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Abstract

This paper deals with a characterization of a class of aggregation operators. This
class concerns operators which are symmetric, increasing, stable for the same positive
linear transformations and present a property close to the bisymmetry property: the
ordered bisymmetry property. It is proved that the class investigated contains exactly
the ordered weighted averaging operators (OWA) introduced by Yager in 1988.

Keywords: aggregation operators; interval scales; invariance; ordered bisymmetry prop-
erty; ordered weighted averaging operators.

1 Introduction

Synthesizing judgments is an important part of multiple criteria decision making meth-
ods. The typical situation concerns individuals which form quantifiable judgments about a
measure of an object (weight, length, area, height, volume, importance or other attributes,
for instance in the framework of a hierarchy). In order to obtain a consensus of these
jugdments, classical operators have been proposed: arithmetic means, root-power means,
quasi-arithmetic means, fuzzy integrals and among them the ordered weighted averaging
operators (OWA).

The OWA operators were proposed by Yager [9] and their links with fuzzy integrals
were investigated by Grabisch [3, 4], and also by Fodor and Roubens [7, pages 135–140].

In this paper, we characterize the OWA operators under the natural properties of sym-
metry, increasing monotonicity, stability for the same interval scales in the sense of the
theory of measurement (see [8]), but also under some kind of weak bisymmetry called “or-
dered bisymmetry” or “bisymmetry for ordered values”. The bisymmetry property was
studied in its initial form by Aczél [1, 2] (see also Fodor and Marichal [5]).
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2 Basic definitions

We first give the definition of an aggregation operator.

Definition 1 An aggregation operator M defined on
⋃

m∈IN0
IRm is a sequence (M (m))m∈IN0

of (aggregation) functions M (m) : IRm → IR.

In order to obtain a reasonable or satisfactory aggregation, any aggregation operator could
not be used: we have to impose that they must fulfil some properties. The next definition
deals with this issue.

Definition 2 The aggregation operator M defined on
⋃

m∈IN0
IRm is

• symmetric (Sy) if, for all m ∈ IN0, M (m) is a symmetric function on IRm, i.e. if, for
all (x1, . . . , xm) ∈ IRm and all permutation σ of {1, . . . , m},

M (m)(x1, . . . , xm) = M (m)(xσ(1) . . . , xσ(m)).

• increasing (In) if, for all m ∈ IN0, M (m) is increasing on each argument, i.e. if, for
all i ∈ {1, . . . , m} and all x1, . . . , xm, x′i ∈ IR, we have

xi < x′i ⇒ M (m)(x1, . . . , xi, . . . , xm) ≤ M (m)(x1, . . . , x
′
i, . . . , xm).

• stable for the same positive linear transformations (SPL) if, for all m ∈ IN0, we have

M (m)(rx1 + t, . . . , rxm + t) = rM (m)(x1, . . . , xm) + t

for all (x1, . . . , xm) ∈ IRm, all r > 0 and all t ∈ IR.

• bisymmetric for ordered values (OB) if M (1)(x) = x for all x ∈ IR and if, for all
m, p ∈ IN0,

M (p)(M (m)(x11, . . . , x1m), . . . , M (m)(xp1, . . . , xpm))

= M (m)(M (p)(x11, . . . , xp1), . . . , M
(p)(x1m, . . . , xpm))

for all ordered matrices

X =




x11 · · · x1m
...

...
xp1 · · · xpm


 ∈ IRp×m,

where X is ordered if its elements satisfy xij ≤ xkl whenever i ≤ k and j ≤ l.

The first three properties (Sy, In, SPL) are well-known and seem natural enough (see e.g.
[7]). The (OB) property is a weak form of the algebraic property “bisymmetry” which
expresses that aggregation can be performed first on the rows, then on the columns of any
matrix, or conversely (see [1, 2]). We introduce it in this paper for our needs.
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Justification of the bisymmetry property: Suppose that m judges give a score
(real number) to each of p candidates. We could put these numbers in a p ×m matrix as
follows:




J1 · · · Jm

C1 x11 · · · x1m
...

...
...

Cp xp1 · · · xpm




Suppose now that we want a single value reflecting the global score of the p candidates. A
natural answer would be to compute the arithmetic mean of the values in the table. But
there are some cases where the arithmetic mean is no longer convenient—for example when
the judges are supposed to have some weights. Another answer would be the following:
aggregation of the scores of each candidate (aggregation on the rows of the matrix), and
then aggregation of these global values. But there is another way: aggregation of the scores
given by each judge (aggregation on the columns of the matrix), and then aggregation of
these values. The classical bisymmetry property for an aggregation function tells that we
can choose either the first or the second manner to proceed; the result will be the same.
This is a rather natural property.

Justification of the ordered bisymmetry property: Suppose that we are in the
same situation as hereabove: p candidates and m judges provinding a matrix of appraisals.
But we start by removing some values—for example the lowest scores given by each judge
and the lowest scores obtained by each candidate. In general, it does not make sense
anymore to aggregate first on the rows and then on the columns, or conversely, and to ask
to obtain the same global evaluation: indeed, doing so, we do not aggregate the same values
in the matrix.

Now there is a situation where it still make sense: if the worst candidate is the same for
each judge and the hardest judge is the same for each candidate, when removing them, we
get a score matrix for (p−1) candidates and (m−1) judges, and we can aggregate as before.
Remark that this situation correspond to a certain order in the matrix X. If we wish to
take into account all the possibilities to remove one or several judges and candidates, we
have to consider orderable matrices of scores. Under the symmetry assuption (Sy), this is
equivalent to consider ordered matrices. In this context, ordered bisymmetry property is
then the classical bisymmetry property, after removing some values and when it still makes
sense.

3 Ordered weighted averaging functions

Now, we can introduce the ordered weighted averaging operators.

Definition 3 (i) Let m ∈ IN0. For any weight vector ω(m) = (ω
(m)
1 , . . . , ω(m)

m ) ∈ [0, 1]m

such that
m∑

i=1

ω
(m)
i = 1,

the ordered weighted averaging function OWA
(m)

ω(m) defined on IRm and associated to ω(m) is
defined by

OWA
(m)

ω(m)(x1, . . . , xm) =
m∑

i=1

ω
(m)
i x(i), ∀(x1, . . . , xm) ∈ IRm,
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where x1, . . . , xm are reordered as x(1) ≤ . . . ≤ x(i) ≤ . . . ≤ x(m).
(ii) For any sequence ω = (ω(m))m∈IN0 of weight vectors ω(m) ∈ [0, 1]m, such that

m∑

i=1

ω
(m)
i = 1,

the ordered weighted averaging operator OWAω defined on
⋃

m∈IN0
IRm and associated to ω

is the operator (OWA
(m)

ω(m))m∈IN0.

4 Characterization of the OWA functions

Before obtaining the announced characterization, we first need some technical lemmas.

Lemma 1 If the aggregation function M defined on
⋃

m∈IN0
IRm satisfies (In) and (SPL),

then

• M is idempotent, i.e. for all m ∈ IN0,

M (m)(x, . . . , x) = x

for all x ∈ IR.

• M is compensative, i.e. for all m ∈ IN0,

min
i

xi ≤ M (m)(x1, . . . , xm) ≤ max
i

xi

for all x1, . . . , xm ∈ IR.

Proof. From (SPL) we have

M (m)(0, . . . , 0) = rM (m)(0, . . . , 0)

for all r > 0, and hence M (m)(0, . . . , 0) = 0. We also have M (m)(x, . . . , x) = M (m)(0, . . . , 0)+
x = x ∀x ∈ IR. Finally, from (In) we have

M (m)(min
i

xi, . . . , min
i

xi) ≤ M (m)(x1, . . . , xm) ≤ M (m)(max
i

xi, . . . , max
i

xi).

It turns out, by the previous lemma, that the condition “r > 0” in the statement of the
(SPL) property can be replaced by “r ≥ 0” without change.

Let m ∈ IN0. For all i ∈ {0, . . . , m}, let us introduce

θ
(m)
i = M (m)(0, . . . , 0︸ ︷︷ ︸

i

, 1 . . . , 1).

Under the assumptions of Lemma 1, we have θ
(m)
i ∈ [0, 1] ∀i ∈ {0, . . . , m}. We then have

the following lemma.
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Lemma 2 Let M be an aggregation operator defined on
⋃

m∈IN0
IRm and satisfying (In),

(SPL) and (OB). Let m ∈ IN0. If there exists k ∈ {1, . . . ,m} such that θ
(m)
k ∈ (0, 1) then

M (m) is additive for ordered values, i.e.

M (m)(u1 + v1, . . . , um + vm) = M (m)(u1, . . . , um) + M (m)(v1, . . . , vm)

for all (u1, . . . , um), (v1, . . . , vm) ∈ IRm such that u1 ≤ . . . ≤ um and v1 ≤ . . . ≤ vm.

Proof. Let (u1, . . . , um), (v1, . . . , vm) ∈ IRm such that u1 ≤ . . . ≤ um and v1 ≤ . . . ≤ vm.
(i) Assume first that u1, v1 ≥ 0. Consider the ordered square matrix X of m rows ri

and m columns cj (i, j = 1, . . . , m), where ri is defined as follows (for i = 1, . . . , m):

ri = [
ui

1− θ
(m)
k

, . . . ,
ui

1− θ
(m)
k︸ ︷︷ ︸

k

,
vi

θ
(m)
k

+ K, . . . ,
vi

θ
(m)
k

+ K]

with K = um

1−θ
(m)
k

. On the one hand, by (SPL), we have, for all i ∈ {1, . . . , m}:

M (m)(ri) =
ui

1− θ
(m)
k

+

(
vi

θ
(m)
k

+ K − ui

1− θ
(m)
k

)
θ

(m)
k = ui + vi + Kθ

(m)
k ,

and thus

M (m)(M (m)(r1), . . . , M
(m)(rm)) = M (m)(u1 + v1, . . . , um + vm) + Kθ

(m)
k .

On the other hand, for all j ∈ {1, . . . , m}, we have

M (m)(cj) =





M(m)(u1,...,um)

1−θ
(m)
k

if j ≤ k,

M(m)(v1,...,vm)

θ
(m)
k

+ K otherwise.

However, by Lemma 1, we have M (m)(u1, . . . , um) ≤ um and M (m)(v1, . . . , vm) ≥ 0. Hence,
by (SPL), we have

M (m)(M (m)(c1), . . . , M
(m)(cm))

=
M (m)(u1, . . . , um)

1− θ
(m)
k

+

(
M (m)(v1, . . . , vm)

θ
(m)
k

+ K − M (m)(u1, . . . , um)

1− θ
(m)
k

)
θ

(m)
k

= M (m)(u1, . . . , um) + M (m)(v1, . . . , vm) + Kθ
(m)
k .

Since M (m) fulfils (OB), we have

M (m)(u1 + v1, . . . , um + vm) = M (m)(u1, . . . , um) + M (m)(v1, . . . , vm)

whenever 0 ≤ u1 ≤ . . . ≤ um and 0 ≤ v1 ≤ . . . ≤ vm.
(ii) In the general case, we have, using (i) and (SPL),

M (m)(u1 + v1, . . . , um + vm)

= M (m)(0, (u2 − u1) + (v2 − v1), . . . , (um − u1) + (vm − v1)) + u1 + v1

= M (m)(0, u2 − u1, . . . , um − u1) + u1 + M (m)(0, v2 − v1, . . . , vm − v1) + v1

= M (m)(u1, . . . , um) + M (m)(v1, . . . , vm).

Now, let us turn to the announced characterization.
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Theorem 1 The aggregation operator M defined on
⋃

m∈IN0
IRm fulfils (Sy), (In), (SPL)

and (OB) if and only if, for all m ∈ IN0, there exists ω(m) ∈ [0, 1]m such that

M (m) = OWA
(m)

ω(m) .

Proof. (Sufficiency). We can easily check that any aggregation operator satisfies the (Sy),
(In), (SPL) and (OB) properties.

(Necessity). Fix m ∈ IN0 and let (x1, . . . , xm) ∈ IRm. We have

M (m)(x1, . . . , xm)
(Sy)
= M (m)(x(1), . . . , x(m))

(SPL)
= M (m)(0, x(2) − x(1), . . . , x(m) − x(1)) + x(1),

with x(1) ≤ . . . ≤ x(m). We obviously have two exclusive cases:

(i) If there exists k ∈ {1, . . . , m} such that θ
(m)
k ∈ (0, 1) then, from Lemma 2, M (m) is

additive for ordered values. We have, for all i ∈ {2, . . . , m},
M (m)(0, . . . , 0︸ ︷︷ ︸

i−1

, x(i) − x(i−1), . . . , x(m) − x(i−1))

= M (m)(0, . . . , 0︸ ︷︷ ︸
i−1

, x(i) − x(i−1), . . . , x(i) − x(i−1)) + M (m)(0, . . . , 0︸ ︷︷ ︸
i

, x(i+1) − x(i), . . . , x(m) − x(i))

= (x(i) − x(i−1))θ
(m)
i−1 + M (m)(0, . . . , 0︸ ︷︷ ︸

i

, x(i+1) − x(i), . . . , x(m) − x(i))

and thus, recursively,

M (m)(x1, . . . , xm) =
m∑

i=2

(x(i) − x(i−1))θ
(m)
i−1 + x(1) =

m∑

i=1

(θ
(m)
i−1 − θ

(m)
i )x(i).

By (In), θ
(m)
i−1 − θ

(m)
i ≥ 0 for all i ∈ {1, . . . ,m}. Moreover,

m∑

i=1

(θ
(m)
i−1 − θ

(m)
i ) = θ

(m)
0 − θ(m)

m = 1− 0 = 1,

as required.
(ii) If there exists k ∈ {1, . . . , m} such that

θ
(m)
i =

{
0 ∀i ∈ {k, . . . ,m},
1 ∀i ∈ {1, . . . , k − 1},

then, by (In) and (SPL), we have,

M (m)(x(1), . . . , x(m)) ≤ M (m)(x(k), . . . , x(k)︸ ︷︷ ︸
k

, x(m), . . . , x(m))

= x(k) + M (m)(0, . . . , 0︸ ︷︷ ︸
k

, x(m) − x(k), . . . , x(m) − x(k))

= x(k)

and

M (m)(x(1), . . . , x(m)) ≥ M (m)(x(1), . . . , x(1)︸ ︷︷ ︸
k−1

, x(k), . . . , x(k))

= M (m)(0, . . . , 0︸ ︷︷ ︸
k−1

, x(k) − x(1), . . . , x(k) − x(1)) + x(1)

= x(k) − x(1) + x(1)

= x(k).
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Thus, we have M (m)(x(1), . . . , x(m)) = x(k) and

M (m) = OWA
(m)

ω(m)

with ω
(m)
k = 1.
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