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Traffic Modeling, Prediction, and Congestion
Control for High-Speed Networks:

A Fuzzy AR Approach
Bor-Sen Chen, Senior Member, IEEE, Sen-Chueh Peng, Member, IEEE, and Ku-Chen Wang

Abstract—In general, high-speed network traffic is a complex,
nonlinear, nonstationary process and is significantly affected by
immeasurable parameters and variables. Thus, a precise model
of this process becomes increasingly difficult as the complexity of
the process increases. Recently, fuzzy modeling has been found to
be a powerful method to effectively describe a real, complex, and
unknown process with nonlinear and time-varying properties. In
this study, a fuzzy autoregressive (fuzzy-AR) model is proposed
to describe the traffic characteristics of high-speed networks. The
fuzzy-AR model approximates a nonlinear time-variant process
with a combination of several linear local AR processes using a
fuzzy clustering method. We propose that the use of this fuzzy-AR
model has greater potential for congestion control of packet
network traffic. The parameter estimation problem in fuzzy-AR
modeling is treated by a clustering algorithm developed from
actual traffic data in high-speed networks. Based on adaptive
AR-prediction model and queueing theory, a simple conges-
tion control scheme is proposed to provide an efficient traffic
management for high-speed networks. Finally, using the actual
ethernet-LAN packet traffic data, several examples are given to
demonstrate the validity of this proposed method for high-speed
network traffic control.

Index Terms—Cell loss rate, fuzzy-AR approach, quality of ser-
vice (QoS), traffic prediction.

I. INTRODUCTION

T HE asynchronous transfer model (ATM)-based
broad-band integrated service digital network (B-ISDN)

is a high-speed transport network designed to support all
variable service with different requirements for quality of
service (QoS) (e.g., cell loss rate, delay, and delay jitter) and a
broad range of statistical characteristics [1]–[10]. However, the
additional flexibility needed to accommodate different traffic
sources may cause serious congestion problems, resulting
in severe buffer overflow, cell loss, and degradation in the
required QoS. In order to guarantee the QoS, effective conges-
tion control schemes are needed. Because congestion control
schemes depend on modeling for their traffic characteristics
and available network resources [22], [38], [39], an accurate
estimation of traffic model is crucial for successful congestion
control of ATM networks. These traffic models need to be
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accurate and able to represent the statistical characteristics
of the actual traffic. If the traffic models do not accurately
represent actual traffic, they may overestimate or underestimate
network performance.

Traffic models are analyzed based on goodness-of-fit, number
of parameters needed to describe the model, parameter estima-
tion, and analytical tractability. Recently, traffic models have
been described as stationary or nonstationary [1], [2], [13], [18],
[21], [23], [24], [37]. Stationary traffic models can be classified
in general into two classes: short-range dependent models and
long-range dependent models. Short-range dependent models
include Markov models and regression models (i.e., AR, MA,
ARMA) [10], [12], [15], [16]. These traffic models have a cor-
relation structure that is significant for relatively small lags.
Long-range dependent traffic models, such as the fractional au-
toregressive integrated moving average (F-ARIMA) and frac-
tional brownian motion have significant correlation even for
large lags [3], [4], [7], [8], [11], [20]. In most cases, actual traffic
does not fulfill the stationary assumption, whereas it does sat-
isfy nonstationary, uncertain, and even nonlinear assumptions.

Recently, fuzzy modeling has been developed to very suc-
cessfully represent real linear and nonlinear (time invariant or
time variant) uncertain systems and it has had excellent appli-
cation in system control designs. To describe stationary, non-
stationary, or nonlinear high-speed traffic in networks, we have
proposed a fuzzy-AR model to capture these characteristics of
actual traffic. This model is easier to implement in a digital com-
puter and is more persuasive than the conventional models such
as AR, ARMA, ARIMA, TES, and DAR regression models [1],
[2].

In this fuzzy-AR model, the actual traffic data is divided into
several clusters by fuzzy partitions, with each cluster described
by an AR model. In this situation, the actual traffic process is de-
scribed by combining these AR processes via fuzzy clustering
rules [27]–[32], [36]. This model has been found to describe a
real process very successfully with nonlinear and nonstationary
properties. A clustering algorithm is proposed to provide a sys-
tematic procedure to partition this traffic data so that the number
of fuzzy rules and the shapes of fuzzy sets in the fuzzy-AR
model are determined to achieve good fitness of data.

The suggested clustering algorithm for parameter estimation
of fuzzy-AR model is composed of two steps: coarse tuning
and fine tuning [27]. The coarse tuning is a fuzzy c-regression
modeling (FCRM) algorithm using hyperplane-shaped clus-
tering technique. This is a fast but rough algorithm. The fine
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tuning is a gradient descent algorithm used to precisely adjust
parameters of the fuzzy-AR model to achieve precise parameter
estimation.

Inherently, the fuzzy-AR model is a prediction-typed mod-
eling. After the parameter estimation of fuzzy-AR model has
been assembled from actual traffic data, the prediction of packet
traffic can then be solved. Precise traffic prediction is an impor-
tant factor for the success of congestion control in high-speed
networks, and the fuzzy-AR model can produce reliable and
accurate forecasts under congested traffic condition. A good
prediction method such as this can maximize the use of avail-
able capacities in high-speed networks, thus saving transmission
time and minimizing congestion costs.

By utilizing real-time traffic information from network facil-
ities, the traffic may be appropriately assigned to each candidate
route. However, since traffic flow patterns change all the time,
a control strategy based on previous traffic flow patterns may
be irrelevant within a millisecond. For example, even if an al-
ternate route selected for diversion is not congested at the time
of selection, one part of the chosen route may be congested
by the time when the packet data reaches that part of the net-
work. Thus, forecasting future traffic flow variables for each
link along diversion routes is a necessary process for selecting
the most efficient alternate route. If a prediction model repre-
senting the traffic flow-fluctuation over time could be devel-
oped, that model would have the potential to provide reliable
forecasts for solving this route guidance problem called the ad-
mission problem, with the guarantee of QoS.

Generally speaking, the fuzzy-AR model has the advantage
of excellent description of stationary or nonstationary packet
traffic in high-speed networks. Inherently, it is also suitable for
prediction of the packet traffic in broad-band networks. There-
fore, the fuzzy-AR model has an important potential application
in traffic congestion control. In this study based on AR-predic-
tion model and queueing theory, a simple feedback congestion
control scheme is developed to control network traffic to pro-
vide efficient management of high-speed networks. Finally, in
order to demonstrate these advantages, some comparisons of the
proposed fuzzy-AR model with other conventional models are
given to illustrate the superiority of the proposed model for the
prediction and congestion control of the packet network traffic.

The structure of this paper is as follows. The problem descrip-
tion is given in Section II. Then, in Section III, the parameter
estimation of the fuzzy-AR traffic model with the clustering al-
gorithm is described. In Section IV, some comparisons of the
fuzzy-AR model with other traffic models are given. Conges-
tion control using traffic prediction is discussed in Section V. In
Section VI, simulation examples are provided to demonstrate
the validity of the fuzzy-AR model. Section VII gives the con-
clusions.

II. PROBLEM DESCRIPTION

High-speed networks based on ATM cell transmission are ex-
pected to carry a variety of traffic types in an integrated fashion.
This differs considerably from the cases of circuit-switched tele-
phone networks, designed primarily to handle voice commu-
nication and, from the much more recent packet-switch net-

Fig. 1. Fuzzy-AR modeling for prediction of actual traffic data.

works, designed to handle data transmission. A good traffic
model plays a significant role in the design and engineering
of both of these network types. It appears that the integration
of packetized voice, packetized video, packetized images, and
computer-generated data traffic, each with its own multi-objec-
tive QoS, requires the development of a relatively sophisticated
traffic model to carry out accurate design and performance eval-
uation.

With the emergence of diverse communication services
such as data, voice, and video, as well as increasing switching
and multiplexing in networks [14], [19], the packet traffic
of high-speed networks becomes a nonstationary or even
nonlinear process. In this situation, conventional linear traffic
models are not suitable to capture the traffic behavior of
broad-band and high-speed networks. The proposed fuzzy-AR
model is a nonlinear mapping of an input data vector to a scale
output and it has excellent capability to describe these traffic
characteristics.

In general, the fuzzy-AR traffic model contains four compo-
nents: rules, fuzzifier, inference engine, and defuzzifier. The role
of the fuzzifier is to map the crisp input data values to fuzzy sets
defined by their membership function, and depending on the de-
gree of “possibility” of the input data. The goal of the defuzzi-
fier is to map the output fuzzy sets to crisp output values. The
fuzzy inference engine defines how the system should make in-
ferences through the fuzzy rules contained in the rules base in
order to determine the output fuzzy sets.

The fuzzy-AR model can be represented by combining sev-
eral AR models via fuzzy rules (see Fig. 1) as follows [28], [29]:

Rule If is

and is

and is

then

(1)

where denotes theth fuzzy rule;
is the measurable traffic data;

is the output of the fuzzy rule . can be
considered as a residue of the model. Inherently, this is a pre-
diction-typed model. s are bell-typed membership functions
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Fig. 2. Traffic control algorithm.

with only two variables, i.e., in the th fuzzy mem-
bership function of theth fuzzy rule

(2)

The fuzzy-AR model in (1) can be represented by a weighted
average of the s, where the weight of the

is determined by an operation performed on the membership
functions associated with that output of the fuzzy-AR model
[27]–[29]

(3)

i.e., the fuzzy-AR model in (1) is equivalent to the weighted
AR model in (3), i.e., a nonlinear and time-variant weighting of
local AR models. Due to its simplicity, the equivalent fuzzy-AR
model in (3) is employed in this study for modeling and pre-
diction of high-speed packet network traffic. The fuzzy-AR
model in (3) is determined by the number of input variables
and the number of fuzzy variables or membership functions
associated with each input variable. In general, increasing
the number of the fuzzy rules or the number of coefficients
at the AR model results in a more accurate model, but at the
expense of increased computational complexity. Choosing the
appropriate number of parameters is a very important problem
because the number of fuzzy rules and coefficients in the fuzzy
rule will affect the performance of the fuzzy-AR model and the
computational complexity. To describe traffic characteristics of
high-speed networks, the problem of estimating the parameters

( and ) and
( and ) of the fuzzy-AR model

will be discussed in the next section. In brief, the estimation and
prediction problems involve how to find a suitable number of
rules, a proper partition of the feature space, and the accuracy
of parameter estimation.

Traffic conditions in networks vary considerably over time.
In order to look ahead, a prediction model that describes the
time-varying traffic conditions throughout the high-speed net-
work is needed. Here, three variables (i.e., current traffic infor-
mation, past traffic information, and prediction traffic informa-
tion) are investigated to assess the variability in traffic condi-
tions. Current traffic information is one of essential means of
estimating traffic trends and it is a component of the predic-
tion model. Past traffic information is used to smooth out abrupt
changes in the current traffic flow to avoid extreme forecasts.
Traffic prediction information is introduced to represent the dy-
namic nature of traffic flow. The quality of the fuzzy-based AR
prediction model depends on the way by which those three vari-
ables are combined.

If all the link data throughout the network are available, it
will be possible to more efficiently control the traffic of the
high-speed network. In order to design such a control, an ad-
vanced and precise prediction model is required. In other words,
a high-speed network scheme is to keep the promise of ubiq-
uity, convenience, affordability, and reliability. Thus, an accu-
rate system model must be constructed to provide acceptably
precise performance prediction in a reasonable amount of time.
The fuzzy-AR model provides a powerful method for predicting
the traffic in high-speed networks. In particular, effective traffic
estimation is required when there are corresponding demands
for network resources. Needless to say, poor prediction invari-
ably leads to inappropriate design and management decisions,
which, in addition to impacting users in tangible adverse ways,
can also bring about a sense of disappointment and a perception
that the new technology is being “oversold” to the public.

In order to demonstrate the excellence of the fuzzy-AR model
for high-speed network traffic, the convergence analysis of the
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proposed model is evaluated with actual traffic data. Generally
speaking, the fuzzy-AR model can be tuned to approximate any
linear or nonlinear dynamic of packet network traffic and, thus,
represent traffic behaviors. The first purpose of this current work
is to present a new traffic model based on fuzzy clustering algo-
rithm with coarse tuning and fine tuning techniques. This model
captures the characteristics of the packet network traffic and at
the same time solves the prediction problem for packet network
traffic.

High-speed networks offer great flexibility and efficiency by
statistically multiplexing different types of multimedia traffic
with different QoS requirements (e.g., cell loss rate, delay, and
delay jitter) and a broad range of statistical characteristics. How-
ever, the additional flexibility to accommodate different traffic
sources may cause serious congestion problems, which will re-
sult in severe buffer overflow, cell loss and degradation in the re-
quired QoS. Thus, effective congestion control and traffic man-
agement schemes have to be developed. The main function of
traffic control is to regulate the flow of the traffic into the net-
work such that it approximately matches the capacity of the net-
work’s limited resources (see Fig. 2). One of the problems that
makes congestion control in high-speed networks difficult is the
uncertainty and highly time-varying nature of the diverse mix of
traffic sources. Furthermore, due to the very small cell transmis-
sion time and small buffer sizes, it is imperative that any effec-
tive congestion control algorithm must be simple with minimal
reaction time. In this work, we propose a feedback traffic con-
trol algorithm which is based on the proposed AR-prediction.
The main control action in our algorithm is to reduce the peak
rate of traffic sources when the AR-prediction scheme predicts
possible congestion in the multiplexer. The motivation behind
our use of this AR-fuzzy prediction model is that it is very ef-
fective in learning and predicting nonlinear complex systems,
these making it an ideal tool to handle high-speed networks.

In the next section, we introduce a useful approach to iden-
tify the proposed fuzzy-AR model using real traffic data. This
identification method includes a parameter estimation for the
membership functions and a parameter estimation for local AR
models. After the parameter estimations, the prediction of ac-
tual traffic data can then be successfully solved. Based on the
fuzzy AR-prediction of possible congestion, a simple feedback
traffic control algorithm is developed to efficiently mitigate the
congestion of network traffic.

III. PARAMETER ESTIMATION OF FUZZY-AR TRAFFIC MODEL

USING A CLUSTERING ALGORITHM

In this section, we introduce a fuzzy clustering algorithm,
which both combines the excellent system description capa-
bility of network traffic by the fuzzy-AR model and also simpli-
fies the identification method of fuzzy-AR model. In this study,
the clustering algorithm is presented to estimate the parameters
of the fuzzy-AR model based on the prediction of the packet
network traffic. Details are given below.

First, we propose an identification method to estimate the pa-
rameters of the fuzzy-AR model (3) from real traffic data. The
proposed identification method consists of a cascade of a coarse
tuning algorithm (i.e., FCRM algorithm) [27]–[32] and a fine-

tuning algorithm (i.e., gradient descent algorithm). The traffic
data is clustered by the proposed method to provide the struc-
ture of the fuzzy-AR model. In order to obtain the fuzzy-AR
model, the identification algorithm should include:

• the choice of the number of fuzzy rules;
• the parameter learning of the membership functions;
• the parameter estimation of the local AR models.

In brief, the suggested fuzzy-AR modeling algorithm is com-
posed of two steps: the first one is a coarse tuning, which deter-
mines consequent parameters roughly using FCRM clustering,
and the second one is a fine tuning, which adjusts the premise
and consequent parameters more precisely by gradient descent
algorithm. Both tuning procedures are repeated to find an ap-
propriate number of clusters.

In the following paragraphs, we show how to determine the
optimum consequence and premise parameters are determined
in order to minimize the performance index. The performance
index has been defined as a root-mean-square (rms) of the output
errors, i.e., the differences between the traffic data of the actual
network and those of fuzzy-AR traffic model.

A. Rough Tuning by FCRM Algorithm

The fuzzy-AR traffic model in (1)–(3) can be represented by
the following:

(4)

(5)

The linear local AR model in theth cluster can be rewritten by
the following vector equation:

(6)

where
and . When a set of traffic data

is given, we can obtain the
AR model parameters roughly by the
following steps.

Step 1) Set and assume data
. Define a

weighting matrix as in [36]

...
...

. . .
...

where (7)

and

(8)

Initialize the weighting matrix with random
values between zero and one such that the con-
straints in (8) are satisfied and they initialize the
parameters .
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Step 2) Define the cost function for FCRM at theth iter-
ation as the following equation as in [27], [36]:

(9)

where is between zero and one. The equation
denotes the Eu-

clidean norm between theth actual traffic data and
the output of the th fuzzy-AR model and

.
To find the optimum solution under the weighting

constraints in (8), the necessary conditions for (9) to
reach a minimum can be found by forming a new
cost function , which rewrites (8) and (9) as fol-
lows:

(10)

where are the Lagrange multi-
pliers for the constraints in (8). By differentiating

with ( and ), the
necessary condition for (9) to reach its minimum is

(11)

At the th iteration, compute the cost function ac-
cording (9) and compute a newusing (11).

Step 3) If either the cost function is below a certain tolerance
value or its improvement over previous iteration is
below a certain threshold then stop; otherwise, go to
Step 4).

Step 4) Calculate new cluster representatives at the
th iteration, using

obtained in Step 2) and then a weight recursive least
square (WRLS) algorithm is given as follows:

(12)

(13)

(14)

where and . The
initial value of the algorithm is

Step 5) Go to Step 2) and .
For bell-typed membership functions (2), the parameter es-

timations of and can be roughly obtained from the
weighting matrix in above steps [27].

(15)

(16)

The FCRM clustering algorithm can adjust the certainty grade
of each fuzzy-AR model by its classification performance; that
is, when the traffic data is misclassified by the algorithm, the
certainty grade of the fuzzy-AR model is decreased. On the con-
trary, when the traffic data is correctly classified, the certainty
grade is increased.

After the rough tuning based on the FCRM algorithm, a fine
tuning based on gradient descent algorithm is performed.

B. Fine Tuning by Gradient Descent Algorithm

From (4) and (5), we can write the prediction traffic data
in the fuzzy-AR traffic model as follows:

(17)

where , and s
are parameters of the membership functionand

(18)

(19)

where

the consequent parameter
and is the number

of terms in (19). The task of parameter estimation in the
fuzzy-AR clustering algorithm is to determine and , by
minimizing the following criterion:

(20)

where
, and (see (21) at the bottom of the

next page).
Remark 1: In [32], it was previously shown that the param-

eter estimation of the fuzzy-AR model by the gradient descent
algorithm can be divided in two steps. The optimal consequent
parameter can be obtained by the least squares method,
which is a linear estimation problem. However, determining the
optimization is a nonlinear estimation problem.

The iterative method of the fuzzy-AR traffic model based on
the above minimum square error can be improved by a fine fuzzy
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partition. This fine tuning method consists of two procedures,
i.e., the premise parameters procedure and the consequent pa-
rameters procedure [27], [31], [36].

a) Premise parameters procedure:According to the
fuzzy-AR model in (4) and (5), the premise parameter

s of the fuzzy-AR model can be precisely adjusted by
the following learning rule:

or

(22)

where is a premise learning rate, is the actual
traffic data, is the output of the fuzzy-AR model,
and .

b) Consequent parameters procedure:The consequent pa-
rameters of the fuzzy-AR traffic model in (4) and (5)
can be finely adjusted by the following learning method:

or

(23)

where is a consequent learning rate.
After the parameters of and have been estimated from

real traffic data via the proposed rough and fine tuning algo-
rithms in the above subsections, the fuzzy-AR modeling in (4)
and (5) is finished. Then, based on the constructed fuzzy-AR
model in (4) and (5), a one-step-ahead prediction can be
obtained from the previous data .

Remark 2: The main computations of rough tuning are in
the recursive estimation of in (12) and in the estimation
of in (15) and in (16). The main computations of fine

tuning are in the recursive estimations of and in (22) and
in (23). All of these recursive parameter estimations can

be calculated in real time if the computer computation capability
is fast enough.

Remark 3: Initially, rough tuning plays the most important
role of parameter estimation. As the parameter estimation con-
verges, only the fine algorithm is necessary. In this situation, the
rough tuning algorithm can be cut off and the computing load is
reduced.

Remark 4: Because the fuzzy-AR model has nonlinear be-
havior, accurate analysis is difficult. However, in [31] it was
shown that the fuzzy-AR model in (4) and (5) has universal ap-
proximation capabilities. That is, for any given packet traffic
data and arbitrary , such that

, if the number and the order of the fuzzy-AR
model are sufficiently large.

Remark 5: For the initial condition at , we have
and , where is a small positive constant

and represents an identity matrix. For the AR model in (4),
the -step ahead traffic prediction is recursively obtained by

...

...

(24)

where

and is obtained recursively from the proposed rough and
fine tuning algorithm in the above subsections.

Summing up the above discussion, the fuzzy-AR modeling
has excellent convergence characteristics with actual traffic data
in a high-speed network. In other words, the fuzzy-AR model
could accurately capture real network traffic behavior. Based
on the clustering algorithm, the fuzzy-AR model is proposed
to predict the packet traffic in high-speed network. Using the
fuzzy-AR model to predict the packet traffic in high-speed net-
work, we do not need to assume any statistical characteristic of
the real traffic data. However, this procedure relies on the knowl-
edge of a set of the past packet traffic values and current traffic
information. The prediction with the fuzzy-AR model allows

...
...

...
. . .

...

(21)
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Fig. 3. MMPP process.

us to obtain a good approximation of the actual traffic for the
development of the congestion control, and the multiplexer ser-
vice capacity. Recently, due to reduction in price and increase in
power of hardware, the computation cost has been reduced sub-
stantially. In this situation, the recursive parameter estimation
algorithms in rough tuning and fine tuning of fuzzy-AR model
for high-speed network can be performed in real time. In the
next section, we will demonstrate the advantage of the fuzzy-AR
traffic model by comparing it with other traffic models.

IV. COMPARISONS WITHOTHER TRAFFIC MODELS

We begin by discussing a number of traffic models described
in the literature, which represent network traffic, then pointing
out some defects of these models. Furthermore, we will illus-
trate that the fuzzy-AR model could overcome the shortcomings
in conventional traffic models and that this fuzzy-AR model pro-
vides excellent performance in capturing the traffic properties of
high-speed networks.

A. Poisson Model

Poisson models are the oldest traffic models. A Poisson
process can be characterized as a renewal process whose inter-
arrival times are exponential distributed with
rate , and where the number
of arrivals in disjoint intervals is statistically independent [10].
Poisson processes have some elegant analytical properties [1],
[2], [16], [17]. First, the superposition of independent Poisson
processes results in a new Poisson process whose rate is the
sum the component rates. Second, the independent increment
property renders Poisson a memoryless process. Third, Poisson
processes are fairly common in traffic applications that physi-
cally comprise a large number of independent traffic streams,
each of which may be quite general. However, the Poisson ar-
rival process, used extensively in network performance analysis
and the prediction of packet traffic, does not work, particularly
when dealing with the stream-type continuous bit-rate traffic
formed in high-speed networks. Recently, measurements of
both LAN and wide-area TCP (Internet) traffic indicate that
the Poisson model breaks down in a number of real-life appli-
cation areas [25], [26]. The reason for this is that conventional
Poisson processes cannot capture the long-range dependence
of high-speed network traffic. Since the fuzzy-AR model via
clustering algorithm has the capability of classifying different
types of traffic data into different clusters, it could be applied
to analyze and predict the mixed traffic data in broad-band

networks. In other words, we could classify the data packet,
voice packet and video packet into the different clusters by
fuzzy clustering algorithm. Therefore, this model can capture
both the short-range dependence and long-range dependence
of packet traffic of high-speed networks. After clustering the
mixed traffic data, we can analyze and successfully predict the
packet traffic.

B. Markov-Modulated Poisson Process Model

The most commonly used Markov-modulated model is the
Markov-modulated Poisson process (MMPP) model, which
combines the simplicity of the modulating (Markov) process
with that of the modulated (Poisson) processes (see Fig. 3).
In this model, while in state , arrivals occur according to
a Poisson process with rate . The MMPP process allows
the modeling of time-varying source, while keeping tractable
the analytical solution of related queueing performance. The
problems of MMPP are that the parameters estimation of
MMPP (i.e., the arrival rate , the transition rate, and the
suitable number of states ) are very difficult. To simplify
the complexity of the MMPP model, the MMPP model could
not have an infinite number of states and it must quantize the
model parameters into finite number of the model parameters.
Therefore, the MMPP model will produce quantization errors
and serious modeling errors. Furthermore, the MMPP model is
not suitable for packet traffic prediction. The fuzzy-AR model
has an advantage over MMPP model in that it determines
the model parameters easily and accurately. The parameters
estimation of the fuzzy-AR model has self-learning capability
by training via input traffic data. And the quantization of
parameters is not needed in the fuzzy-AR model. Therefore,
the fuzzy-AR model is more powerful and accurate than the
MMPP model.

C. Autoregressive Traffic Model

The autoregressive model of orderhas the following form:

(25)

where s are the real traffic data, is zero-mean,
independent identically distributed (i.i.d.) random variable, and

are real constants. Such models are par-
ticularly suitable for modeling VBR-coded video—a projected
major consumer of bandwidth in emerging communication net-
works. However, the AR model is only suitable to model the
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case with short-range dependence structures in packet network
traffic. Recently, measurements of packet traffic in the internet
indicate that the traffic is self-similar or fractal-like (long-range
dependence) in nature [35]. Furthermore, the traffic may be
time-varying and nonlinear. The term self-similar, means that
the statistical characterization of the traffic is essentially in-
variant with the time scale. Therefore, the AR model fails to
capture the behavior of a high-speed network traffic. The clus-
tering, time-varying and nonlinear characteristics of a fuzzy-AR
model can take over the phenomenon of self-similarity or fractal
property of packet network traffic. From the simulation results
in next section, we can see that the fuzzy-AR model has excel-
lent ability to describe the burstiness of packet traffic. Actually,
the degree of self-similarity is related to the burstiness of packet
traffic. In other words, the fuzzy-AR model can be used to ef-
ficiently characterize the self-similarity and long-range depen-
dence structures in high-speed networks.

In the above discussion, based on the clustered, time-varying
and nonlinear nature of fuzzy combination of AR clusterings,
the fuzzy-AR model is found to be applicable to different types
of actual packet traffics in high-speed networks. Based on traffic
prediction using a fuzzy AR-model, a simple but efficient con-
gestion control algorithm is proposed in the following section.

V. CONGESTIONCONTROL USING TRAFFIC PREDICTION

The predicted traffic congestion with current queue informa-
tion in the buffer can be used as a measure of congestion. Al-
though ATM provides additional flexibility for accommodating
different traffic sources, however, it may cause serious conges-
tion problems that will result in severe buffer overflow, cell loss,
and degradation in the required QoS. To overcome this, effec-
tive congestion control and traffic management are developed
in this section.

Consider a multiplexer buffer queue with size of, where
is the number of cells that arrive between the time and

. The queue has a constant service rate ofcells per unit time.
Denoting by the queue length at time, then we have the
following Lindley’s equation [34], [40] (see Fig. 2) indicating

(26)

cells are lost if the buffer overflows.
In this study, the occupancy of the queue is considered as an

indication of traffic congestion in the multiplexer buffer. In this
situation, the congestion prediction of the network is obtained
sequentially as follows:

...

(27)

where in the right-hand side of (27) is ob-
tained from the previously stage, and traffic predictions

are obtained from the fuzzy-AR
prediction algorithm in the previous section.

Fig. 4. Control signalc(n).

Due to the very small cell transmission time and small buffer
size, any effective congestion control algorithm must be simple
with minimal reaction time. In this paper, we propose a feed-
back traffic control algorithm, which is based on the congestion
prediction of the queue length of (27). The main control action
of our scheme is to reduce the peak rate of traffic sources when
the adaptive AR-prediction algorithm predicts possible conges-
tion in the multiplexer buffer. Consider a multiplexer buffer with
size and denote a threshold limit of queue length as, for
example, . Our control signal is generated by
the following congestion control algorithm (see Fig. 4)

if
if
if

(28)

where the congestion prediction is obtained from (27)
with .

The control signal is inversely proportional to the occupancy
(congestion) of the queue when . If the

reaches the threshold , a control signal is
sent back and each source reduces its rate. Let us denote the
current source rate as . Then the current input rate to
the multiplexer is as follows:

(29)

Obviously, this approach is a closed-loop control system.
There are several advantages associated with the proposed
control algorithm based on feedback throttling. First, it is
not of the reactive control type since it is applied at the input
access node to the network and its speed is not limited by
the propagation delay in the multiplexer. Due to the use of
prediction-type control algorithm, any control action taken will
be in time to alleviate the potential congestion. Second, it can
be widely applied, regardless of the type of encoding used.
Third, through decreasing the peak rate, it provides the means
for the maximum possible shaping of the input arrival process.
Consequently, the bandwidth allocated to the input cell can be
reduced, while the same required QoS is still achieved. Also,
the statistical multiplexing gain is enhanced since more sources
can be supported for each multiplexer. Therefore, the proposed
control algorithm is more suitable for traffic smoothing.

In the next section, some practical examples with computer
simulations are given with comparisons to demonstrate the
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Fig. 5. Actual and forecasted packet traffic using fuzzy-AR model in Case 1 of Example 1.

validity of the prediction and congestion control based on the
fuzzy-AR model by the high-speed network traffic data.

VI. SIMULATION

Example 1: In this example, we use the LAN traffic data
collected by Leland and Wilson [3], [32] for simulations. The
data were collected between August 1989 and February 1992
on several ethernet LAN’s at the Bellcore Morristown Research
and Engineering Center, NJ. Leland and Wilson have presented
a preliminary statistical analysis of this traffic data, i.e., the
self-similar behavior [3], [33]. This self-similar or fractal-like
behavior of aggregate ethernet LAN traffic is very different
both from conventional telephone traffic and from currently
considered formal models for packet traffic. We use four cases
to demonstrate the performance of the proposed fuzzy-AR
model via the clustering algorithm from actual ethernet traffic
data. That is, the proposed traffic model could capture the
self-similar characteristics of the ethernet traffic through the
following simulation results. In these cases, the actual traffic
data were measured from the ethernet LAN’s with different
time scales. Four cases are discussed as follows.

Case 1: The actual LAN packet traffic data were collected
by Lelandet al. [3] over a 1000 s measurement period. The
data measurement in Bellcore, started at 11:25 A.M., 29 August
1989, and has 1 000 000 packet arrivals, although we selected
only a sample of the first 1000 time units (time unit s) for
parameter estimation and prediction in our simulation.

In this case, we use three fuzzy rules and five consequent pa-
rameters in each rule in the fuzzy-AR model to predict the actual
traffic data. Applying the clustering algorithm in Section III, we
have obtained the simulation results shown in Fig. 5, in which
the solid line presents the actual traffic packet and
the dotted line represents the prediction result by the
fuzzy-AR model with the clustering algorithm.

In order to illustrate the performance of our proposed method,
the prediction signal-to-error ratio (SRR) is defined as a perfor-
mance index

SRR dB

where . In this case, the SRR
is 10.0578 dB.

Case 2: The actual LAN packet traffic data over a 1000 s
measurement period collected by Lelandet al.[3] is used in this
case. The traffic data is different from the packet data in Case 1.
The traffic data measurement, started at 11:46 P.M., 30 October
1989, has 1 000 000 packet arrivals, although for convenience
only a sample of the first 1000 time units (time unit s)
is used for parameter estimation and prediction of fuzzy-AR
modeling.

In this case, three fuzzy rules and five consequent parameters
in each rule are used in the fuzzy-AR model. Fig. 6 shows the
actual traffic data and the forecasted packet traffic

by the proposed fuzzy-AR model. In this case, the
prediction performance SRR is 7.8443 dB.

Case 3: The actual LAN packet traffic data over a 10 000
s measurement period collected by Lelandet al. were used
with 10 s as one time unit. In this case, the measured traffic
data is identical with Case 2 but different in measurement
period (10 000 s) and time unit (10 s). Here, we use three fuzzy
rules and five consequent parameters in each fuzzy rule of the
fuzzy-AR model. The simulation results are shown in Fig. 7. In
this case, the prediction performance SRR is 7.2657 dB. Since
the prediction of 10 s ahead is more difficult than the prediction
of 1 s ahead, the performance in this case is worse than that of
Case 2.

Case 4: The actual LAN packet data over a 100 000 s mea-
surement period collected by Lelandet al. is used in this case.
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Fig. 6. Actual and forecasted packet traffic using fuzzy-AR model in Case 2 of Example 1.

Fig. 7. Actual and forecasted packet traffic using fuzzy-AR model in Case 3 of Example 1.

The measured traffic data is also identical to Case 3 but different
in measurement period (100 000 s) and time unit (100 s). The
fuzzy-AR model is the same as Case 3. The simulation results
are shown in Fig. 8, indicating the prediction SRR is 6.8875 dB.
The performance is worse than the previous cases because the
prediction of 100 seconds ahead is more difficult than the pre-
diction of either 1 or 10 s ahead. However, the performance can
still be considered very good for the prediction of packet net-
work traffic.

Remark 6: The computing times for calculating one iterative
tuning to update the parameters in the above four cases are all
within 0.0035 s by workstation ultra 2, which is much smaller
than the time units in the above four cases. Therefore, the pro-

posed prediction algorithm can be performed in real time and
has potential for traffic congestion control.

From Figs. 5–8, it is seen that there is very sharp variation of
the packet traffic, hence, we cannot reasonably hope to model
the arrivals using a simple traffic model or the conventional
traffic model. Modeling ethernet traffic using other conventional
models (i.e., Poisson, AR, MMPP models, and so on) cannot ac-
curately reflect the long-range dependence in actual traffic and
will significantly underestimate performance measures such as
average packet delay or maximum queue size. In comparison,
prediction results from the conventional AR model of order 120
in above cases are given in Figs. 9–12. Obviously, this model
cannot capture the nonlinear and nonstationary properties of
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Fig. 8. Actual and forecasted packet traffic using fuzzy-AR model in Case 4 of Example 1.

Fig. 9. Actual and forecasted packet traffic using AR model in Case 1 of Example 1.

high-speed networks traffic even with very high order. Through
the simulation results, we find that the fuzzy-AR modeling via
clustering algorithm has good capability to predict the actual
packet traffic in high-speed networks.

Furthermore, in order to exploit the significance of traffic pre-
diction on the congestion control, a congestion control design is
given as the following.

Based on the results from the previous section, our conges-
tion control algorithm is proposed as follows: if

, then each source does not reduce its rate. If
, then a control signal is sent back and

each source reduces to of current

rate. In these cases, the cell loss rate with different buffer sizes
are shown in Figs. 13–16. Obviously, the congestion control
based on the proposed traffic prediction method has superior
performance than the other control methods without traffic pre-
diction.

Example 2: In this example, multimedia network traffic with
video and voice sources is used to test our proposed method. The
video source is the actual VBR video traffic for a movie called
Star Wars, which contains quite a diverse mixture of material
ranging from low-complexity motion scenes to those with very
highaction.Thissourceusean intraframecompressioncodesim-
ilar to JPEG. The traffic is generated from the output of a simple
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Fig. 10. Actual and forecasted packet traffic using AR model in Case 2 of Example 1.

Fig. 11. Actual and forecasted packet traffic using AR model in Case 3 of Example 1.

variable bit-rate coder. Note that only the original film frames
are coded (i.e., 24/s). The data was collected in 1993 by Garrett
and Vetterli and is being made available to promote research on
traffic behavior and control in ATM networks. It is available over
the internet via anonymous ftp from ftp.bellcore.com indirectory
pub/vbr.video.trace. This video traffic has been shown to exhibit
long-range dependence and self similarity.

The voice source is produced by an interrupted Poisson
process (IPP) [40], [41]. A voice source alternates between
talk spurts (active) and silent periods. In an IPP model, each
voice source is characterized byON (corresponding to talk
spurts) andOFF (corresponding to silence duration) periods,

which appear in turn. During theON period, the interarrival
time of packets are exponentially distributed and no packets
are generated during theOFF period. The time spent inON and
OFFstates is exponentially distributed with mean and ,
respectively. To specify this model completely, we assume that
the peak bit-generation rate during the active period is 32 kb/s,
the mean bit-generation rate is 11.2 kb/s, the mean talk spurt
is ms, and the mean silence period is
ms. The arrival process is sampled at every sampling period

. Here, ms. In the following, we perform several
cases to test our proposed prediction method and the feedback
congestion control algorithm. Note that in all cases the mean
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Fig. 12. Actual and forecasted packet traffic using AR model in Case 4 of Example 1.

Fig. 13. Cell loss rate against buffer size in Case 1 of Example 1.

arrival rate and the service rate yield a utilization (i.e., the ratio
between the mean arrival rate and the service rate) of 0.8.

Case 1: In the first case, we use a heterogeneous superposi-
tion arrival process of one video source and two voice sources
to model multimedia traffic. Fig. 17 shows the original and pre-
dicted traffic data in which every sample unit is 0.25 s. The mean
arrival rate is 5.08 Mb/s and service rate is 6.35 Mb/s. In this
case, the proposed fuzzy-AR model is employed for traffic pre-

diction, the SRR is 22.64 dB. After traffic prediction, the pro-
posed control method in example 1 is used to treat the conges-
tion problem. Fig. 18 shows the cell loss rate against the buffer
size of the proposed control method. It is seen that the proposed
control mechanism provides the best performance.

Case 2: In this case we use a heterogeneous superposition
arrival process of two video sources and two voice sources to
model multimedia traffic. Fig. 19 shows the original and pre-
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Fig. 14. Cell loss rate against buffer size in Case 2 of Example 1.

Fig. 15. Cell loss rate against buffer size in Case 3 of Example 1.

dicted traffic data and every sample unit is 0.25 s. The mean ar-
rival rate is approximately 10.37 Mb/s. The service rate is 12.96
Mb/s. In this case, the proposed fuzzy-AR model is employed to
predict the network traffic and the SRR is 27.0874 dB. After the

traffic prediction, the proposed method in Example 1 is used for
congestion control. Fig. 20 shows the cell loss rate versus buffer
size. The results show the proposed mechanism has a superior
performance for multimedia traffic.
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Fig. 16. Cell loss rate against buffer size in Case 4 of Example 1.

Fig. 17. Actual and forecasted packet traffic using fuzzy-AR model in Case 1 of Example 2.

VII. CONCLUSION

In this work, an efficient and accurate model is proposed
for predicting actual traffic data in high-speed networks. The
major problem in the modeling and prediction of traffic packets

in high-speed networks is the complex interaction among the
traffic flows. The fuzzy-AR model can circumvent this problem
by using the fuzzy clustering algorithm. Based on a rough tuning
algorithm and a fine tuning algorithm, a recursive parameter es-
timation algorithm of fuzzy-AR model is developed to achieve
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Fig. 18. Cell loss rate against buffer size in Case 1 of Example 2.

Fig. 19. Actual and forecasted packet traffic using fuzzy-AR model in Case 2 of Example 2.

precise prediction of actual traffic in high-speed networks. The
proposed fuzzy-AR model has the potential for high utiliza-
tion and congestion control in high-speed networks. Based on
the prediction of traffic congestion by this proposed fuzzy-AR
model, a simple but efficient congestion control algorithm is de-
veloped to smooth the input arrival process through decreasing
the peak bit rate.

In numerical simulations, the results of this proposed method
have exhibited excellent performance when used with actual
traffic data. Several experimental simulations based on practical
traffic data indicate that the fuzzy-AR model based on clustering
algorithm can give very good prediction without knowledge of
the statistical characteristics of the actual traffic data, therefore
providing satisfactory traffic congestion control.
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Fig. 20. Cell loss rate against buffer size in Case 2 of Example 2.

In brief, we have proposed an effective traffic model using
fuzzy-AR modeling, which has excellent capability to describe
the characteristics of broad-band networks and provide precise
prediction for efficient congestion control. Furthermore, it is
easy to calculate in real time and simple to implement in work-
station computers. Therefore, this method has significant po-
tential for practical network traffic control design. Finally, we
have also verified the validity of the fuzzy-AR model using ac-
tual traffic data in Bellcore LAN network and from multimedia
broad-band networks.
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