
work, new methods are being sought to cope with these
phenomena. Methods based on fuzzy sets and fuzzy logic
proved to be suitable for designing nonlinear controllers and
for dealing with nonprobabilistic uncertainty [1]. There is
a general agreement that fuzzy logic provides a suitable
framework for the incorporation ofa priori knowledge in
the control design. One of the problems in fuzzy control
remains the tuning and adaptation of the controller. Recently,
much research has been focused on the combination of fuzzy
control with learning algorithms originating from the field of
neural networks. These methods are usually referred to as
neuro-fuzzy control (see, for instance, [2] among many other
references). One of the neuro-fuzzy control techniques is based
on a combination of fuzzy modeling and control structures
with reinforcement learning (RL) [3], [4]. The main advantage
of reinforcement learning is that no model of the process is
required for the adaptation of the controller [5]. The main
idea of the RL technique is learning through exploration of
the space of possible control actions. Actions that result in
a good performance are “rewarded” and actions leading to a
poor performance are “penalized.”

This paper presents an application of reinforcement learning
to the adaptation of a nonlinear fuzzy controller for satellite
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attitude control. The satellite is designed for astronomical
observations of infrared light-emitting celestial objects and
uses a star tracker as the primary attitude sensor. Usually,
the satellite is equipped with a linear proportional derivative
(PD) controller in combination with a Kalman filter for the
estimation of the noise-free sensor attitude error and error
rate (LQG control). Since the star-tracker signal is corrupted
by a significant level of noise of a nonstochastic nature, the
attitude control of the satellite is characterized by a limit
cycle that cannot be eliminated by using the linear Gaussian
control. Moreover, the design of the LQG controller is time
consuming since it involves modeling of the satellite and of
the sensors. Moreover, the obtained solution is specific for the
given noise characteristics. As the noise characteristics vary for
different objects (weak and strong stars), adaptation features
are desirable in order to maintain satisfactory performance
under all conditions.

Berenjiet al. [4] demonstrated that adaptive fuzzy control by
means of RL can be applied to attitude control. Our approach
is also based on reinforcement learning, but there are several
important differences between the scheme of Berenjiet al.
called GARIC and the approach presented in this paper.

• While GARIC uses a binary reinforcement signal in-
dicating either successful performance or a failure, our
approach is based on a real-valued reinforcement signal
that indicates a degree of satisfaction of the control
goals. The control goals are described by using fuzzy
sets for the attitude error and error rate. This approach
is more flexible, since it allows for a more accurate
formulation of the control criteria and aggregation of
different goals. The continuous reinforcement signal also
provides more detailed information about the controller
performance. However, as indicated in Section IV, the
usual RL technique does not perform well for continuous
reinforcement signals. Therefore, a modified RL scheme
is proposed in this paper.

• The fuzzy controller structure differs from the one em-
ployed in GARIC. The Takagi–Sugeno (TS) rules with
constant consequent functions are used in this paper to
implement both the critic and the controller while the
controller in GARIC is based on linguistic rules. The TS
scheme is computationally more efficient, equally trans-
parent to interpretation of both the initial and the adapted
controller and provides intuitively more understandable
and consistent results than those presented in [4].

• Since there is no failure situation defined, no backup
controller is used. In our setting, the adaptive fuzzy con-
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Fig. 1. The control diagram of the satellite.

troller is initialized using the parameters of a reasonably
performing linear controller (the constant consequents of
the TS rules can be exactly computed to achieve the
desired linear control surface). This controller maintains
stable control without the need of switching to a backup
controller, and further improves its performance by means
of adaptation.

• The update law for the controller parameters is based on
the original approach of Barto [5] instead of using an
approximation of the process Jacobian as in [4].

The rest of this paper is organized as follows. Section II
describes the satellite attitude control problem. Section III
gives the necessary background of the applied reinforcement
learning technique. Section IV describes the adaptive control
scheme of the satellite and presents the results. Section V
concludes the paper.

II. SATELLITE ATTITUDE CONTROL

During observation of a celestial body with a telescope, the
attitude of the satellite is controlled by means of a linear PD
controller. A star tracker is used as an attitude sensor. The
attitude rate is measured by a gyroscope and a Kalman filter
is employed to estimate the noise-free attitude error and error
rate (see Fig. 1).

The star tracker consists of a coupled-charge device (CCD)
camera. Subpixel resolution is obtained by defocussing the
stellar image on an array of 3 3 pixels. When the star moves
in the field of view as a consequence of the satellite motion
and attitude control, the star tracker automatically adapts the
selection of the pixel array in order to keep the pattern of 3
3 pixels centered on the star image. In Fig. 2, the selection of
a different set of pixels is illustrated (from pixel set a to b).
Each pixel can be considered as a separate detector, with its
own characteristics (sensitivity to light). Differences between
the characteristics of the pixels in the array cause errors in
the measured position of the star, and hence in the measured
attitude. For a particular position and particular properties of
the star light, the error is constant and it is called the “bias.”
When the center of the star image crosses the border between
two adjacent pixels, a different set of pixels is selected, causing
a discontinuity in the bias. These discontinuities along with the

Fig. 2. Tracking of a star by selecting a different set of pixels.

measurement noise deteriorate the control performance and
result in a limit cycle.

The overall system, containing a conventional PD controller
with factory settings was simulated over a time interval of
1000 s. In this simulation, the satellite is controlled at an
attitude corresponding to the border of two adjacent pixels.
This is called the 2/ 2 bias situation, where the output of
the star tracker is two arcseconds too high for angles larger
than the set point and two arcseconds too low for other angles.
The set point used in the simulations is zero arcseconds.
In Fig. 3(a), the corresponding attitude of the satellite is
plotted in time domain. Fig. 3(b) shows the limit cycle in the
phase plane. The calculated root-mean-square (rms) attitude
deviation is 0.41 arcseconds.

In a previous study, Schramet al. [6] proposed to tune a
conventional PD controller of the satellite by reinforcement
learning. However, the linear nature of the controller does not
allow for a significant improvement of the performance. It is
expected that better controller performance can be achieved
when control actions are locally adjusted, resulting in a non-
linear control law. In this paper, the nonlinear controller is
implemented as a TS fuzzy controller. This structure allows
for the initialization of the fuzzy controller by a reasonably
functioning linear controller and for further improvement
of the controller performance by means of adaptation. The
adapted rule base remains transparent and interpretable. A
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(a)

(b)

Fig. 3. Attitude limit cycle in the+2/�2 bias situation.

fuzzy performance measure is used as the reinforcement
signal based on a noncompensatory aggregation of two control
subgoals for the attitude error and for its rate.

III. REINFORCEMENT LEARNING

The term reinforcement learning (RL) refers to a family
of algorithms inspired by human and animal learning. The
objective of RL is to discover a control policy, i.e., a mapping
from states to control actions. In RL, there is no direct
evaluation of the selected control action. Instead, an indirect
evaluation is received in terms of (dis)satisfaction of the
control objectives. The goal of RL is to discover such control
policy that maximizes the reinforcement received.

The reinforcement signal is often defined as a scalar value,
which is usually 1 to express a failure and 1 or 0 to
indicate a success. Also a more detailed (continuous) degree

Fig. 4. A general reinforcement learning scheme.

of failure or success can be used, as is the case in our paper.
Since there is no teacher or supervisor who could evaluate
the selected control actions, RL techniques use an internal
evaluator called the critic. The RL method searches for the
best actions by exploration (deliberate modification of the
control actions computed by the controller) and by evaluating
the consequences of these modifications.

A general scheme realizing this type of learning is given in
Fig. 4. This scheme, also called policy iteration, was proposed
by Barto [5] and generalized by Anderson [7]. It consists of
two units: the critic (evaluation unit) and the controller (action
unit). The critic predicts the expected future reinforcement the
process will receive as being in the stateand following
the current controller policy. The action unit consists of the
controller and a stochastic exploration module (not shown in
the figure). The stochastic exploration is needed to explore the
space of possible actions.

A. The Critic

The task of the critic is to predict the future system
performance. This prediction is needed to obtain a more
informative signal (internal reinforcement), which can be used
to adapt the critic and the controller.

In simple RL problems where the reinforcement signal
refers only to the last applied control action, it is sufficient
that the critic predicts one step ahead (immediate RL). In more
complex dynamic learning tasks, the control actions cannot be
judged individually because of the dynamics of the process.
The reinforcement signal then refers to an action that has been
taken in the past. It is not known which particular action
is responsible for the given state, which leads to the credit
assignment problem also called delayed RL [5].

In order to solve the credit assignment problem, the critic
is trained to predict the expected sum of future external
reinforcement signals. Hence, in the delayed RL, the critic acts
as a multistep predictor, whereas in the case of immediate RL,
it is a single-step predictor. The sum of future reinforcements
which the critic learns to predict is given by

(1)

where is an exponential discounting factor,is the
external reinforcement signal,denotes a discrete time instant,
and is the discounted sum of future reinforcements (also
called the value function). The critic is usually implemented
as a nonlinear function approximator such as a neural network
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[7] or a fuzzy system [4]. In order to derive an update law
for the critic parameters, let us denote the prediction of

computed by the critic. By rewriting (1) as

(2)

we can derive a prediction error resulting from an incorrect
prediction as

(3)

Since the prediction error is computed from two consecutive
values and , it is called thetemporal difference
(TD) [8]. Note that both and are known at
time since is a prediction obtained for the current
process state. In the literature, the temporal difference error is
also referred to as the internal reinforcement signal [5]. The
term between the square brackets represents a training target
of the value function. It contains the immediate system payoff
(reinforcement), which acts as a reference. Hence, the temporal
difference can directly be used to adapt the critic by

(4)

where are adaptable parameters of the critic, is the
temporal difference, and is the learning rate of the
critic. is a partial derivative of the critic output
with respect to its parameters. The argumentdenotes the
th iteration of the parameter update. In general,may be

different from when the critic is adapted at a lower rate
than the sampling rate (see Section IV). Note that for
a single-step predictor of the immediate RL is obtained as a
special case of (3).

B. The Controller

When the critic has learned to predict the future system’s
performance, the controller can be trained in order to establish
an optimal mapping between the system states and the control
actions in the sense that the criterion (1) is maximized. Three
common approaches can be found in the literature.

The first approach is called Q-learning [9]. This method
selects a control action (out of a finite set of actions) that
most increases the performance criterion. This type of learning
approximates dynamic programming. The second approach
uses gradient information, see for instance [3]. The gradient of
the estimated criterion with respect to the controller command
is calculated, assuming a differentiable criterion function. The
parameters of the controller are adapted in the direction of the
positive gradient. The third approach uses the temporal dif-
ference between the expected performance and the measured
performance [5]. When a stochastically modified control action
results in a positive difference, i.e., the resultant performance is
better than was predicted, the controller has to be “rewarded,”
and vice versa. In this paper, the last approach is used since it
does not require the derivative of the process. Q-learning is not
suitable in our case since continuous control actions are used.

Assume that the critic is already able to accurately predict
the future reinforcements. Given a certain state, a controller
action is calculated using the current controller. This action

Fig. 5. A neuro-fuzzy implementation of the critic.

is not applied to the process, but it is stochastically modified
in order to perform exploration. The actual action, which
is applied to the process, is constructed by adding a random
value from to . After the action is sent to the
process, the internal reinforcement signal is calculated. For
the delayed RL scheme, the following controller update law
can be derived [2]:

(5)

where are the adaptable parameters of the controller,
is the learning rate of the controller, andis the variance of
the normal distribution of the stochastic action modifier. The
term between the square brackets is a normalized difference
between the actual and the computed control action. The
adaptation of the controller relies on the accurate prediction
of the critic, therefore, it is necessary to train the critic first
or to let the critic adapt with a higher learning rate than the
controller. In most applications, first the critic is trained with
a fixed controller and without exploration. After the critic
has learned to predict the current controller’s performance,
exploration is enabled and the adaptation of the controller
starts with a learning rate smaller than that of the critic.

IV. A DAPTIVE FUZZY CONTROL OF THESATELLITE

Simulation experiments with the satellite showed that the
result of a controller action can already be detected at a
next time step as long as the exploration signal has a large
magnitude. This is also the reason why experiments with im-
mediate RL were done [10]. However, the learning algorithm
with immediate reinforcement diverges due to the Kalman
filter (from the LQG scheme), which is designed for specific
noise levels and remains implemented in the control scheme.
When the controller is changed by the learning algorithm,
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Fig. 6. Fuzzy sets for computing the immediate reinforcement.

the designed filter is no longer suitable and the estimation
of the noise-free error and error rate deteriorates. Hence, for
further reduction of the limit cycle and convergence of the
learning algorithm, a filter is needed which is independent of
the controller performance. Experiments showed that a low-
pass fourth-order Butterworth filter (of the same order as the
Kalman filter) suffices for both the error and the error rate.
The cutoff frequency of the filter was chosen according to
the limit cycle frequency and the noise properties. This type
of filter introduces a time delay and, as a consequence, the
immediate RL is no longer appropriate. Thus, delayed RL has
been applied as described below.

A. The Critic Structure

The critic is implemented by TS fuzzy rules with constant
consequents [11]. It has two inputs: the estimated (filtered)
attitude error and error rate and a single output: the predicted
discounted sum of future reinforcements. Five linguistic terms
(labels) are defined for each antecedent variable. Fig. 8(a)
shows the membership functions, which are chosen to be
triangular, symmetrical, and uniformly spread over the input
domain. The sum of the membership functions equals one for
each domain element. The domains for the membership func-
tions are determined according to the amplitude of the limit
cycle and the maximum error rate encountered in simulations
with the LQG controller. The critic is trained by adapting only
the consequents of the rules. The membership functions in the
antecedents of the rules are fixed. The output of the controller
is a weighted mean of the individual rule consequents

(6)

where is the number of rules, is the th consequent, and
is the degree of fulfillment of theth rule. The degree of

fulfillment of each rule is computed using the product operator.
With this setting, the TS structure can be seen as a look-up
table with linear interpolation. In Fig. 5, a possible neuro-fuzzy
interpretation of the critic structure is given (similar to [4]).

Note, however, that in order to apply the parameter update
formulas (4) and (5), this neural interpretation is not necessary.

The update law for the rule consequents of the critic derived
from (4) and (6) is given by

(7)

Note that when the product operator is used and the fuzzy sets
form a partition, the sum of the degrees of fulfillment over
all rules equals one ( ) and the partial derivative

reduces to .
A fuzzy measure of performance is used to compute the

external reinforcement signal. The control goal is to reduce
the limit cycle, i.e., to keep the attitude error low (not
necessarily zero) and simultaneously keep the error rate as
close as possible to zero. Note that because of the sensor
noise, it cannot be expected that the attitude error will be
exactly zero. In fact, a small error can be tolerated as long
as the satellite stays still or remainsslowly moving in a
limit cycle with a small amplitude. It is well known that this
kind of performance specification can be realized in a flexible
manner by means of fuzzy goals (and constraints) [12], [13].
In our case, the goal can be formulated as “keep the attitude
error small and the error rate close to zero.” The meaning of
the linguistic terms “small” and “zero” is defined by means
of suitably chosen membership functions in the domains of
the error and error rate (see Fig. 6). Since no compensation
between the two goals is allowed, the logical conjunction
operator (“and”) is implemented as the minimum operator.
In terms of membership degrees, the reinforcement signal
is computed by

(8)

The shape and the width of the membership functions can be
modified to tune the controller’s performance.

B. The Fuzzy Controller Structure

The fuzzy controller is also implemented by TS rules
with constant consequents and it uses the same inputs and
membership functions as the critic. The output of the controller
represents the torque command and is computed as a
weighted mean of the individual rule consequents (6). As in the
critic, the antecedent fuzzy sets are fixed, only the consequent
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Fig. 7. Delayed reinforcement scheme for the satellite attitude control:e is the error,_e the error rate,u is the control action,N is the Gaussian exploration
noise,u0 is the modified control action,r the immediate reinforcement,� the temporal difference, and̂V is the criterion prediction.

parameters are updated by

(9)

where is the th rule consequent of the controller. Equation
(9) is derived from (5) and (6), taking only the sign of the
exploration and of the temporal difference in order to prevent
relatively large adaptation steps in the wrong direction caused
by a bad prediction of immediate reinforcement. This results
in a more stable way of adapting the consequents. In Fig. 7
the delayed RL scheme is illustrated. Note that the two critic
blocks represent the same critic.

The fuzzy controller is initialized as a linear PD controller
with an acceptable performance. In Fig. 8(a) the membership
functions and in Fig. 8(b) the control surface is plotted. In
Table I the initial rule base of the fuzzy controller is given.

The initial performance of the fuzzy controller has an rms
attitude error of 3.43 arcseconds and an rms error of the
attitude rate 2.04 arcseconds/s. The satellite is simulated in
the 2/ 2 bias situation.

In the learning scheme, both the critic and the controller
are adapted simultaneously and the controller is adjusted with
information given by the critic. Therefore, the learning rate

of the controller update law (9) has a lower value than the
learning rate in the update law (7) of the critic:
and . The exploration noise that is added to the
controller command is normally distributed with zero mean
and variance Nm.

In the simulations with the standard delayed RL scheme, we
experienced that the controller could not be trained properly.
The problem is that, if the critic’s surface is flat over a part of
the input space, regardless of the current control performance,
the temporal difference is almost zero and the controller stops
adapting. This problem has been already discussed in the
literature [14]. Berenjiet al. [4] partially resolve this problem
by restarting the learning mechanism when a failure occurs.
Since there is no failure situation defined in our setting, another
approach is proposed here.

The main idea is to use a better estimate for the predicted
discounted sum when adapting the critic and the controller.
When a control action is evaluated after several time steps,
more immediate reinforcements (instead of one) are received,
which yield a better estimate of the criterion. The outline of
the procedure is as follows.

(a)

(b)

Fig. 8. The antecedent membership functions and the initial control surface
of the fuzzy controller.

1) Predict the discounted sum for the expected control
action and perform one step of exploration (randomly
modify the control action and apply it to the process).
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Fig. 9. The proposed alternative reinforcement learning scheme based on a more accurate estimate of the prediction criterion. The encircled numbers
refer to the steps of the procedure outline given above.

2) Follow the current control policy keeping the parameters
unchanged and store the immediate reinforcements.

3) After iterations, evaluate the modified control action
by estimating the discounted sum from the stored re-
inforcements; observing more time steps improves the
estimate.

4) Use the difference between the predicted and observed
criterion to adapt the critic and the controller; repeat by
going to step 1).

After time steps, the temporal difference used to adapt
the critic and the controller can be written as

(10)

Note that the term between square brackets now represents a
more accurate estimate of the criterion because it is mainly
determined by the received immediate reinforcements. The
number of steps is process dependent and should take into
account the dynamics and time delays in the system. The
update laws for the critic and the controller are given by (7)
and (9), respectively, but the temporal difference (TD) error
is replaced by (10). In this learning scheme, the adaptation
stops when the maximum of the critic surface is reached. A
disadvantage of this method is a longer learning time since
adaptation is only performed after eachiterations.

For the satellite control, we have chosen the following setup
for the proposed learning scheme (see Fig. 9). The number of
iterations before an evaluation is performed is chosen to be

. This choice is based on the maximum process delay,
which is about 3 s (one iteration comprises 0.5 s). Conse-
quently, the effect of a control action should be noticeable
within this period. A range of discount factors were tested
and the value resulted in an acceptable prediction
error. Note that with these parameters, the contribution of the
prediction at the evaluation time step is rather
small and is therefore neglected. Consequently, the estimate
of the criterion [term between square brackets in (10)] is
completely determined by the immediate payoffs.

The procedure is the following: first the critic is trained off-
line with the discount factor and the learning rate

. In Fig. 10(a), the prediction of the discounted sum
of the immediate reinforcements is plotted. It is assumed that
the prediction error of the critic is mainly caused by the sto-
chastic part of the system (noise). In Fig. 10(b), the prediction
surface after 5000 learning iterations is given. It appears that
the criterion has one optimum at zero. Recall that the criterion
is maximized, because the immediate reinforcement represents
a reward. After 5000 learning iterations, the adaptation of the
controller (with the learning rate ) is also started
by adding the exploration noise. The number of iterations is
10 000, but since , this period actually consists of 1666
adaptation steps.

In Fig. 11(a), the trajectories of the consequent parameters
of the controller during the adaptation are plotted. The pa-
rameters converge, but due to the constant exploration, the
algorithm keeps searching for better actions, which results
in small fluctuations around the determined parameter values.
The obtained controller surface is plotted in Fig. 11(b). The
adapted rule base of the controller is given in Table II. When
the error rate is close to zero, the adapted controller takes
less action for different errors than the initial rule base, given
in Table I. The controller takes more action when the error
and the error rate are of opposite signs and small. Also more
action is taken when the error is around zero and the error
rate is negative or positive small. Thisa posteriori analysis
of the adapted control law indicates that the changes in
the controller input—output mapping qualitatively agree with
what one would expect the controller to do in order to satisfy
the goals defined in Section IV-B.

To illustrate the performance of the adapted controller, a
simulation run of 1000 s of the satellite with the new controller
is performed. Fig. 12(a) and (b) shows the improvement of the
attitude control in the time domain. From the plots, one can
see that the attitude error and its rate are significantly reduced.
The rms attitude error decreased from the initial value 3.43 to
0.77 arcseconds The rms error of the attitude rate decreased
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(a)

(b)

Fig. 10. Performance of the critic after off-line training.

TABLE I
INITIAL TORQUE VALUES OF THE FUZZY CONTROLLER (10�2 Nm)

from 2.04 to 0.30 arcseconds/s. Even though these values are
clearly better than the initial performance of the linear fuzzy
controller with the Butterworth filter, they are comparable
with the performance of the original LQG controller with the
Kalman filter (see Section II and [10]). The advantage of the
RL-based approach is that the performance is not related to
one specific situation and the controller can be easily adapted
if the noise conditions change.

(a)

(b)

Fig. 11. Fuzzy controller after adaptation.

TABLE II
FINAL TORQUE VALUES OF THE FUZZY CONTROLLER (10�2 Nm)

Fig. 13(a) and (b) shows the limit cycle in the phase plane
before and after adaptation. From these figures, one can see
that the limit cycle is not centered around zero but has a small
offset. However, as stated in Section IV-B, the control goals
were defined to reduce the limit cycle.

V. CONCLUSIONS

In order to reduce the limit cycle of a satellite, an adaptive
fuzzy controller is applied. The results show that the nonlinear
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(a)

(b)

Fig. 12. Comparison of the initial and the adapted fuzzy controller in the
time domain.

fuzzy controller can cope with the sensor noise and nonlinear-
ities. The controller is tuned by means of RL without using
any model of the sensors and of the satellite. The main idea
of RL is to find the optimal mapping between system states
and controls through exploration and evaluation of possible
control commands.

The reinforcement signal is computed as a fuzzy per-
formance measure, using a noncompensatory aggregation of
two control subgoals. This approach is very flexible since it
allows for an accurate formulation of the control criteria and
aggregation of the different subgoals. Moreover, the continu-
ous reinforcement signal provides more detailed information
about the controller performance than just binary values.
Convergence of the reinforcement learning scheme is achieved
by computing the temporal difference error over several time
steps and adapting the critic and the controller at a lower
sampling rate.

(a)

(b)

Fig. 13. Comparison of the initial and the adapted fuzzy controller in the
phase plane.

Both the critic and the controller are implemented by
the TS rules with constant consequents. The TS scheme is
computationally efficient, transparent to interpretation of both
the initial and the adapted controller, and provides intuitively
understandable and consistent rules.
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