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Traffic Modeling, Prediction, and Congestion
Control for High-Speed Networks:
A Fuzzy AR Approach

Bor-Sen ChenpSenior Member, IEEESen-Chueh Pend/lember, IEEEand Ku-Chen Wang

Abstract—in general, high-speed network traffic is a complex, accurate and able to represent the statistical characteristics
nonlinear, nonstationary process and is significantly affected by of the actual traffic. If the traffic models do not accurately

immeasurable parameters and variables. Thus, a precise model \onresent actual traffic, they may overestimate or underestimate
of this process becomes increasingly difficult as the complexity of
Jretwork performance.

the process increases. Recently, fuzzy modeling has been found t . )
be a powerful method to effectively describe a real, complex, and  Traffic models are analyzed based on goodness-of-fit, number

unknown process with nonlinear and time-varying properties. In  of parameters needed to describe the model, parameter estima-
this study, a fuzzy autoregressive (fuzzy-AR) model is proposed tion, and analytical tractability. Recently, traffic models have
to describe the traffic characteristics of high-speed networks. The been described as stationary or nonstationary [1], [2], [13], [18],

fuzzy-AR model approximates a nonlinear time-variant process . ) o
with a combination of several linear local AR processes using a [21], [23], [24], [37]. Stationary traffic models can be classified

fuzzy clustering method. We propose that the use of this fuzzy-AR N general into two classes: short-range dependent models and
model has greater potential for congestion control of packet long-range dependent models. Short-range dependent models
network traffic. The parameter estimation problem in fuzzy-AR  include Markov models and regression models (i.e., AR, MA,
modeling is treated by a clustering algorithm developed from ARMA) [10], [12], [15], [16]. These traffic models have a cor-
actual traffic data in high-speed networks. Based on adaptive . ’ ’ R .
AR-prediction model and queueing theory, a simple conges- relation structure that is S|gn|f|cant for relatively sma!l lags.
tion control scheme is proposed to provide an efficient traffic Long-range dependent traffic models, such as the fractional au-
management for high-speed networks. Finally, using the actual toregressive integrated moving average (F-ARIMA) and frac-
ethernet-LAN packet traffic data, several examples are given to tional brownian motion have significant correlation even for
demonstrate the validity of this proposed method for high-speed large lags [3], [4], [7], [8], [11], [20]. In most cases, actual traffic
network traffic control. e ' ’ . T
does not fulfill the stationary assumption, whereas it does sat-
Index Terms—Cell loss rate, fuzzy-AR approach, quality of ser- jsfy nonstationary, uncertain, and even nonlinear assumptions.

vice (QoS), traffic prediction. Recently, fuzzy modeling has been developed to very suc-
cessfully represent real linear and nonlinear (time invariant or
|. INTRODUCTION time variant) uncertain systems and it has had excellent appli-

ation in system control designs. To describe stationary, non-
tationary, or nonlinear high-speed traffic in networks, we have
. . ) oposed a fuzzy-AR model to capture these characteristics of
IS a hlgh-spe_:ed tr_ansp_ort network _de5|gned to support [!tual traffic. This model is easier to implementin a digital com-
variable service with different requirements for quality o uter and is more persuasive than the conventional models such

service (QS) (€.g,, cell loss rate, delay, and delay jitter) and @ ag ARMA, ARIMA, TES, and DAR regression models [1]
broad range of statistical characteristics [1]-[10]. However, ti ' ' ' ' ,

additional flexibility needed to accommodate different traffi In this fuzzy-AR model, the actual traffic data is divided into

SOUTCES may cause serious congestion problem_s, r?su@ageral clusters by fuzzy partitions, with each cluster described
in severe buffer overflow, cell loss, and degradat!on N TS an AR model. In this situation, the actual traffic process is de-
r_equwed QoS. In order to guarantee the QoS, effect|v_e CONIG&Eribed by combining these AR processes via fuzzy clustering
tion control schemes are ne_eded. Bec_ause c;ongesnon (.:0% s [27]-[32], [36]. This model has been found to describe a
schemeg depend on modeling for their traffic characteristi al process very successfully with nonlinear and nonstationary
anq avr_:ulable net_vv ork resources [22], [38], [39], an accur%?operties. A clustering algorithm is proposed to provide a sys-
estimation of traffic modelis crucial for. successful Congeantrématic procedure to partition this traffic data so that the number
control of ATM networks. These traffic models need to b8f fuzzy rules and the shapes of fuzzy sets in the fuzzy-AR

model are determined to achieve good fitness of data.
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tuning is a gradient descent algorithm used to precisely adjust

parameters of the fuzzy-AR model to achieve precise parameter
estimation.
Inherently, the fuzzy-AR model is a prediction-typed mod- Tt doa uzzy-AR )
eling. After the parameter estimation of fuzzy-AR model has W odel
been assembled from actual traffic data, the prediction of packet s a2
traffic can then be solved. Precise traffic prediction is an impor-
tant factor for the success of congestion control in high-speed }
networks, and the fuzzy-AR model can produce reliable and ""austeﬁng* -
accurate forecasts under congested traffic condition. A good Algorithm

prediction method such as this can maximize the use of avail-
able capacities in high-speed networks, thus saving transmission fnsh
time and minimizing congestion costs.

By utilizing real-time traffic information from network facil-
ities, the traffic may be appropriately assigned to each candidate
route. However, since traffic flow patterns change all the tim#/0rks, designed to handle data transmission. A good traffic
a control strategy based on previous traffic flow patterns m&jodel plays a significant role in the design and engineering
be irrelevant within a millisecond. For example, even if an aff both of these network types. It appears that the integration
ternate route selected for diversion is not congested at the tiRfg?acketized voice, packetized video, packetized images, and
of selection, one part of the chosen route may be congesf&inPuter-generated data traffic, each with its own multi-objec-
by the time when the packet data reaches that part of the rive QoS, requires the development o_f a relatively sophisticated
work. Thus, forecasting future traffic flow variables for eacffaffic model to carry out accurate design and performance eval-
link along diversion routes is a necessary process for selecthfyf'on- ] o ]
the most efficient alternate route. If a prediction model repre- With the emergence of diverse communication services
senting the traffic flow-fluctuation over time could be develSUCh as data, voice, and video, as well as increasing switching
oped, that model would have the potential to provide reliabff!d multiplexing in networks [14], [19], the packet traffic
forecasts for solving this route guidance problem called the &¢f- high-speed networks becomes a nonstationary or even
mission problem, with the guarantee of QoS. nonlinear process. In this situation, conventional linear traffic

Generally speaking, the fuzzy-AR model has the advanta dels are not ;uitable to capture the traffic behavior of
of excellent description of stationary or nonstationary packBfoad-band and high-speed networks. The proposed fuzzy-AR
traffic in high-speed networks. Inherently, it is also suitable fJPOdel ISa npnlmear mapping of ap'lnput data yector toa scqle
prediction of the packet traffic in broad-band networks. Ther@UtPut and it has excellent capability to describe these traffic
fore, the fuzzy-AR model has an important potential applicatid{!aracteristics. _ _
in traffic congestion control. In this study based on AR-predic- In general, the.f.uzz.y—AR traffic m.odel contains fgur compo-
tion model and queueing theory, a simple feedback congestf?)?PtS: ruIe.s., fu;znﬁer, mferenc_e engine, and defuzzifier. The role
control scheme is developed to control network traffic to prc?— the fuzzn‘|er.|s to map the_ crsp mput data values_to fuzzy sets
vide efficient management of high-speed networks. Finally, fefined Py thqr.r'ne"mbershlpfunctlon, and depending on the F’e'
order to demonstrate these advantages, some comparisons tfi& of *possibility” of the input data. Th_e goal of the defuzzi-
proposed fuzzy-AR model with other conventional models a g 1S _to map the ogtput fu_zzy sets to crisp output values. The
given to illustrate the superiority of the proposed model for t gezy inference engine defines how the system should make in-

prediction and congestion control of the packet network traffi erences through the fuzzy rules contained in the rules base in

The structure of this paper is as follows. The problem descri%[c_lj_iret?ugite_zgnrﬁgzilOcl{atﬁu;;linﬁesse;i'te d by combining sev-
tion is given in Section Il. Then, in Section Ill, the parameter y P y 9

estimation of the fuzzy-AR traffic model with the clustering aI-eral AR models via fuzzy rules (see Fig. 1) as follows [28], [29]:

gorithm is described. In Section IV, some comparisons of the
fuzzy-AR model with other traffic models are given. Conges-

Fig. 1. Fuzzy-AR modeling for prediction of actual traffic data.

Rule R : If y(n) is M] (Qila(AQ)

. . . .. . . . . H l l l

tion control using traffic prediction is discussed in Section V. In andy(n — 1) is My (931, 922) -+ -
Section VI, simulation examples are provided to demonstrate andy(n — p+1)is M} (g5, )
tCTSS\i/grl:Slty of the fuzzy-AR model. Section VII gives the con- theny,(n + 1)

=aio+a1y(n)+---+apyin—p+1)
1)

[I. PROBLEM DESCRIPTION
High-speed networks based on ATM cell transmission are exhere R'(I = 1,2, ..., c) denotes théth fuzzy rule;y(n — j)
pected to carry a variety of traffic types in an integrated fashiofy. = 0, 1,...,p — 1) is the measurable traffic datg;(n + 1)
This differs considerably from the cases of circuit-switched telés the output of the fuzzy rul&'. a;;, « = 0,1,...,p can be
phone networks, designed primarily to handle voice commaensidered as a residue of the model. Inherently, this is a pre-
nication and, from the much more recent packet-switch natiction-typed modeIM}s are bell-typed membership functions
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Fig. 2. Traffic control algorithm.

with only two variables, i.eqjk, k =1,2inthejth fuzzy mem- will be discussed in the next section. In brief, the estimation and

bership function of théth fuzzy rule prediction problems involve how to find a suitable number of
rules, a proper partition of the feature space, and the accuracy
(n—3)—q 2 of parameter estimation.
L 4 J)~49n ) " ) . .
M; (q]'la q]'Q) = €xXpy — 7ql - @ Traffic conditions in networks vary considerably over time.
52

In order to look ahead, a prediction model that describes the

e-varying traffic conditions throughout the high-speed net-

. .
The fuzzy]:f\hR modell n (1g caqhbe reprr;a;entei tt;y a We'ghtﬁ%rk is needed. Here, three variables (i.e., current traffic infor-
average of the,(n +1)s, where the weight;(n) of they (n + mation, past traffic information, and prediction traffic informa-

1)is (.jetermmed. by an qperatlon performed on the memberstﬁlgn) are investigated to assess the variability in traffic condi-
functions associated with that output of the fuzzy-AR mod(ﬁl

ons. Current traffic information is one of essential means of

[271-{29] estimating traffic trends and it is a component of the predic-
S win(n +1) tion model. Past traffic information is used to smooth out abrupt
gln+1) = _1Zc © changes in the current traffic flow to avoid extreme forecasts.
» =17 Traffic prediction information is introduced to represent the dy-
wy = H M]’» ( q]; L q]zQ) ©) namic nature of traffic flow. The quality of the fuzzy-based AR

prediction model depends on the way by which those three vari-
ables are combined.

i.e., the fuzzy-AR model in (1) is equivalent to the weighted If all the link data throughout the network are available, it
AR modelin (3), i.e., a nonlinear and time-variant weighting ofill be possible to more efficiently control the traffic of the
local AR models. Due to its simplicity, the equivalent fuzzy-ARhigh-speed network. In order to design such a control, an ad-
model in (3) is employed in this study for modeling and presanced and precise prediction model is required. In other words,
diction of high-speed packet network traffic. The fuzzy-ARx high-speed network scheme is to keep the promise of ubig-
model in (3) is determined by the number of input variablasity, convenience, affordability, and reliability. Thus, an accu-
and the number of fuzzy variables or membership functiomate system model must be constructed to provide acceptably
associated with each input variable. In general, increasipgecise performance prediction in a reasonable amount of time.
the number of the fuzzy rules or the number of coefficieniBhe fuzzy-AR model provides a powerful method for predicting
at the AR model results in a more accurate model, but at ttiee traffic in high-speed networks. In particular, effective traffic
expense of increased computational complexity. Choosing tegtimation is required when there are corresponding demands
appropriate number of parameters is a very important probldar network resources. Needless to say, poor prediction invari-
because the number of fuzzy rules and coefficients in the fuzagly leads to inappropriate design and management decisions,
rule will affect the performance of the fuzzy-AR model and therhich, in addition to impacting users in tangible adverse ways,
computational complexity. To describe traffic characteristics aan also bring about a sense of disappointment and a perception
high-speed networks, the problem of estimating the paramettrat the new technology is being “oversold” to the public.

qjk (¢ =12..,¢5 =12,...,pandk = 1,2) anda,; In order to demonstrate the excellence of the fuzzy-AR model
(I =1,2,...,candi = 0,1,...,p) of the fuzzy-AR model for high-speed network traffic, the convergence analysis of the

j=1
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proposed model is evaluated with actual traffic data. Generatlyning algorithm (i.e., gradient descent algorithm). The traffic
speaking, the fuzzy-AR model can be tuned to approximate aghigta is clustered by the proposed method to provide the struc-
linear or nonlinear dynamic of packet network traffic and, thugre of the fuzzy-AR model. In order to obtain the fuzzy-AR
represent traffic behaviors. The first purpose of this current wonkodel, the identification algorithm should include:
is to present a new traffic model based on fuzzy clustering algo- « the choice of the number of fuzzy rules;
rithm with coarse tuning and fine tuning techniques. This model « the parameter learning of the membership functions;
captures the characteristics of the packet network traffic and at« the parameter estimation of the local AR models.
the same time solves the prediction problem for packet networkin prief, the suggested fuzzy-AR modeling algorithm is com-
traffic. posed of two steps: the first one is a coarse tuning, which deter-
High-speed networks offer great flexibility and efficiency bynines consequent parameters roughly using FCRM clustering,
statistically multiplexing different types of multimedia trafficand the second one is a fine tuning, which adjusts the premise
with different QoS requirements (e.g., cell loss rate, delay, agfld consequent parameters more precisely by gradient descent
delay jitter) and a broad range of statistical characteristics. Ho#igorithm. Both tuning procedures are repeated to find an ap-
ever, the additional flexibility to accommodate different traffigropriate numbee of clusters.
sources may cause serious Congestion problems, which will rein the f0||owing paragraphs, we show how to determine the
sultin severe buffer overflow, cell loss and degradation in the rgptimum consequence and premise parameters are determined
quired QoS. Thus, effective congestion control and traffic maf order to minimize the performance index. The performance
agement schemes have to be developed. The main functionnefex has been defined as a root-mean-square (rms) of the output
traffic control is to regulate the flow of the traffic into the neterrors, i.e., the differences between the traffic data of the actual

work such that it approximately matches the capacity of the ngfetwork and those of fuzzy-AR traffic model.
work’s limited resources (see Fig. 2). One of the problems that

makes congestion control in high-speed networks difficultis the Rough Tuning by FCRM Algorithm
uncertainty and highly time-varying nature of the diverse mix of
traffic sources. Furthermore, due to the very small cell transmi
sion time and small buffer sizes, it is imperative that any effec-
tive congestion control algorithm must be simple with minimal
reaction time. In this work, we propose a feedback traffic con- (7 +1) = a0 +ai1y(n) +--- +a,y(n —p+1) (4)
trol algorithm which is based on the proposed AR-prediction. ., | 1) Yo wim(n +1) 5)
The main control action in our algorithm is to reduce the peak Yo w '

rate of traffic sources when the AR-prediction scheme predicts

possible congestion in the multiplexer. The motivation behinthe linear local AR model in th&h cluster can be rewritten by
our use of this AR-fuzzy prediction model is that it is very efthe following vector equation:

fective in learning and predicting nonlinear complex systems,

_The fuzzy-AR traffic model in (1)—(3) can be represented by
e following:

these making it an ideal tool to handle high-speed networks. yiln+1)=Z"(n)A, (6)
In the next section, we introduce a useful approach to iden-

tify the proposed fuzzy-AR model using real traffic data. Thighere Z(n) = [1,y(n),y(n — 1),...,y(n — p + )|

identification method includes a parameter estimation for t@d A; = [ai,ai1,...,ap]". When a set of traffic data

membership functions and a parameter estimation for local AB(n),y(n + 1)), n = 0,1,2,... is given, we can obtain the
models. After the parameter estimations, the prediction of a8R model parameters\; (I = 1,2,...,¢) roughly by the
tual traffic data can then be successfully solved. Based on fladowing steps.

fuzzy AR-prediction of possible congestion, a simple feedbackStep 1) Set M = 0 and assume data
traffic control algorithm is developed to efficiently mitigate the S = (Z(0),y(1)),...,(Z(n — 1),y(n)). Define a
congestion of network traffic. ¢ x n weighting matrixU as in [36]
U1 Ur2 o Uln
[ll. PARAMETER ESTIMATION OF FuzzY-AR TRAFFIC MODEL u u W
USING A CLUSTERING ALGORITHM U= a2 2
In this section, we introduce a fuzzy clustering algorithm, Mot Uy oo

which both combines the excellent system description capa-

bility of network traffic by the fuzzy-AR model and also simpli-

fies the identification method of fuzzy-AR model. In this study2"d .

the clustering algorithm is presented to estimate the parameters Z w;=1, Vj=1,...,n. 8)
=1

0<u; <1, wherel <i<¢, 1<5<n (7)

of the fuzzy-AR model based on the prediction of the packet
network traffic. Details are given below.

First, we propose an identification method to estimate the pa- Initialize the weighting matrixUU' with random
rameters of the fuzzy-AR model (3) from real traffic data. The values between zero and one such that the con-
proposed identification method consists of a cascade of a coarse straints in (8) are satisfied and they initialize the

tuning algorithm (i.e., FCRM algorithm) [27]-[32] and a fine- parameter\; = 0.
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Step 2) Define the cost function for FCRM at théth iter-
ation as the following equation as in [27], [36]:

J=Y =)0 ulidi;
=1

=1 j=1

9)

wherew; ;

di; = |lw(j) — Z¥(j — 1)A;|| denotes the Eu-
clidean norm between thih actual traffic data and "2":

the output of thelth fuzzy-AR model and/; =
21 utydi ;.

1,5
To find the optimum solution under the weightin
constraints in (8), the necessary conditions for (9)

is between zero and one. The equatio|'?’

495

noy s (yk = 5) — dy)’
qé,z—qzzk_lm(y( R A

D ket Uik

The FCRM clustering algorithm can adjust the certainty grade
of each fuzzy-AR model by its classification performance; that
when the traffic data is misclassified by the algorithm, the
certainty grade of the fuzzy-AR model is decreased. On the con-
when the traffic data is correctly classified, the certainty
grade is increased.

After the rough tuning based on the FCRM algorithm, a fine

gtuning based on gradient descent algorithm is performed.

tﬁ. Fine Tuning by Gradient Descent Algorithm

reach a minimum can be found by forming a new ) o )
cost function®, which rewrites (8) and (9) as fol- _ From (4) and (5), we can write the prediction traffic data

lows:

b= J+Z)\j <ZU,1J’ — 1)
j=1 =1
=D D ulidi YN <Z ugj — 1) (10)
i=1 =1

=1 j=1

where);, ( =1,2,...,n) are the Lagrange multi-
pliers for then constraints in (8). By differentiating

dwithw ; (1=1,2,...,candj =1,2,...,n), the

#(n + 1) in the fuzzy-AR traffic model as follows:

iy (med ) mn + 1)
=1 W (”’ qﬁk)

{
¢ wy (”a qu)

= Z - l yln+1)
=1 Zj:l wj (”vqj,k)

=> Bi(n. i) wln+1)

=1

in+1) =

17)

necessary condition for (9) to reach its minimum is

1

ulJ’ = (11)

Eia (%)2/(""9-

At the M th iteration, compute the cost function ac-

cording (9) and compute a néw using (11).

Step 3) If either the cost function is below a certain tolerance
value or its improvement over previous iteration is
below a certain threshold then stop; otherwise, go to

Step 4).
Step 4) Calculate new cluster representatives af Mfe+
1)th iteration,y(n + 1) = Z¥(n)A; usingug x

obtained in Step 2) and then a weight recursive least

square (WRLS) algorithm is given as follows:

Ak +1) = A(k) + HB)y(k + 1) = Z7 (k) Aq(k)]

12)
H(k) = S(k + 1)Z(k)
_ S(K)Z(k)
s FZT(R)S(RZ(K) (13)
S(k+1) = [I - H(k)-Z¥ (k)] - S(k) (14)

wherek = 1,2,...,nand! = 1,2,...,c. The
initial value of the algorithm i$(0) = of
Step 5) Goto Step 2) and = M + 1.

wheref;(n, q]l',k) = (wi(n, Qﬁ,k)/ Z;’:l w;(n, q]l',k))v andq]l',ks
are parameters of the membership functM;ﬁ and

w(n+1)=ay0+a,1y(n) + - +apy(n —p+1) (18)
Gn+1) = pi(n,d5 ) laco + ayiy(n)
=1
+ - tagy(n—p+1)]
=V (n,qj,) A (19)
where V(TL, (JJl,k) = [/31(717 q]l',k)7/32(n7 (Jj,k)v L] /31(717 (Jik)
y(n)a . aﬁc(na Qj7k)y(n)a . aﬁc(na (Jik)y(n - D + 1)]T
RM>1_the consequent paramet& = [a10,a20,.--,
Te 0y @151 0ey- - 0ep]t € RM*L and M is the number
of terms in (19). The task of parameter estimation in the
fuzzy-AR clustering algorithm is to determin;ék and A, by
minimizing the following criterion:

I (g5, A) = [Y = Y|?

= |Y -1 (g},) Al (20)
whereY = [y(1),4(2),...,y(N)]" € RN Y = [5(1),
9(2),...,9(N)])T € RN*1 and (see (21) at the bottom of the
next page).

Remark 1: In [32], it was previously shown that the param-
eter estimation of the fuzzy-AR model by the gradient descent

For bell-typed membership functions (2), the parameter gdgorithm can be divided in two steps. The optimal consequent

timations of¢}, and ¢, can be roughly obtained from the

weighting matrixZ/ in above steps [27].

_ EZ:l Ul,ky(k )

{
L= - 15
Q},l Zk=1 ug g ( )

parameterA* can be obtained by the least squares method,
which is a linear estimation problem. However, determining the
optimizationqjjk is a nonlinear estimation problem.

The iterative method of the fuzzy-AR traffic model based on
the above minimum square error can be improved by a fine fuzzy
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partition. This fine tuning method consists of two procedurejning are in the recursive estimationszggt andqjy2 in (22) and
i.e., the premise parameters procedure and the consequenizpgin) in (23). All of these recursive parameter estimations can
rameters procedure [27], [31], [36]. be calculated in real time if the computer computation capability
a) Premise parameters procedureAccording to the IS fast enough.
fuzzy -AR model in (4) and (5), the premise parameter Remark 3: Initially, rough tuning plays the most important
ks of the fuzzy -AR model can be prec|3e|y adjusted W|e of parameter estimation. As the parameter estimation con-

the following learning rule: verges, only the fine algorithm is necessary. In this situation, the
rough tuning algorithm can be cut off and the computing load is
Aqgl'k(” +1)= ij(” +1) - ij(”) reduced.
9 e*(n) Remark 4: Because the fuzzy-AR model has nonlinear be-
= _”W 2 havior, accurate analysis is difficult. However, in [31] it was
ok shown that the fuzzy-AR model in (4) and (5) has universal ap-
=n(y(n) — 9(n)) proximation capabilities. That is, for any given packet traffic
(yi(n) — ii(n) %a_“l” datay(n + 1) and arbitrarye > 0, such thatup,, |y(n + 1) —
2 e Wi Og, 9(n + 1)| < ¢, if the number and the order of the fuzzy-AR
or model are sufficiently large.
Remark 5: For the initial condition att = 0, we have
gr(n+1) = gh(n) + n(y(n) — §(n)) Ay(0) = 0andS(0) = o, wherea is a small positive constant
1 Owy and [ represents an identity matrix. For the AR model in (4),
(we(n) = 4(n)) s~ S L wr a%k (22) the M -step ahead traffic prediction is recursively obtained by
where is a premise learning ratgy(n) is the actual Gn+1) = Z () Ai(n)
traffic data,#(n) is the output of the fuzzy-AR model, Gi(n+2) = ZlT(n)Al(n)

ande(n) = y(n) — §(n).

b) Consequent parameters proceduiihe consequent pa-
rametersA of the fuzzy-AR traffic model in (4) and (5) w(n+m) = Zf,; L(n) Al(”)
can be finely adjusted by the following learning method:

B i+ M) = Z8,_, (m)Ar() (2
= 0a,; \ 2 where
— (y(n) — ) 2= 1) 2 )=l dntm—1) it m2)

Ec: wy m—1 .
o = Giln+1) wln) - wmln+m—p+1)]

wiy(n — 5) gndﬁl(@) is obtgined.recursively from the proposed rough and
S (23)  fine tuning algorithm in the above subsections.

=1 Summing up the above discussion, the fuzzy-AR modeling

wherevy is a consequent learning rate. has excellent convergence characteristics with actual traffic data

After the parameters qﬁ » anda; ; have been estimated fromin a high-speed network. In other words, the fuzzy-AR model
real traffic data via the p?oposed rough and fine tuning algoeuld accurately capture real network traffic behavior. Based
rithms in the above subsections, the fuzzy-AR modeling in (éh the clustering algorithm, the fuzzy-AR model is proposed
and (5) is finished. Then, based on the constructed fuzzy-A® predict the packet traffic in high-speed network. Using the
modelin (4) and (5), a one-step-ahead predicign+1) can be fuzzy-AR model to predict the packet traffic in high-speed net-
obtained from the previous dagén ), y(n—1),...,y(n—p+1). work, we do not need to assume any statistical characteristic of

Remark 2: The main computations of rough tuning are inthe real traffic data. However, this procedure relies on the knowl-
the recurswe estimation ay,;(%) in (12) and in the estimation edge of a set of the past packet traffic values and current traffic
of qu in (15) anqu2 in (16). The main computations of fineinformation. The prediction with the fuzzy-AR model allows

agi(n+1) = ag;(n) +v(y(n) - §(n))

l
vpm | 2, 4; k

VT(1,q§.7k) vo(l,q]l"k) v1(1,q§.7,€) U]\4(1,q]l»7k)
(2:44) i) ) e ow(24)

c R]\T XM (21)

VE(Ng) ] Lo (Nodh) oo (Madla) o o (Nl
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Fig. 3. MMPP process.

us to obtain a good approximation of the actual traffic for theetworks. In other words, we could classify the data packet,
development of the congestion control, and the multiplexer sewice packet and video packet into the different clusters by
vice capacity. Recently, due to reduction in price and increasefirzzy clustering algorithm. Therefore, this model can capture
power of hardware, the computation cost has been reduced dufith the short-range dependence and long-range dependence
stantially. In this situation, the recursive parameter estimatiom packet traffic of high-speed networks. After clustering the
algorithms in rough tuning and fine tuning of fuzzy-AR modemixed traffic data, we can analyze and successfully predict the
for high-speed network can be performed in real time. In theacket traffic.

next section, we will demonstrate the advantage of the fuzzy-AR

traffic model by comparing it with other traffic models. B. Markov-Modulated Poisson Process Model
The most commonly used Markov-modulated model is the
IV. COMPARISONS WITHOTHER TRAFFIC MODELS Markov-modulated Poisson process (MMPP) model, which

ggmbines the simplicity of the modulating (Markov) process

Wi i i [ f traffi I i ) X
€ begin by discussing & number of traffic models describ ith that of the modulated (Poisson) processes (see Fig. 3).

in the literature, which represent network traffic, then pointin : S ; .
out some defects of these models. Furthermore, we will illus- th|_s model, while n statesy, arrivals occur according to
trate that the fuzzy-AR model could overcome the shortcominﬁ}spo'sson_ process with rgm. The MMP.P process allows
in conventional traffic models and that this fuzzy-AR model pro; e modeling of time-varying source, while keeping tractable

vides excellent performance in capturing the traffic propertiesm’e analytical solution of related queueing perform.ancg. The
high-speed networks. problems of MMPP are that the parameters estimation of

MMPP (i.e., the arrival rate\;, the transition rate, and the
suitable number of stateS;) are very difficult. To simplify
_ _ ~ the complexity of the MMPP model, the MMPP model could
Poisson models are the oldest traffic models. A Poiss@Rt have an infinite number of states and it must quantize the
process can be characterized as a renewal process whose if{gfie| parameters into finite number of the model parameters.
arrival timesX,, (n = 1,2, ...) are exponential distributed with Therefore, the MMPP model will produce quantization errors
rate A : p(X,, < t) = 1 — exp(—At), and where the number 54 serious modeling errors. Furthermore, the MMPP model is
of arrivals in disjoint intervals is statistically independent [10}qot suitable for packet traffic prediction. The fuzzy-AR model
Poisson processes have some elegant analytical properties3} an advantage over MMPP model in that it determines
[2], [16], [17]. First, the superposition of independent Poissqfle model parameters easily and accurately. The parameters
processes results in a new Poisson process whose rate iss§ifination of the fuzzy-AR model has self-learning capability
sum the component rates. Second, the independent incremgntraining via input traffic data. And the quantization of
property renders Poisson a memoryless process. Third, Pois§@fameters is not needed in the fuzzy-AR model. Therefore,

processes are fairly common in traffic applications that physje fuzzy-AR model is more powerful and accurate than the
cally comprise a large number of independent traffic stream$nipp model.

each of which may be quite general. However, the Poisson ar-

rival process, used extensively in network performance analy§ls Autoregressive Traffic Model

and the prgdictiqn of packet traffic, does pot work,_ particularly The autoregressive model of orgehas the following form:
when dealing with the stream-type continuous bit-rate traffic

formed in high-speed networks. Recently, measurements of L

both LAN and wide-area TCP (Internet) traffic indicate that y(n+1)=ao+ ZGW(” —k+1)+e(n) n>0 (25)

the Poisson model breaks down in a number of real-life appli- k=1

cation areas [25], [26]. The reason for this is that conventionaherey(n — k + 1)s are the real traffic data(n) is zero-mean,
Poisson processes cannot capture the long-range dependém®pendent identically distributed (i.i.d.) random variable, and
of high-speed network traffic. Since the fuzzy-AR model viay,k = 0,1,...,p are real constants. Such models are par-
clustering algorithm has the capability of classifying differerticularly suitable for modeling VBR-coded video—a projected
types of traffic data into different clusters, it could be appliethajor consumer of bandwidth in emerging communication net-
to analyze and predict the mixed traffic data in broad-bamdorks. However, the AR model is only suitable to model the

A. Poisson Model
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case with short-range dependence structures in packet netwc
traffic. Recently, measurements of packet traffic in the interne
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c(n)
A

indicate that the traffic is self-similar or fractal-like (long-range
dependence) in nature [35]. Furthermore, the traffic may b
time-varying and nonlinear. The term self-similar, means tha
the statistical characterization of the traffic is essentially in-
variant with the time scale. Therefore, the AR model fails ta
capture the behavior of a high-speed network traffic. The clus
tering, time-varying and nonlinear characteristics of a fuzzy-AF |
model can take over the phenomenon of self-similarity or fracte
property of packet network traffic. From the simulation results
in next section, we can see that the fuzzy-AR model has exclgild
lent ability to describe the burstiness of packet traffic. Actually,
the degree of self-similarity is related to the burstiness of packet
traffic. In other words, the fuzzy-AR model can be used to ef- Due to the very small cell transmission time and small buffer
ficiently characterize the self-similarity and long-range depefize, any effective congestion control algorithm must be simple
dence structures in high-speed networks. with minimal reaction time. In this paper, we propose a feed-
In the above discussion, based on the clustered, time-vary*?ﬁfk traffic control algorithm, which is based on the congestion
and nonlinear nature of fuzzy combination of AR clusteringrediction of the queue length of (27). The main control action
the fuzzy-AR model is found to be applicable to different type%f our scheme is to reduce the peak rate of traffic sources when
of actual packet traffics in high-speed networks. Based on traffiée adaptive AR-prediction algorithm predicts possible conges-
prediction using a fuzzy AR-model, a simple but efficient cortion in the multiplexer buffer. Consider a multiplexer buffer with

gestion control algorithm is proposed in the following sectionSize @ and denote a threshold limit of queue lengtitag, for
example (i, = 0.5¢). Our control signat(n) is generated by

the following congestion control algorithm (see Fig. 4)

> a(n)

Qth Q

. 4. Control signat(n).

V. CONGESTIONCONTROL USING TRAFFIC PREDICTION

The predicted traffic congestion with current queue informa- 1, if g(n+ M) < Qu,
tion in the buffer can be used as a measure of congestion. Al{n + M) = { LM it o, < G(n+ M) < Q (28)
. .. - . Q—Qwum = -
though ATM provides additional flexibility for accommodating 0, if Q< g(n+M)

different traffic sources, however, it may cause serious conges-
tion problems that will result in severe buffer overflow, cell lossyhere the congestion predictigfv.+ M) is obtained from (27)
and degradation in the required QoS. To overcome this, effagith M = 1,2,.. ..
tive congestion control and traffic management are developedrhe control signal is inversely proportional to the occupancy
in this section. (congestion) of the queue whétvw + M) > Q. If the G(n +

Consider a multiplexer buffer queue with size @f where M) reaches the threshol@.,, a control signak(n + M) is
y(n) is the number of cells that arrive between the timel and sent back and each source reduces its rate. Let us denote the
n. The queue has a constant service rat@ otlls per unittime. current source rate a§n). Then the current input ratgn) to
Denoting byg(n) the queue length at time, then we have the the multiplexer is as follows:
following Lindley’s equation [34], [40] (see Fig. 2) indicating

y(n) = c(n)A(n).

Obviously, this approach is a closed-loop control system.
cells are lost if the buffer overflows. There are several advantages associated with the proposed
In this study, the occupancy of the queue is considered asgamtrol algorithm based on feedback throttling. First, it is
indication of traffic congestion in the multiplexer buffer. In thisot of the reactive control type since it is applied at the input
situation, the congestion prediction of the network is obtaineftcess node to the network and its speed is not limited by
sequentially as follows: the propagation delay in the multiplexer. Due to the use of

prediction-type control algorithm, any control action taken will
be in time to alleviate the potential congestion. Second, it can
be widely applied, regardless of the type of encoding used.
Third, through decreasing the peak rate, it provides the means
for the maximum possible shaping of the input arrival process.
Consequently, the bandwidth allocated to the input cell can be
reduced, while the same required QoS is still achieved. Also,
the statistical multiplexing gain is enhanced since more sources
where §(n + ¢) in the right-hand side of (27) is ob-can be supported for each multiplexer. Therefore, the proposed
tained from the previously stage, and traffic predictionsontrol algorithm is more suitable for traffic smoothing.

g(n +¢),¢ = 1,2,...,M are obtained from the fuzzy-AR In the next section, some practical examples with computer
prediction algorithm in the previous section. simulations are given with comparisons to demonstrate the

(29)

g(n +1) = min(max(g(n) + y(n + 1) — C,0),Q) (26)

G(n + 1) = min(max(g(n) + (n + 1) — C,0),Q)
g(n + 2) = min(max(g(n + 1) + §(n +2) — C,0),Q)

G(n 4+ M) = min(max(j(n + M — 1)

+y(n+ M) - C,0),Q) (27)



CHEN et al. TRAFFIC MODELING, PREDICTION, AND CONGESTION CONTROL FOR HIGH-SPEED NETWORKS 499

900 T T T Y T ¥ T T T

800 Actual traffic SRR=10.0578 dB 1

200k T Forecasted traffic i

600

. e

i
500 L i

400 M8 :

packets/Time Unit

|
300 [FF1
200 LK ‘ : (Ll L il 1-

100 N

1 1

0 'l 1 '] 'l 1 1
0 100 200 300 400 500 600 700 800 900 1000
Time Unit: 1 second

Fig. 5. Actual and forecasted packet traffic using fuzzy-AR model in Case 1 of Example 1.

validity of the prediction and congestion control based on the In order to illustrate the performance of our proposed method,
fuzzy-AR model by the high-speed network traffic data. the prediction signal-to-error ratio (SRR) is defined as a perfor-
mance index

VI. SIMULATION 2
SRR= 10 log,, g[y (n+ 1]

[e2(n+1)] (dB)

Example 1:In this example, we use the LAN traffic data
collected by Leland and Wilson [3], [32] for simulations. The
data were collected between August 1989 and February 1982erec(n + 1) = y(n + 1) — 4(n + 1). In this case, the SRR
on several ethernet LAN’s at the Bellcore Morristown Resear¢$10.0578 dB.
and Engineering Center, NJ. Leland and Wilson have presenteCase 2: The actual LAN packet traffic data over a 1000 s
a preliminary statistical analysis of this traffic data, i.e., theneasurement period collected by Lelaial.[3] is used in this
self-similar behavior [3], [33]. This self-similar or fractal-like case. The traffic data is different from the packet data in Case 1.
behavior of aggregate ethernet LAN traffic is very differenthe traffic data measurement, started at 11:46 P.M., 30 October
both from conventional telephone traffic and from currentlg989, has 1 000000 packet arrivals, although for convenience
considered formal models for packet traffic. We use four casesly a sample of the first 1000 time units (time usi 1 s)
to demonstrate the performance of the proposed fuzzy-ARused for parameter estimation and prediction of fuzzy-AR
model via the clustering algorithm from actual ethernet traffimodeling.
data. That is, the proposed traffic model could capture theln this case, three fuzzy rules and five consequent parameters
self-similar characteristics of the ethernet traffic through tha each rule are used in the fuzzy-AR model. Fig. 6 shows the
following simulation results. In these cases, the actual traffactual traffic datay(n + 1) and the forecasted packet traffic
data were measured from the ethernet LAN's with differer(n + 1) by the proposed fuzzy-AR model. In this case, the
time scales. Four cases are discussed as follows. prediction performance SRR is 7.8443 dB.

Case 1: The actual LAN packet traffic data were collected Case 3: The actual LAN packet traffic data over a 10000
by Lelandet al. [3] over a 1000 s measurement period. The measurement period collected by Lelagidal. were used
data measurement in Bellcore, started at 11:25 A.M., 29 Augugith 10 s as one time unit. In this case, the measured traffic
1989, and has 1000000 packet arrivals, although we selectiada is identical with Case 2 but different in measurement
only a sample of the first 1000 time units (time ugitl s) for period (10 000 s) and time unit (10 s). Here, we use three fuzzy
parameter estimation and prediction in our simulation. rules and five consequent parameters in each fuzzy rule of the

In this case, we use three fuzzy rules and five consequent pzzy-AR model. The simulation results are shown in Fig. 7. In
rameters in each rule in the fuzzy-AR model to predict the actuhis case, the prediction performance SRR is 7.2657 dB. Since
traffic data. Applying the clustering algorithm in Section Ill, wethe prediction of 10 s ahead is more difficult than the prediction
have obtained the simulation results shown in Fig. 5, in whiaf 1 s ahead, the performance in this case is worse than that of
the solid line presents the actual traffic packét + 1) and Case 2.
the dotted line represents the prediction reggit + 1) by the Case 4: The actual LAN packet data over a 100 000 s mea-
fuzzy-AR model with the clustering algorithm. surement period collected by Lelartlal.is used in this case.
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Fig. 6. Actual and forecasted packet traffic using fuzzy-AR model in Case 2 of Example 1.
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Fig. 7. Actual and forecasted packet traffic using fuzzy-AR model in Case 3 of Example 1.

The measured traffic data is also identical to Case 3 but differggised prediction algorithm can be performed in real time and
in measurement period (100 000 s) and time unit (100 s). Thas potential for traffic congestion control.
fuzzy-AR model is the same as Case 3. The simulation resultdrom Figs. 5-8, it is seen that there is very sharp variation of
are shown in Fig. 8, indicating the prediction SRR is 6.8875 dihe packet traffic, hence, we cannot reasonably hope to model
The performance is worse than the previous cases becausetieearrivals using a simple traffic model or the conventional
prediction of 100 seconds ahead is more difficult than the prieaffic model. Modeling ethernet traffic using other conventional
diction of either 1 or 10 s ahead. However, the performance canodels (i.e., Poisson, AR, MMPP models, and so on) cannot ac-
still be considered very good for the prediction of packet neturately reflect the long-range dependence in actual traffic and
work traffic. will significantly underestimate performance measures such as
Remark 6: The computing times for calculating one iterativeaverage packet delay or maximum queue size. In comparison,
tuning to update the parameters in the above four cases argaddiction results from the conventional AR model of order 120
within 0.0035 s by workstation ultra 2, which is much smallen above cases are given in Figs. 9—12. Obviously, this model
than the time units in the above four cases. Therefore, the peannot capture the nonlinear and nonstationary properties of
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Fig. 8. Actual and forecasted packet traffic using fuzzy-AR model in Case 4 of Example 1.
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Fig. 9. Actual and forecasted packet traffic using AR model in Case 1 of Example 1.

high-speed networks traffic even with very high order. Througfate. In these cases, the cell loss rate with different buffer sizes
the simulation results, we find that the fuzzy-AR modeling viare shown in Figs. 13—-16. Obviously, the congestion control
clustering algorithm has good capability to predict the actubhsed on the proposed traffic prediction method has superior
packet traffic in high-speed networks. performance than the other control methods without traffic pre-
Furthermore, in order to exploit the significance of traffic prediction.
diction on the congestion control, a congestion control design isExample 2: In this example, multimedia network traffic with
given as the following. video and voice sources is used to test our proposed method. The
Based on the results from the previous section, our conge#deo source is the actual VBR video traffic for a movie called
tion control algorithm is proposed as follows:(f < §(k + Star Wars which contains quite a diverse mixture of material
M) < 0.5Q, then each source does not reduce its rate. rlinging from low-complexity motion scenes to those with very
0.5Q < gk + M) < @, then a control signal is sent back andhigh action. This source use an intraframe compression code sim-
each source reduces @ — G(n + M)/Q — 1) of current ilarto JPEG. The traffic is generated from the output of a simple
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Fig. 11. Actual and forecasted packet traffic using AR model in Case 3 of Example 1.

variable bit-rate coder. Note that only the original film framewhich appear in turn. During then period, the interarrival
are coded (i.e., 24/s). The data was collected in 1993 by Gartéatie of packets are exponentially distributed and no packets
and Vetterli and is being made available to promote researchane generated during tteerF period. The time spent ioN and
traffic behavior and control in ATM networks. Itis available oveDFF states is exponentially distributed with mebfix and1//3,
theinternetvia anonymous ftp from ftp.bellcore.comin directomgspectively. To specify this model completely, we assume that
pub/vbr.video.trace. This video traffic has been shown to exhilbite peak bit-generation rate during the active period is 32 kb/s,
long-range dependence and self similarity. the mean bit-generation rate is 11.2 kb/s, the mean talk spurt
The voice source is produced by an interrupted Poiss@nl/g = 600 ms, and the mean silence periodlisx = 200
process (IPP) [40], [41]. A voice source alternates betweems. The arrival process is sampled at every sampling period
talk spurts (active) and silent periods. In an IPP model, eagh. Here,7, = 50 ms. In the following, we perform several
voice source is characterized N (corresponding to talk cases to test our proposed prediction method and the feedback
spurts) andorr (corresponding to silence duration) periods;ongestion control algorithm. Note that in all cases the mean
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Fig. 12. Actual and forecasted packet traffic using AR model in Case 4 of Example 1.
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Fig. 13. Cell loss rate against buffer size in Case 1 of Example 1.

arrival rate and the service rate yield a utilization (i.e., the ratdiction, the SRR is 22.64 dB. After traffic prediction, the pro-
between the mean arrival rate and the service rate) of 0.8. posed control method in example 1 is used to treat the conges-
Case 1: In the first case, we use a heterogeneous superpdgin problem. Fig. 18 shows the cell loss rate against the buffer
tion arrival process of one video source and two voice sourcgge of the proposed control method. It is seen that the proposed
to model multimedia traffic. Fig. 17 shows the original and presontrol mechanism provides the best performance.
dicted traffic data in which every sample unitis 0.25 s. The meanCase 2: In this case we use a heterogeneous superposition
arrival rate is 5.08 Mb/s and service rate is 6.35 Mb/s. In thasrival process of two video sources and two voice sources to
case, the proposed fuzzy-AR model is employed for traffic prerodel multimedia traffic. Fig. 19 shows the original and pre-
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dicted traffic data and every sample unit is 0.25 s. The mean amffic prediction, the proposed method in Example 1 is used for
rival rate is approximately 10.37 Mb/s. The service rate is 12.@8ngestion control. Fig. 20 shows the cell loss rate versus buffer
Mb/s. In this case, the proposed fuzzy-AR model is employedse. The results show the proposed mechanism has a superior

predict the network traffic and the SRR is 27.0874 dB. After theerformance for multimedia traffic.
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Fig. 17. Actual and forecasted packet traffic using fuzzy-AR model in Case 1 of Example 2.

VIlI. CONCLUSION in high-speed networks is the complex interaction among the
traffic flows. The fuzzy-AR model can circumvent this problem
In this work, an efficient and accurate model is proposduy using the fuzzy clustering algorithm. Based on a rough tuning
for predicting actual traffic data in high-speed networks. Thagorithm and a fine tuning algorithm, a recursive parameter es-
major problem in the modeling and prediction of traffic packetsmation algorithm of fuzzy-AR model is developed to achieve
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Fig. 19. Actual and forecasted packet traffic using fuzzy-AR model in Case 2 of Example 2.

precise prediction of actual traffic in high-speed networks. The In numerical simulations, the results of this proposed method
proposed fuzzy-AR model has the potential for high utilizéhave exhibited excellent performance when used with actual
tion and congestion control in high-speed networks. Based waffic data. Several experimental simulations based on practical
the prediction of traffic congestion by this proposed fuzzy-ARaffic data indicate that the fuzzy-AR model based on clustering
model, a simple but efficient congestion control algorithm is d@lgorithm can give very good prediction without knowledge of
veloped to smooth the input arrival process through decreasthg statistical characteristics of the actual traffic data, therefore
the peak bit rate. providing satisfactory traffic congestion control.



CHEN et al. TRAFFIC MODELING, PREDICTION, AND CONGESTION CONTROL FOR HIGH-SPEED NETWORKS 507

0.08 .

0.07 r»

No feedback control

006 f—

005 =

Caeil Loss Rate
o
£~
-~
1

Fig. 20. Cell loss rate against buffer size in Case 2 of Example 2.

In brief, we have proposed an effective traffic model using[10]
fuzzy-AR modeling, which has excellent capability to describe
the characteristics of broad-band networks and provide preciélel]
prediction for efficient congestion control. Furthermore, it is
easy to calculate in real time and simple to implement in work{12
station computers. Therefore, this method has significant PG
tential for practical network traffic control design. Finally, we
have also verified the validity of the fuzzy-AR model using ac-
tual traffic data in Bellcore LAN network and from multimedia
broad-band networks.
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