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Adaptive Fuzzy Control of Satellite
Attitude by Reinforcement Learning

Walter M. van Buijtenen, Gerard Schram, Robert B&{tay and Henk B. Verbruggen

Abstract—The attitude control of a satellite is often charac- attitude control. The satellite is designed for astronomical
terized by a limit cycle, caused by measurement inaccuracies gbservations of infrared light-emitting celestial objects and
and noise in the sensor output. In order to reduce the limit so5 5 star tracker as the primary attitude sensor. Usually,
cycle, a nonlinear fuzzy controller was applied. The controller o . . . . S
was tuned by means of reinforcement learning without using any the satellite is e"qUIpped. W't_h a l'near pmport'on_al derivative
model of the sensors or the satellite. The reinforcement signal (PD) controller in combination with a Kalman filter for the
is computed as a fuzzy performance measure using a noncom-estimation of the noise-free sensor attitude error and error
pensatory aggregation of two control subgoals. Convergence of rate (LQG control). Since the star-tracker signal is corrupted
the reinforcement learning scheme is improved by computing the 1, ‘gignificant level of noise of a nonstochastic nature, the

temporal difference error over several time steps and adapting . . . L
the critic and the controller at a lower sampling rate. The results attitude control of the satellite is characterized by a limit

show that an adaptive fuzzy controller can better cope with the Cycle that cannot be eliminated by using the linear Gaussian
sensor noise and nonlinearities than a standard linear controller. control. Moreover, the design of the LQG controller is time

Index Terms—Autonomous control, neuro-fuzzy control, rein- consuming since it involves mo.deling of .the_satellitfa. and of
forcement learning, satellite attitude control. the sensors. Moreover, the obtained solution is specific for the
given noise characteristics. As the noise characteristics vary for
different objects (weak and strong stars), adaptation features
are desirable in order to maintain satisfactory performance

ECENT advances in the technology have led to highehder all conditions.

requirements on the performance of control systems.Berenjiet al.[4] demonstrated that adaptive fuzzy control by
Since many problems are inherently nonlinear and exhilpifeans of RL can be applied to attitude control. Our approach
uncertainty that cannot be modeled in the stochastic frane-also based on reinforcement learning, but there are several
work, new methods are being sought to cope with theg@aportant differences between the scheme of Berenjal.
phenomena. Methods based on fuzzy sets and fuzzy logilled GARIC and the approach presented in this paper.
proved to be suitable for designing nonlinear controllers and, \whjle GARIC uses a binary reinforcement signal in-
for dealing with nonprobabilistic uncertainty [1]. There iS  gjcating either successful performance or a failure, our
a general agreement that fuzzy logic provides a suitable approach is based on a real-valued reinforcement signal
framework for the incorporation o priori knowledge in that indicates a degree of satisfaction of the control
the control design. One of the problems in fuzzy control  4oqi5 The control goals are described by using fuzzy
remains the tuning and adaptation of the controller. Recently, gets for the attitude error and error rate. This approach
much research has been focused on the combination of fuzzy is more flexible. since it allows for a more accurate
control with learning algorithms originating from the field of {5 mulation of the control criteria and aggregation of
neural networks. These methods are usually referred t0 as jtferent goals. The continuous reinforcement signal also
neuro-fuzzy control (see, for instance, [2] among many other 4yides more detailed information about the controller
references). One of the neuro-fuzzy control techniques is based performance. However, as indicated in Section IV, the
on a combination of fuzzy modeling and control structures ;5| RL technique does not perform well for continuous
with reinforcement learning (RL) [3], [4]. The main advantage  |einforcement signals. Therefore, a modified RL scheme
of reinforcement learning is that no model of the process is g proposed in this paper.
required for the adaptation of the controller [5]. The main , tha fuzzy controller structure differs from the one em-
idea of the RL technique is learning through exploration of ployed in GARIC. The Takagi-Sugeno (TS) rules with
the space of possible control actions. Actions that result in  jnstant consequent functions are used in this paper to
a good performance are “rewarded” and actions leading t0 @ jmplement both the critic and the controller while the
poor performance are “penalized. _ _ controller in GARIC is based on linguistic rules. The TS

This paper presents an appllcat|on of reinforcement Iearr!lng scheme is computationally more efficient, equally trans-
to the adaptation of a nonlinear fuzzy controller for satellite parent to interpretation of both the initial and the adapted

controller and provides intuitively more understandable

I. INTRODUCTION
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Fig. 1. The control diagram of the satellite.

troller is initialized using the parameters of a reasonably
performing linear controller (the constant consequents of
the TS rules can be exactly computed to achieve the
desired linear control surface). This controller maintains
stable control without the need of switching to a backup
controller, and further improves its performance by means g
of adaptation.

* The update law for the controller parameters is based on
the original approach of Barto [5] instead of using an OO
approximation of the process Jacobian as in [4].

The rest of this paper is organized as follows. Section Il ccb

describes the satellite attitude control problem. Section llI
gives the necessary background of the applied reinforcement |
learning technique. Section IV describes the adaptive control , _ _ _
scheme of the satellite and presents the results. Sectioy 'y 2~ Tracking of a star by selecting a different set of pixels.
concludes the paper.

star
position
~

pixel|grid

measurement noise deteriorate the control performance and
result in a limit cycle.
IIl. SATELLITE ATTITUDE CONTROL The overall system, containing a conventional PD controller
During observation of a celestial body with a telescope, théth factory settings was simulated over a time interval of
attitude of the satellite is controlled by means of a linear PDO0O s. In this simulation, the satellite is controlled at an
controller. A star tracker is used as an attitude sensor. Tagitude corresponding to the border of two adjacent pixels.
attitude rate is measured by a gyroscope and a Kalman filféhis is called the+-2/-2 bias situation, where the output of
is employed to estimate the noise-free attitude error and ertbe star tracker is two arcseconds too high for angles larger
rate (see Fig. 1). than the set point and two arcseconds too low for other angles.
The star tracker consists of a coupled-charge device (CCLY)e set point used in the simulations is zero arcseconds.
camera. Subpixel resolution is obtained by defocussing the Fig. 3(a), the corresponding attitude of the satellite is
stellar image on an array of 8 3 pixels. When the star movesplotted in time domain. Fig. 3(b) shows the limit cycle in the
in the field of view as a consequence of the satellite motighase plane. The calculated root-mean-square (rms) attitude
and attitude control, the star tracker automatically adapts tHeviation is 0.41 arcseconds.
selection of the pixel array in order to keep the pattern f 3 In a previous study, Schramt al. [6] proposed to tune a
3 pixels centered on the star image. In Fig. 2, the selectionainventional PD controller of the satellite by reinforcement
a different set of pixels is illustrated (from pixel set a to b)learning. However, the linear nature of the controller does not
Each pixel can be considered as a separate detector, withaitew for a significant improvement of the performance. It is
own characteristics (sensitivity to light). Differences betweegxpected that better controller performance can be achieved
the characteristics of the pixels in the array cause errorsviien control actions are locally adjusted, resulting in a non-
the measured position of the star, and hence in the measumedar control law. In this paper, the nonlinear controller is
attitude. For a particular position and particular properties ohplemented as a TS fuzzy controller. This structure allows
the star light, the error is constant and it is called the “biastér the initialization of the fuzzy controller by a reasonably
When the center of the star image crosses the border betwaerctioning linear controller and for further improvement
two adjacent pixels, a different set of pixels is selected, causiafythe controller performance by means of adaptation. The
a discontinuity in the bias. These discontinuities along with ttegapted rule base remains transparent and interpretable. A
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Fig. 3. Attitude limit cycle in the+2/—2 bias situation.
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Fig. 4. A general reinforcement learning scheme.

of failure or success can be used, as is the case in our paper.
Since there is no teacher or supervisor who could evaluate
the selected control actions, RL techniques use an internal
evaluator called the critic. The RL method searches for the
best actions by exploration (deliberate modification of the
control actions computed by the controller) and by evaluating
the consequences of these modifications.

A general scheme realizing this type of learning is given in
Fig. 4. This scheme, also called policy iteration, was proposed
by Barto [5] and generalized by Anderson [7]. It consists of
two units: the critic (evaluation unit) and the controller (action
unit). The critic predicts the expected future reinforcement the
process will receive as being in the stateand following
the current controller policy. The action unit consists of the
controller and a stochastic exploration module (not shown in
the figure). The stochastic exploration is needed to explore the
space of possible actions.

A. The Critic

The task of the critic is to predict the future system
performance. This prediction is needed to obtain a more
informative signal (internal reinforcement), which can be used
to adapt the critic and the controller.

In simple RL problems where the reinforcement signal
refers only to the last applied control action, it is sufficient
that the critic predicts one step ahead (immediate RL). In more
complex dynamic learning tasks, the control actions cannot be
judged individually because of the dynamics of the process.
The reinforcement signal then refers to an action that has been
taken in the past. It is not known which particular action

fuzzy performance measure is used as the reinforceméntesponsible for the given state, which leads to the credit
signal based on a noncompensatory aggregation of two contissignment problem also called delayed RL [5].
subgoals for the attitude error and for its rate.

objective of RL is to discover a control policy, i.e., a mapping
from states to control actions. In RL, there is no direct
evaluation of the selected control action. Instead, an indirect
evaluation is received in terms of (dis)satisfaction of the

The term reinforcement learning (RL) refers to a famil
of algorithms inspired by human and animal learning. The

I1l. REINFORCEMENT LEARNING

In order to solve the credit assignment problem, the critic
is trained to predict the expected sum of future external
reinforcement signals. Hence, in the delayed RL, the critic acts
as a multistep predictor, whereas in the case of immediate RL,
t is a single-step predictor. The sum of future reinforcements
which the critic learns to predict is given by

V() =) v+ (1)
i=k

control objectives. The goal of RL is to discover such contrevhere~ € [0, 1) is an exponential discounting factorjs the
policy that maximizes the reinforcement received.
The reinforcement signal is often defined as a scalar val@mdV (k) is the discounted sum of future reinforcements (also
which is usually —1 to express a failure and 1 or O tocalled the value function). The critic is usually implemented
indicate a success. Also a more detailed (continuous) degesea nonlinear function approximator such as a neural network

external reinforcement signdl,denotes a discrete time instant,
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[7] or a fuzzy system [4]. In order to derive an update law
for the critic parameters, let us dendték) the prediction of
V(k) computed by the critic. By rewriting (1) as

V(k)=r(k+1) +~4V(k+1) 2 °©

we can derive a prediction errax resulting from an incorrect
prediction V' (k) as

A=[r(k+1) +yV(k+1)] - V(k). ©)

Since the prediction errak is computed from two consecutive
valuesV (k) andV (k +1), it is called thetemporal difference
(TD) [8]. Note that bothV (k) and V(k + 1) are known at
time k sinceV (k+1) is a prediction obtained for the current
process state. In the literature, the temporal difference error is”
also referred to as the internal reinforcement signal [5]. The
term between the square brackets represents a training target
of the value function. It contains the immediate system payoff
(reinforcement), which acts as a reference. Hence, the temporal

difference can directly be used to adapt the critic by 2 inputs > b B o s weighted
R input product (weights) mean
AV (k)
w(l + 1) = w(l) + ochW (4) Fig. 5. A neuro-fuzzy implementation of the critic.

where w are adaptable parameters of the critik, is the

temporal difference, and,, > 0 is the learning rate of the iS not applied to the process, but it is stochastically modified

critic. dV (k)/dw is a partial derivative of the critic outputin order to perform exploration. The actual actiaf) which

with respect to its parameters. The arguméntenotes the iS applied to the process, is constructed by adding a random

Ith iteration of the parameter update. In genefainay be Vvalue fromN(0, o) to u. After the actionv’ is sent to the

different from k& when the critic is adapted at a lower rat®rocess, the internal reinforcement signal is calculated. For

than the sampling rate (see Section IV). Note thatfor 0  the delayed_ RL scheme, the following controller update law

a single-step predictor of the immediate RL is obtained ascan be derived [2]:

special case of (3). "k
v(l+1) =v(l) + {u (k)

- u(k)} A8u(/€) 5)

%) v

B. The Controller
wherev are the adaptable parameters of the contraligr>> 0

When the critic has learned to pre@ct the future systen}g the learning rate of the controller, andis the variance of
performance, the controller can be trained in order to establl@‘é normal distribution of the stochastic action modifier. The
£y

an F’p“”.‘a' mapping between th.e system §tates gnq the co #n between the square brackets is a normalized difference
actions in the sense that the criterion (1) is maximized. Thrgg

. . tween the actual and the computed control action. The
common approaches can be found in the literature.

, ; . ) daptation of the controller relies on the accurate prediction
The first approach is called Q-learning [9]. This metho f the critic, therefore, it is necessary to train the critic first

selects a control action (out of a finite set of actions) th%} to let the critic adapt with a higher learning rate than the

most increases the performance criterion. This type of Ieam'e ntroller. In most applications, first the critic is trained with

approximates dynamic programming. The second approaght.ed controller and without exploration. After the critic

uses gradient information, see for instance [3]. The gradientﬁ) s learned to predict the current controller's performance
the estimated criterion with respect to the controller commary ploration is enabled and the adaptation of the controller’
is calculated, assuming a differentiable criterion function. T Qarts with a learning rate smaller than that of the critic

parameters of the controller are adapted in the direction of the
positive gradient. The third approach uses the temporal dif-
ference between the expected performance and the measure
performance [5]. When a stochastically modified control action Simulation experiments with the satellite showed that the
results in a positive difference, i.e., the resultant performanceésult of a controller action can already be detected at a
better than was predicted, the controller has to be “rewardedgxt time step as long as the exploration signal has a large
and vice versa. In this paper, the last approach is used sincmiétgnitude. This is also the reason why experiments with im-
does not require the derivative of the process. Q-learning is moediate RL were done [10]. However, the learning algorithm
suitable in our case since continuous control actions are usetith immediate reinforcement diverges due to the Kalman
Assume that the critic is already able to accurately predifiiter (from the LQG scheme), which is designed for specific
the future reinforcements. Given a certain state, a controlleoise levels and remains implemented in the control scheme.
actionw is calculated using the current controller. This actiowhen the controller is changed by the learning algorithm,

d IV. ADAPTIVE FuUzzy CONTROL OF THE SATELLITE
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Fig. 6. Fuzzy sets for computing the immediate reinforcement.

the designed filter is no longer suitable and the estimatidiote, however, that in order to apply the parameter update
of the noise-free error and error rate deteriorates. Hence, formulas (4) and (5), this neural interpretation is not necessary.
further reduction of the limit cycle and convergence of the The update law for the rule consequents of the critic derived
learning algorithm, a filter is needed which is independent &bm (4) and (6) is given by

the controller performance. Experiments showed that a low-

pass fourth-order Butterworth filter (of the same order as the ci(l+1) = ci(l) + aw ABi(K). @)

Kalman filter) suffices for both the error and the error ratQ  ote that when the product operator is used and the fuzzy sets

The .CL!tOff frequency of the filter was chosen.accord.mg tf%rm a partition, the sum of the degrees of fulfillment over
the limit cycle frequency and the noise properties. This YRS rules equals oneXNT 4 = 1) and the partial derivative
of filter introduces a time delay and, as a consequence, %‘9(/@/80 reduces tq;f(lk)z

|mmed|ate_RL is no Ion_ger appropriate. Thus, delayed RL hasA fuzzy measure of performance is used to compute the
been applied as described below.

external reinforcement signal The control goal is to reduce
the limit cycle, i.e., to keep the attitude error low (not
A. The Critic Structure necessarily zero) and simultaneously keep the error rate as

The critic is implemented by TS fuzzy rules with constarftlose as possible to zero. Note that because of the sensor
consequents [11]. It has two inputs: the estimated (filtereB9ise, it cannot be expected that the attitude error will be
attitude error and error rate and a single output: the predicte¥gctly zero. In fact, a small error can be tolerated as long
discounted sum of future reinforcements. Five linguistic tern®$ the satellite stays still or remairsowly moving in a
(labels) are defined for each antecedent variable. Fig. gtlgjut cycle with a small amplitude. It is well known that this
shows the membership functions, which are chosen to kigd of performance specification can be realized in a flexible
triangular, symmetrical, and uniformly spread over the inpiit@nner by means of fuzzy goals (and constraints) [12], [13].
domain. The sum of the membership functions equals one Brour case, the goal can be formulated as “keep the attitude
each domain element. The domains for the membership ful§étor small and the error rate close to zero.” The meaning of
tions are determined according to the amplitude of the lindf#€ linguistic terms “small” and “zero” is defined by means
cycle and the maximum error rate encountered in simulatiofs Suitably chosen membership functions in the domains of
with the LQG controller. The critic is trained by adapting onljh€ error and error rate (see Fig. 6). Since no compensation
the consequents of the rules. The membership functions in fiffween the two goals is allowed, the logical conjunction
antecedents of the rules are fixed. The output of the controlRerator (“and”) is implemented as the minimum operator.

is a weighted mean of the individual rule consequents In terms of membership degrees, the reinforcement signal
is computed by

Ny . .
Z pici 7 = min[psman(e), #zero(€)]. (8)

V= sz\l (6) The shape and the width of the membership functions can be
iﬁ‘ modified to tune the controller’'s performance.
=1

B. The Fuzzy Controller Structure

whereN,. is the number of rules;; is theith consequent, and The fuzzy controller is also implemented by TS rules
(3 is the degree of fulfillment of theth rule. The degree of with constant consequents and it uses the same inputs and
fulfillment of each rule is computed using the product operatanembership functions as the critic. The output of the controller
With this setting, the TS structure can be seen as a look-tgpresents the torque command and is computed as a
table with linear interpolation. In Fig. 5, a possible neuro-fuzaweighted mean of the individual rule consequents (6). As in the
interpretation of the critic structure is given (similar to [4])critic, the antecedent fuzzy sets are fixed, only the consequent
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Fig. 7. Delayed reinforcement scheme for the satellite attitude contislthe error.¢ the error rateu is the control action}V is the Gaussian exploration
noise,«’ is the modified control action; the immediate reinforcementy the temporal difference, and is the criterion prediction.

parameters are updated by Membership functions
1 T T

bi(l+1) = bi(l) + cwvsign{[w/ (k) —uw(R)A}B(K)  (9)  og-

whereb; is theith rule consequent of the controller. Equatior®®}
(9) is derived from (5) and (6), taking only the sign of theos
exploration and of the temporal difference in order to prevent,|
relatively large adaptation steps in the wrong direction caused
by a bad prediction of immediate reinforcement. This results?
in a more stable way of adapting the consequents. In Fig. 7
the delayed RL scheme is illustrated. Note that the two critic
blocks represent the same critic. o8k

The fuzzy controller is initialized as a linear PD controller
with an acceptable performance. In Fig. 8(a) the membershif|
functions and in Fig. 8(b) the control surface is plotted. Iv4f
Table | the initial rule base of the fuzzy controller is given. ;.

The initial performance of the fuzzy controller has an ms
attitude error of 3.43 arcseconds and an rms error of thes
attitude rate 2.04 arcseconds/s. The satellite is simulated in errorrate
the +2/—2 bias situation. @

In the learning scheme, both the critic and the controller Initial controller surface
are adapted simultaneously and the controller is adjusted with
information given by the critic. Therefore, the learning rate
«,, of the controller update law (9) has a lower value than the
learning ratex,, in the update law (7) of the critiei,, = 0.001
and «,, = 0.1. The exploration noise that is added to the 0%
controller command is normally distributed with zero mean 002
and variances = 0.01 Nm. 0

In the simulations with the standard delayed RL scheme, we-ooz
experienced that the controller could not be trained properly. -c.o4
The problem is that, if the critic’s surface is flat over a part of _¢.06
the input space, regardless of the current control performance,
the temporal difference is almost zero and the controller stops
adapting. This problem has been already discussed in the
literature [14]. Berenjet al. [4] partially resolve this problem

T

o

0.06

orque

by restarting the learning mechanism when a failure occurs. erfor rate error
Since there is no failure situation defined in our setting, another (b)
approach IS proposed here. Fig. 8. The antecedent membership functions and the initial control surface

The main idea is to use a better estimate for the predictefcthe fuzzy controller.
discounted sum when adapting the critic and the controller.
When a control action is evaluated after several time steps,
more immediate reinforcements (instead of one) are receivedl) Predict the discounted sum for the expected control
which yield a better estimate of the criterion. The outline of action and perform one step of exploration (randomly
the procedure is as follows. modify the control action and apply it to the process).
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Fig. 9. The proposed alternative reinforcement learning scheme based on a more accurate estimate of the prediction criterion. The encircled numbers
refer to the steps of the procedure outline given above.

2) Follow the current control policy keeping the parameters The procedure is the following: first the critic is trained off-
unchanged and store the immediate reinforcements. line with the discount factory = 0.5 and the learning rate

3) After n iterations, evaluate the modified control actiomy,, = 0.1. In Fig. 10(a), the prediction of the discounted sum
by estimating the discounted sum from the stored ref the immediate reinforcements is plotted. It is assumed that
inforcements; observing more time steps improves thlee prediction error of the critic is mainly caused by the sto-
estimate. chastic part of the system (noise). In Fig. 10(b), the prediction

4) Use the difference between the predicted and observsgface after 5000 learning iterations is given. It appears that
criterion to adapt the critic and the controller; repeat byhe criterion has one optimum at zero. Recall that the criterion

going to step 1). is maximized, because the immediate reinforcement represents
After n time steps, the temporal difference used to adaptreward. After 5000 learning iterations, the adaptation of the
the critic and the controller can be written as controller (with the learning rater, = 0.001) is also started

] ] 2 by adding the exploration noise. The number of iterations is
A=kt 1) +or(k+2) T (k + 3):’_ o 10000, but since: = 6, this period actually consists of 1666
+9" 7 (k+n) +4"V(E+n)] = V(k).  (10) adaptation steps.

Note that the term between square brackets now represents & Fig. 11(a), the trajectories of the consequent parameters
more accurate estimate of the criterion because it is maiffly the controller during the adaptation are plotted. The pa-
determined by the: received immediate reinforcements. Théameters converge, but due to the constant exploration, the
number of steps, is process dependent and should take in@jgorithm keeps searching for better actions, which results
account the dynamics and time delays in the system. Tigesmall fluctuations around the determined parameter values.
update laws for the critic and the controller are given by (7)he obtained controller surface is plotted in Fig. 11(b). The
and (9), respectively, but the temporal difference (TD) err@dapted rule base of the controller is given in Table Il. When
is replaced by (10). In this learning scheme, the adaptatiiif error rate is close to zero, the adapted controller takes
stops when the maximum of the critic surface is reached. |ss action for different errors than the initial rule base, given
disadvantage of this method is a longer learning time sinde Table I. The controller takes more action when the error
adaptation is only performed after eaghterations. and the error rate are of opposite signs and small. Also more

For the satellite control, we have chosen the following set@stion is taken when the error is around zero and the error
for the proposed learning scheme (see Fig. 9). The numberrafe is negative or positive small. Thés posteriori analysis
iterations before an evaluation is performed is chosen to & the adapted control law indicates that the changes in
n = 6. This choice is based on the maximum process deldfe controller input—output mapping qualitatively agree with
which is about 3 s (one iteration comprises 0.5 s). Consehat one would expect the controller to do in order to satisfy
guently, the effect of a control action should be noticeabtbe goals defined in Section 1V-B.
within this period. A range of discount factors were tested To illustrate the performance of the adapted controller, a
and the valuey = 0.5 resulted in an acceptable predictiorsimulation run of 1000 s of the satellite with the new controller
error. Note that with these parameters, the contribution of tieeperformed. Fig. 12(a) and (b) shows the improvement of the
prediction at the evaluation time stef#V (k + n) is rather attitude control in the time domain. From the plots, one can
small and is therefore neglected. Consequently, the estimage that the attitude error and its rate are significantly reduced.
of the criterion [term between square brackets in (10)] iBhe rms attitude error decreased from the initial value 3.43 to
completely determined by the immediate payoffs. 0.77 arcseconds The rms error of the attitude rate decreased
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TABLE 11

FINAL TORQUE VALUES OF THE Fuzzy CONTROLLER (10~2 Nm)

TABLE |

INITIAL TORQUE VALUES OF THE Fuzzy CONTROLLER (10~2 Nm)

crror rate
error| NB | NS | ZE | PS | PB
NB -6.400 —4.8()()‘73‘200 -1.600| 0
NS [-4.8001-3.200]-1.600| 0 |1.600
ZE |-3.200|-1.600| 0 1.600 |3.200
PS |-1.600] 0 1.600 | 3.200 14.800
PB 0 1.600 ; 3.200 | 4.800 |6.400

if the noise conditions change.

error

NB
NS
7E
PS
PB

error rate
NB | NS | ZE | PS | PB
-6.400|-4.780|-3.159]-1.601| 0
-4.796|-3.340|-0.535| 0.670 | 1.600
-3.202(-3.395]-0.092| 3.828 | 3.214
:-1.600|-0.7541-0.668 | 3.804 |4.805

| 0 11597 3.136 | 4.781 |6.400

Fig. 13(a) and (b) shows the limit cycle in the phase plane
before and after adaptation. From these figures, one can see
from 2.04 to 0.30 arcseconds/s. Even though these values @ the limit cycle is not centered around zero but has a small
Clearly better than the initial performance of the linear fUZZ&ﬁset_ However, as stated in Section IV-B, the control goa|s
controller with the Butterworth filter, they are comparablere defined to reduce the limit cycle.
with the performance of the original LQG controller with the
Kalman filter (see Section Il and [10]). The advantage of the
RL-based approach is that the performance is not related to
one specific situation and the controller can be easily adaptedn order to reduce the limit cycle of a satellite, an adaptive

V. CONCLUSIONS

fuzzy controller is applied. The results show that the nonlinear
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Fig. 12. Comparison of the initial and the adapted fuzzy controller in the
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fuzzy controller can cope with the sensor noise and nonlinear- , . _
.. . . . Fig. 13. Comparison of the initial and the adapted fuzzy controller in the
ities. The controller is tuned by means of RL without using,.<e plane.

any model of the sensors and of the satellite. The main idea

of RL is to find the optimal mapping between system states
and controls through exploration and evaluation of pOSS|bIeBoth the critic and the controller are implemented by

c01r]throl cqn;mands. t sional i ted ¢ the TS rules with constant consequents. The TS scheme is
€ reinforcement signal 1S computed as a fuzzy peéblpputationally efficient, transparent to interpretation of both

formance measure, using a noncompensatory aggregation, fisia| and the adapted controller, and provides intuitively
two control subgoals. This approach is very flexible since g%derstandable and consistent rules

allows for an accurate formulation of the control criteria an
aggregation of the different subgoals. Moreover, the continu-
ous reinforcement signal provides more detailed information
about the controller performance than just binary values.
Convergence of the reinforcement learning scheme is achievedhe authors would like to thank L. Karsten of Fokker Space
by computing the temporal difference error over several tini2V., Leiden, The Netherlands, for providing a simulation

steps and adapting the critic and the controller at a lowerodel of the satellite and to their colleague J. Sousa for
sampling rate. proofreading the paper.
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