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Abstract

We present a model allowing to aggregate decision criteria
when the available information is of a qualitative nature.
The use of the Sugeno integral as an aggregation function is
justified by an axiomatic approach. It is also shown that
the mutual preferential independence of criteria reduces
the Sugeno integral to a dictatorial aggregation.

Keywords: multicriteria decision making, ordinal scale,
Sugeno (fuzzy) integral, preferential independence.

1 Introduction

Assume A = {a, b, c, . . .} is a finite set of potential al-
ternatives, among which the decision maker must choose.
Consider also a finite set of criteria N = {1, . . . , n} to be
satisfied. Each criterion i ∈ N is represented by a mapping
gi from the set of alternatives A to a given finite ordinal
scale

Xi = {r(i)
1 < · · · < r

(i)
ki
} ⊂ IR,

that is, a scale where only order matters, and not num-
bers. For example, a scale of evaluation of importance of
scientific papers by referees such as

1=Poor, 2=Below Average, 3=Average,
4=Very Good, 5=Excellent

is a finite ordinal scale. The coding by real numbers is
used only to fix an order on the scale.

For each alternative a ∈ A and each criterion i ∈ N ,
gi(a) represents the evaluation of a along criterion i. We
assume that all the mappings gi are given beforehand.

Our central interest is the problem of constructing a sin-
gle comprehensive criterion from the given criteria. Such
a criterion, which is supposed to be a representative of the
original criteria, is modeled by a mapping g from A to a
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given finite ordinal scale

X = {r1 < · · · < rk} ⊂ IR.

The value g(a) then represents the global evaluation of
alternative a expressed in the scale X. Without loss of
generality, we can embed this scale in the unit interval
[0, 1] and fix the endpoints r1 := 0 and rk := 1.

In order to aggregate the partial evaluations of a ∈ A,
we will assume that there exist n non-decreasing mappings
Ui : Xi → X (i ∈ N) and an aggregation function M :
Xn → X such that

g(a) = M
[
U1(g1(a)), . . . , Un(gn(a))

]
(a ∈ A).

The mappings Ui, called commensurateness mappings, en-
able us to express all the partial evaluations in the common
scale X, so that the function M aggregates commensu-
rable evaluations. We will also make the assumption that
Ui(r

(i)
1 ) = 0 and Ui(r

(i)
ki

) = 1 for all i ∈ N .
In this paper we present an axiomatic framework for

defining a suitable aggregation model. As presented above,
this model is determined by the mapping g, which can be
constructed in two steps:

1. The aggregation function M can be identified by
means of an axiomatic approach. The one we pro-
pose, which is mainly based on the ordinal nature of
the evaluation scales, leads to the discrete Sugeno in-
tegral (cf. Definition 3.3 below).

2. Each mapping Ui (i ∈ N) can be identified by asking
appropriate questions to the decision maker. On this
issue, Marichal and Roubens [10] proposed a proce-
dure to obtain these mappings. This procedure will
be discussed in Section 4.

Notice that other characterizations of the discrete
Sugeno integral have already been proposed in the ear-
lier literature (see [4, 5, 8]). However, most of the prop-
erties used in those characterizations do not have a clear
interpretation in the framework of multicriteria decision
making. An example is given in Proposition 3.1 below.

Another aim of this paper is to show that the aggrega-
tion of criteria by the Sugeno integral makes sense only
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when criteria interact. More precisely, we show that when
criteria are “mutually preferentially independent” then the
Sugeno integral collapses into a projection function, that
is, a dictatorial aggregation.

This paper is organized as follows. In Section 2 we
present a first axiomatic-based aggregation model. In Sec-
tion 3 we improve this model by taking into account the
importance of the different criteria. This leads to using the
Sugeno integral as an appropriate aggregation function. In
Section 4 we deal with a practical method to identify the
commensurateness mappings. In Section 5 we investigate
the aggregation functions which are both Sugeno integrals
and Choquet integrals. Finally, Section 6 deals with the
interaction phenomena among criteria and the related con-
cepts of preferential independence.

Throughout the paper, ∧ and ∨ denote the minimum
and maximum operations, respectively.

2 Meaningful aggregation func-
tions

In this section we propose an axiomatic setting allowing to
determine a suitable aggregation function M : Xn → X.

First of all, since the scale X ⊂ [0, 1] is of ordinal nature,
the numbers that are assigned to it are defined up to an
increasing bijection ϕ from [0, 1] onto itself. A meaning-
ful aggregation function should then satisfy the following
property (see Orlov [14]):

Definition 2.1 A function M : [0, 1]n → IR is compari-
son meaningful (from an ordinal scale) if for any increasing
bijection ϕ : [0, 1] → [0, 1] and any n-tuples x, x′ ∈ [0, 1]n,
we have

M(x) ≤ M(x′) ⇔ M(ϕ(x)) ≤ M(ϕ(x′)),

where the notation ϕ(x) means (ϕ(x1), . . . , ϕ(xn)).

Comparison meaningfulness is an essential condition.
Indeed, numbers defined on an ordinal scale cannot be
aggregated by means of usual arithmetic operations, un-
less these operations involve only order. For example, the
arithmetic mean is forbidden, but the median or any order
statistic is permitted. In illustration, let us consider the
pairs of evaluations (0.3, 0.5) and (0.1, 0.8). Of course, we
have

0.3 + 0.5
2

<
0.1 + 0.8

2
.

Using a transformation ϕ : [0, 1] → [0, 1] such that
ϕ(0.1) = 0.1, ϕ(0.3) = 0.4, ϕ(0.5) = 0.7, ϕ(0.8) = 0.8,
we now have

0.4 + 0.7
2

>
0.1 + 0.8

2
,

which shows that the arithmetic mean is not comparison
meaningful.

As for most of the aggregation functions, we will also
assume that M is internal to the set of its arguments.

Definition 2.2 A function M : [0, 1]n → IR is internal if
∧

i∈N

xi ≤ M(x1, . . . , xn) ≤
∨

i∈N

xi (x ∈ [0, 1]n).

Definition 2.3 A function M : [0, 1]n → IR is idempotent
if M(x, . . . , x) = x for all x ∈ [0, 1].

Obviously, any internal function is idempotent. More-
over, it was shown by Ovchinnikov [15, Sect. 4] that, for
any internal and comparison meaningful function M :
[0, 1]n → IR, we have

M(x1, . . . , xn) ∈ {x1, . . . , xn} (x ∈ [0, 1]n). (1)

This property is in accordance with the assumption that
M ranges in X.

Finally, we will assume that any E ⊆ [0, 1]n is a closed
subset whenever its image {M(x) |x ∈ E} is a closed sub-
set of [0, 1]. This regularity condition simply expresses
that M is a continuous function.

The class of all the aggregation functions fulfilling the
properties above was described by the author [9, Sect. 4]
as follows.

Theorem 2.1 The function M : [0, 1]n → IR is continu-
ous, idempotent, and comparison meaningful if and only if
there exists a non-constant set function c : 2N → {0, 1},
with c(∅) = 0, such that

M(x) =
∨

T⊆N
c(T )=1

∧

i∈T

xi (x ∈ [0, 1]n).

Theorem 2.1 provides the general form of functions M :
Xn → X that seem appropriate to aggregate the given
criteria. It represents all the possible lattice polynomials on
X. It was also shown [9] that when replacing the continuity
by the increasing monotonicity in Theorem 2.1, then the
restriction of M to ]0, 1[n is again a lattice polynomial.
A general discussion on this type of polynomials can be
found in [8, 9, 16, 17].

Although the axiomatic that supports this aggregation
model seems sensible and satisfactory, the corresponding
functions present however the following major drawback.
If eS represents the characteristic vector in {0, 1}n of a
given subset of criteria S ⊆ N then we have

M(eS) ∈ {0, 1}.

This means that the global evaluation of an alternative
that fully satisfies criteria S and totally fails to satisfy the
other criteria is always an extreme value of X. In par-
ticular, the compensation effects are not allowed. As the
following result shows [9, Sect. 4], dropping the idempo-
tency property does not enable to overcome completely
this undesirable phenomenon.

Theorem 2.2 The function M : [0, 1]n → IR is non-
constant, continuous, and comparison meaningful if and
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only if there exists a non-constant set function c : 2N →
{0, 1}, with c(∅) = 0, and a continuous and strictly mono-
tonic function g : [0, 1] → IR such that

M(x) = g
( ∨

T⊆N
c(T )=1

∧

i∈T

xi

)
(x ∈ [0, 1]n).

We also notice that the commensurability hypothesis
(that is, the presence of the mappings Ui : Xi → X in
the aggregation model) is essential to avoid a dictatorial
aggregation. Indeed, suppose that the scales Xi ⊆ [0, 1]
are independent (i.e., all different) and that g is defined as

g(a) = M [g1(a), . . . , gn(a)] (a ∈ A),

with an aggregation function M from X1× · · ·×Xn to X.
In this case, M maps independent ordinal scales into an
ordinal scale and thus should satisfy the following property.

Definition 2.4 A function M : [0, 1]n → IR is compari-
son meaningful from independent ordinal scales if, for any
increasing bijections ϕ1, . . . , ϕn : [0, 1] → [0, 1] and any
n-tuples x, x′ ∈ [0, 1]n, we have

M(x) ≤ M(x′) ⇔ M(ϕ(x)) ≤ M(ϕ(x′)),

where the notation ϕ(x) means (ϕ1(x1), . . . , ϕn(xn)).

The following results [9, Sect. 5] show that such an ag-
gregation function leads to a dictatorial aggregation pro-
cess.

Theorem 2.3 The function M : [0, 1]n → IR is non-
constant, continuous, and comparison meaningful from in-
dependent ordinal scales if and only if there exists k ∈ N
and a continuous and strictly monotonic function g :
[0, 1] → IR such that

M(x) = g(xk) (x ∈ [0, 1]n).

Theorem 2.4 The function M : [0, 1]n → IR is contin-
uous, idempotent, and comparison meaningful from inde-
pendent ordinal scales if and only if there exists k ∈ N
such that

M(x) = xk (x ∈ [0, 1]n).

3 The Sugeno integral as an aggre-
gation function

The remark regarding Theorem 2.1 shows that it is neces-
sary to enrich the aggregation model so that compensation
effects are authorized. Whatever the function M consid-
ered, it seems natural to interpret the global evaluation

v(S) := M(eS)

as the importance of the combination S of criteria. This
importance should be expressed in X and not restricted to
the extreme values.

It is clear that any mapping v : 2N → X that represents
the importance of combinations of criteria should fulfill
the boundary conditions v(∅) = 0 and v(N) = 1. In some
practical applications, one might even demand that this
set function is a fuzzy measure, a concept introduced by
Sugeno [18].

Definition 3.1 A fuzzy measure on N is a monotone set
function µ : 2N → [0, 1] such that µ(∅) = 0 and µ(N) = 1.
Monotonicity means that µ(S) ≤ µ(T ) whenever S ⊆ T .

Now, a suitable aggregation function should take into
consideration the importance of each combination of cri-
teria. So, it is natural to define an aggregation function
Mv : Xn → X for each set function v : 2N → X, with
v(∅) = 0 and v(N) = 1, which represents the importance
of criteria. Moreover, since the partial evaluations and the
importance coefficients are expressed in the same scale X,
we assume that the mapping (x, v) 7→ Mv(x), viewed as a
function from [0, 1]n+2n−2 to IR, is comparison meaningful.
We also assume that it is continuous.

A typical example of aggregation function fulfilling those
properties is given by the weighted max-min functions, in-
troduced by the author [8].

Definition 3.2 For any set function v : 2N → [0, 1] such
that v(∅) = 0 and

∨

T⊆N

v(T ) = 1,

the weighted max-min function W∨∧
v : [0, 1]n → IR, asso-

ciated to v, is defined by

W∨∧
v (x) =

∨

T⊆N

[
v(T ) ∧ (

∧

i∈T

xi)
]

(x ∈ [0, 1]n).

It was proved [8, Proposition 3.1] that for any set func-
tion v defining W∨∧

v , the coefficient v(N) can always be
replaced by one without altering W∨∧

v . Thus, the weighted
max-min functions fulfill the properties mentioned above.

Another example is given by the discrete Sugeno integral
[18, 19], which will play a central role in this paper.

Definition 3.3 Let µ be a fuzzy measure on N . The (dis-
crete) Sugeno integral of x ∈ [0, 1]n with respect to µ is
defined by

Sµ(x) :=
n∨

i=1

[
x(i) ∧ µ({(i), . . . , (n)})

]
,

where (·) indicates a permutation on N such that x(1) ≤
· · · ≤ x(n).

It was proved in [18, Theorem 3.1] (see also [6, 8]) that
the Sugeno integral can also be put in the form:

Sµ(x) =
∨

T⊆N

[
µ(T ) ∧ (

∧

i∈T

xi)
]

(x ∈ [0, 1]n). (2)
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This shows that any Sugeno integral on [0, 1]n is a weighted
max-min function. Conversely, for any set function v :
2N → [0, 1] defining W∨∧

v , we have W∨∧
v = W∨∧

µ = Sµ,
where µ is a fuzzy measure on N defined by

µ(S) =
∨

T⊆S

v(T ) (S ⊆ N).

Thus, any weighted max-min function is also a Sugeno
integral. Consequently, the class of Sugeno integrals on
[0, 1]n coincides with that of weighted max-min functions.
The following result (Theorem 4.2 in [8]) gives an ax-
iomatic characterization of this class.

Proposition 3.1 The aggregation function F : [0, 1]n →
IR is increasing in each variable and fulfills the following
two conditions:

F (x1 ∨ r, . . . , xn ∨ r) = F (x1, . . . , xn) ∨ r,

F (x1 ∧ r, . . . , xn ∧ r) = F (x1, . . . , xn) ∧ r,

for all x ∈ [0, 1]n and all r ∈ [0, 1], if and only if there
exists a fuzzy measure µ on N such that F = Sµ.

We also note that any Sugeno integral Sµ satisfies the
following property:

Sµ(eS) = µ(S) (S ⊆ N), (3)

which corresponds to our definition of the importance of
combinations of criteria.

Now, let VN denote the family of set functions v : 2N →
IR such that v(∅) = 0 and v(N) = 1, and let FN denote the
set of fuzzy measures on N . We then have the following
result.

Theorem 3.1 Let Σ be a set of functions Mv : [0, 1]n →
IR (v ∈ VN ) fulfilling the following three properties:

• there exist v, v′ ∈ VN and x, x′ ∈ [0, 1]n such that
Mv(x) 6= Mv′(x′),

• Mv(x, . . . , x) = Mv′(x, . . . , x) for all x ∈ [0, 1] and all
v, v′ ∈ VN ,

• the mapping (x, v) 7→ Mv(x), viewed as a function
from [0, 1]n+2n−2 to IR, is continuous and comparison
meaningful.

Then there exists a continuous and strictly monotonic
function g : [0, 1] → IR such that

Σ ⊆ {g ◦ Sµ |µ ∈ FN} = {g ◦W∨∧
v | v ∈ VN}.

Conversely, for any such function g, the set

{g ◦W∨∧
v | v ∈ VN}

is a candidate for Σ.

Proof. Set P (N) := 2N \ {∅, N} and consider the function
M∗ : [0, 1]n+2n−2 → IR, defined by M∗(x, v) = Mv(x) for
all (x, v) ∈ [0, 1]n ×VN . Since M∗ fulfills the assumptions
of Theorem 2.2, there exists a non-constant set function
c : 2N ×2P (N) → {0, 1}, with c(∅, ∅) = 0, and a continuous
and strictly monotonic function g : [0, 1] → IR such that

g−1(M∗(x, v)) =
∨

(T1,T2)⊆N×P (N)
c(T1,T2)=1

[ ∧

i∈T1

xi ∧
∧

I∈T2

v(I)
]

for all (x, v) ∈ [0, 1]n × VN . By the second hypothesis of
the theorem, we have, using a simplified notation,

0 = g−1(M∗(0, 0))

= g−1(M∗(0, v)) =
∨

T2⊆P (N)
c(∅,T2)=1

∧

I∈T2

v(I),

which implies

g−1(M∗(x, v)) =
∨

(T1,T2)⊆N×P (N)
T1 6=∅

c(T1,T2)=1

[ ∧

i∈T1

xi ∧
∧

I∈T2

v(I)
]

for all (x, v) ∈ [0, 1]n × VN . Similarly, we have

1 = g−1(M∗(1, 1))

= g−1(M∗(1, v)) =
∨

(T1,T2)⊆N×P (N)
T1 6=∅

c(T1,T2)=1

∧

I∈T2

v(I).

Now, for each fixed v ∈ VN , the function F := g−1◦Mv :
[0, 1]n → [0, 1] is increasing in each argument. Moreover,
for any x ∈ [0, 1]n and any r ∈ [0, 1], we have

F (x1 ∨ r, . . . , xn ∨ r)

=
∨

(T1,T2)⊆N×P (N)
T1 6=∅

c(T1,T2)=1

[ ∧

i∈T1

(xi ∨ r) ∧
∧

I∈T2

v(I)
]

=
∨

(T1,T2)⊆N×P (N)
T1 6=∅

c(T1,T2)=1

[[
(

∧

i∈T1

xi) ∨ r
]
∧

[ ∧

I∈T2

v(I)
]]

=
∨

(T1,T2)⊆N×P (N)
T1 6=∅

c(T1,T2)=1

[[ ∧

i∈T1

xi ∧
∧

I∈T2

v(I)
]

∨
[
(

∧

I∈T2

v(I)) ∧ r
]]

= F (x1, . . . , xn) ∨
[[ ∨

(T1,T2)⊆N×P (N)
T1 6=∅

c(T1,T2)=1

∧

I∈T2

v(I)

︸ ︷︷ ︸
= 1

]
∧ r

]

= F (x1, . . . , xn) ∨ r
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and

F (x1 ∧ r, . . . , xn ∧ r)

=
∨

(T1,T2)⊆N×P (N)
T1 6=∅

c(T1,T2)=1

[ ∧

i∈T1

(xi ∧ r) ∧
∧

I∈T2

v(I)
]

=

[ ∨

(T1,T2)⊆N×P (N)
T1 6=∅

c(T1,T2)=1

[ ∧

i∈T1

xi ∧
∧

I∈T2

v(I)
]]
∧ r

= F (x1, . . . , xn) ∧ r.

By Proposition 3.1, there exists µ ∈ FN such that F = Sµ,
which proves the first part of Theorem 3.1. The second
part is immediate.

The second property mentioned in Theorem 3.1 can be
interpreted as follows. When the partial evaluations of a
given alternative do not depend on criteria, then they do
not depend on their importance either. Note however that
this property was used in the proof only at x = 0 and
x = 1.

Regarding idempotent functions, we have the following
result, which follows immediately from Theorem 3.1.

Theorem 3.2 Let Σ be a set of functions Mv : [0, 1]n →
IR (v ∈ VN ) fulfilling the following two properties:

• Mv is idempotent for all v ∈ VN ,

• the mapping (x, v) 7→ Mv(x), viewed as a function
from [0, 1]n+2n−2 to IR, is continuous and comparison
meaningful.

Then

Σ ⊆ {Sµ |µ ∈ FN} = {W∨∧
v | v ∈ VN}.

Conversely, the set {W∨∧
v | v ∈ VN} is a candidate for Σ.

Theorems 3.2 brings a rather natural motivation for the
use of the Sugeno integral as an appropriate aggregation
function. Nevertheless, continuity may seem to be a ques-
tionable hypothesis in the sense that its classical definition
uses a distance between aggregated values and makes use of
the cardinal properties of the arguments. Though continu-
ity and comparison meaningfulness are not contradictory,
coupling these two axioms can be somewhat awkward since
the latter one implies that the cardinal properties of the
partial evaluations should not be used. Suppressing the
continuity property or replacing it by a natural property
such as increasing monotonicity remains a quite interesting
open problem.

Before closing this section, we present a result show-
ing that the Sugeno integral is a very natural concept de-
spite its rather strange definition. First, from the variables
x1, . . . , xn ∈ [0, 1] and any constants r1, . . . , rm ∈ [0, 1], we
can form a lattice polynomial

Pr1,...,rm(x1, . . . , xn)

in a usual manner using ∧, ∨, and, of course, parentheses.
Now, we claim that if such a polynomial fulfills

Pr1,...,rm(0, . . . , 0) = 0 and Pr1,...,rm(1, . . . , 1) = 1,

then it is a Sugeno integral on [0, 1]n. The proof can be
easily adapted from that of Theorem 3.1. Indeed, the map-
ping (x, r) 7→ Pr(x), viewed as a function from [0, 1]n+m

to IR, is continuous, idempotent, and comparison mean-
ingful. By Theorem 2.1, there exists a non-constant set
function c : 2N × 2[m] → {0, 1} ([m] := {1, . . . ,m}), with
c(∅, ∅) = 0, such that

Pr(x) =
∨

(T1,T2)⊆N×[m]
c(T1,T2)=1

[ ∧

i∈T1

xi ∧
∧

j∈T2

rj

]

for all (x, r) ∈ [0, 1]n+m. Using the same reasoning as
in the proof of Theorem 3.1, we prove that there exists
µ ∈ FN such that Pr = Sµ.

For example,

Pr1,r2(x1, x2, x3) = ((x1 ∨ r2) ∧ x3) ∨ (x2 ∧ r1)

is a Sugeno integral on [0, 1]3. The corresponding fuzzy
measure can be identified by (3).

4 Identification of the commensu-
rateness mappings

Of course, the aggregation by means of the Sugeno integral
cannot be made if the mappings Ui are not known. On
this issue, Marichal and Roubens [10] proposed a method
to learn those mappings by asking appropriate questions
to the decision maker. A slightly improved version of that
method is given in this section.

Firstly, the Sugeno integral Sµ is uniquely determined
by the knowledge of the corresponding fuzzy measure µ,
that is, the importance coefficients

µ(S) = Sµ(eS) (S ⊆ N). (4)

These coefficients can be provided directly by the decision
maker. Of course, this consists of (2n−2) questions. How-
ever, in practical problems the total violation of at least
two criteria often lead to the lowest global evaluation, that
is 0. Combining this with the monotonicity of the fuzzy
measure, the number of coefficients to appraise can be re-
duced significantly.

Let us now turn to the evaluation of the commensurate-
ness mappings. First, we introduce the following notation.
For any µ ∈ FN , any k ∈ N , and any x ∈ [0, 1]n, we set

S(k,0)
µ (x) := Sµ(x1, . . . , xk−1, 0, xk+1, . . . , xn),

S(k,1)
µ (x) := Sµ(x1, . . . , xk−1, 1, xk+1, . . . , xn).

Recall also the classical definition of the median of three
numbers z1, z2, z3 ∈ [0, 1]:

median(z1, z2, z3) := (z1 ∧ z2) ∨ (z2 ∧ z3) ∨ (z3 ∧ z1) .

We then have the following lemma.
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Lemma 4.1 For any µ ∈ FN , any k ∈ N , and any x ∈
[0, 1]n, we have

Sµ(x) = median(S(k,0)
µ (x),S(k,1)

µ (x), xk). (5)

Proof. Let us fix µ ∈ FN , k ∈ N , and x ∈ [0, 1]n. If
S(k,0)

µ (x) = S(k,1)
µ (x) then, since Sµ is an increasing func-

tion, we have Sµ(x) = S(k,0)
µ (x), which is sufficient.

Assume now that S(k,1)
µ (x) > S(k,0)

µ (x). By (2), we have

S(k,0)
µ (x) =

∨

T⊆N
T 63k

[
µ(T ) ∧ (

∧

i∈T

xi)
]

and

S(k,1)
µ (x) =

[ ∨

T⊆N
T3k

[
µ(T ) ∧ (

∧

i∈T\{k}
xi)

]]

∨
[ ∨

T⊆N
T 63k

[
µ(T ) ∧ (

∧

i∈T

xi)
]

︸ ︷︷ ︸
S(k,0)

µ (x)

]

=
∨

T⊆N
T3k

[
µ(T ) ∧ (

∧

i∈T\{k}
xi)

]
.

On the other hand, we have

Sµ(x) =

[ ∨

T⊆N
T3k

[
µ(T ) ∧ xk ∧ (

∧

i∈T\{k}
xi)

]]

∨
[ ∨

T⊆N
T 63k

[
µ(T ) ∧ (

∧

i∈T

xi)
]]

=
[
xk ∧ S(k,1)

µ (x)
]
∨ S(k,0)

µ (x),

which completes the proof.

Now, from Eq. (4) and (5), we have

Sµ(Ui(r
(i)
j ) ei + eS) = median

(
Ui(r

(i)
j ), µ(S), µ(S ∪ {i})

)

for all i ∈ N , all S ⊆ N \ {i}, and all j ∈ {1, . . . , ki}. Of
course, the case where µ(S) = µ(S∪{i}) is not of interest.
On the other hand, if µ(S) < µ(S∪{i}) then the following
implications hold:

1. µ(S) < Sµ(Ui(r
(i)
j ) ei + eS) < µ(S ∪ {i})

⇒ Ui(r
(i)
j ) = Sµ(Ui(r

(i)
j ) ei + eS)

2. Sµ(Ui(r
(i)
j ) ei + eS) = µ(S)

⇒ Ui(r
(i)
j ) ≤ µ(S)

3. Sµ(Ui(r
(i)
j ) ei + eS) = µ(S ∪ {i})

⇒ Ui(r
(i)
j ) ≥ µ(S ∪ {i}).

Let us fix i ∈ N . To determine Ui : Xi → X, we choose
S ⊆ N \{i} such that the gap between µ(S) and µ(S∪{i})
is maximum. Often, the subset S = N \{i} will be chosen.
Next, we ask the decision maker to appraise in

X ∩ [µ(S), µ(S ∪ {i})]
the following global evaluations

Sµ(Ui(r
(i)
j ) ei + eS) (j ∈ {1, . . . , ki}).

Then, the implications above can be used to determine
Ui(r

(i)
j ).

If all the commensurateness mappings are not uniquely
determined, we can go further by repeating the procedure
with another subset S.

The following example [10] deals with the ranking
of candidates that apply for a permanent position in
a given university. The evaluations are done on three
criteria: 1) Scientific value, 2) Teaching effectiveness, and
3) Interview by evaluation committee. The ordinal scales
are given as follows:

Scientific value:
Weak < Sat. < Good < Very Good < Exc.

Teaching effectiveness:
Very Weak < Weak < Sat. < Very Good < Exc.

Interview:
Negative < Medium < Positive

Global evaluation:
C < B < A2 < A1

The decision maker gives the following global evalua-
tions:

µ({1, 2, 3}) = A1

µ({1, 2}) = A2

µ({1, 3}) = µ({1}) = B
µ({2, 3}) = C

Recall that we have made the assumption that Ui(r
(i)
1 ) =

0 and Ui(r
(i)
ki

) = 1 for all i ∈ N . Thus we have

U1(W ) = U2(V W ) = U3(N) = C,

U1(E) = U2(E) = U3(P ) = A1.

To determine U1, the decision maker proposes the fol-
lowing evaluations:

Sµ

(
U1(V G), 1, 1

)
= A1

Sµ

(
U1(G), 1, 1

)
= A2

Sµ

(
U1(S), 1, 1

)
= B.

Since Sµ

(
U1, 1, 1

)
= median(U1, C,A1) = U1, these three

evaluations determine completely U1. We then have
U1(W ) = C, U1(S) = B, U1(G) = A2, U1(V G) = A1,
U1(E) = A1.

For U2, the following evaluations are proposed:

Sµ

(
1, U2(V G), 1

)
= A1

Sµ

(
1, U2(S), 1

)
= A1

Sµ

(
1, U2(W ), 1

)
= A2.
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Since Sµ

(
1, U2, 1

)
= median(U2, B,A1) = U2 ∨ B, these

evaluations determine completely U2. We then have
U2(V W ) = C, U2(W ) = A2, U2(S) = A1, U2(V G) = A1,
U2(E) = A1.

Finally, the decision maker gives:

Sµ

(
1, 1, U3(M)

)
= A2.

Since Sµ

(
1, 1, U3

)
= median(U3, A2, A1) = U3 ∨ A2, this

evaluation only indicates that U3(M) ≤ A2. We then have:
U3(N) = C, U3(M) ∈ {C, B, A2}, U3(P ) = A1.

Although U3(M) is not known, the Sugeno integral is
completely determined. To see this, let us use Eq. (2). We
then have

Sµ

(
U1, U2, U3(M)

)

= C ∨ (
B ∧ U1

) ∨ (
C ∧ U2

) ∨ (
C ∧ U3(M)

)

∨ (
A2 ∧ U1 ∧ U2

) ∨ (
B ∧ U1 ∧ U3(M)

)

∨ (
C ∧ U2 ∧ U3(M)

) ∨ (
A1 ∧ U1 ∧ U2 ∧ U3(M)

)

= (B ∧ U1) ∨ (A2 ∧ U1 ∧ U2).

For instance, suppose that a candidate presents the pro-
file (E,S,M). The global evaluation of this candidate will
then be given by

Sµ

(
U1(E), U2(S), U3(M)

)
= (B ∧A1) ∨ (A2 ∧A1 ∧A1)
= A2.

5 Boolean max-min functions

When the fuzzy measure µ is {0, 1}-valued, the Sugeno in-
tegral Sµ becomes a Boolean max-min function [8], also
called a lattice polynomial [16]. Its definition, already en-
countered in Theorem 2.1, is the following.

Definition 5.1 For any non-constant set function c :
2N → {0, 1} such that c(∅) = 0, the Boolean max-min
function B∨∧c : [0, 1]n → [0, 1], associated to c, is defined
by

B∨∧c (x) :=
∨

T⊆N

[
c(T )

∧

i∈T

xi

]
=

∨

T⊆N
c(T )=1

∧

i∈T

xi.

In this section we investigate this particular Sugeno in-
tegral. First, we can readily see that any Boolean max-min
function always provides one of its arguments, see Eq. (1).
On the other hand, it is unanimously increasing, that is,
it strictly increases whenever all its arguments strictly in-
crease.

Definition 5.2 A function M : [0, 1]n → IR is unani-
mously increasing if, for any x, x′ ∈ [0, 1]n, we have

i) xi ≤ x′i for all i ∈ N ⇒ M(x) ≤ M(x′)
ii) xi < x′i for all i ∈ N ⇒ M(x) < M(x′).

The following result (Theorem 5.1 in [8]) shows that
the Boolean max-min functions are exactly those Sugeno
integrals which are unanimously increasing.

Proposition 5.1 Consider a function M : [0, 1]n → IR.
The following two assertions are equivalent.

i) There exists a set function c : 2N → {0, 1} such that
M = B∨∧c .

ii) There exists µ ∈ FN such that M = Sµ and M is
unanimously increasing.

As we will prove below, any Boolean max-min function
is also a particular Choquet integral [2].

Definition 5.3 Let µ be a fuzzy measure on N . The (dis-
crete) Choquet integral of x ∈ [0, 1]n with respect to µ is
defined by

Cµ(x) :=
n∑

i=1

x(i)

[
µ({(i), . . . , (n)})−µ({(i+1), . . . , (n)})

]
,

where (·) indicates a permutation on N such that x(1) ≤
· · · ≤ x(n).

Murofushi and Sugeno [12, Sect. 2] proved that the
Sugeno and Choquet integrals associated to {0, 1}-valued
fuzzy measures are Boolean max-min functions.

Proposition 5.2 If µ is a {0, 1}-valued fuzzy measure on
N then Sµ = Cµ = B∨∧µ .

We now prove a stronger result. The common part be-
tween the class of Choquet integrals and that of Sugeno
integrals coincides with the class of Boolean max-min func-
tions. This result as well as some others are stated in the
following theorem.

Theorem 5.1 Consider a function M : [0, 1]n → IR. The
following seven assertions are equivalent.

i) There exists a set function c : 2N → {0, 1} such that
M = B∨∧c .

ii) There exists µ ∈ FN such that M = Sµ and M(x) ∈
{x1, . . . , xn} ∀x ∈ [0, 1]n.

iii) There exists a {0, 1}-valued µ ∈ FN such that M =
Sµ.

iv) There exists µ ∈ FN such that M = Cµ and M(x) ∈
{x1, . . . , xn} ∀x ∈ [0, 1]n.

v) There exists a {0, 1}-valued µ ∈ FN such that M = Cµ.

vi) There exist µ, ν ∈ FN such that M = Sµ = Cν .

vii) There exists µ ∈ FN such that M = Sµ and M is
unanimously increasing.

Proof. i) ⇒ ii) By Proposition 5.1, any Boolean max-min
function is a Sugeno integral. The second part is trivial.

ii) ⇒ iii) For any S ⊆ N , we have µ(S) = M(eS) ∈
{0, 1}.

iii) ⇒ iv) See Proposition 5.2.
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iv) ⇒ v) For any S ⊆ N , we have µ(S) = M(eS) ∈
{0, 1}.

v) ⇒ vi) See Proposition 5.2.
vi) ⇒ vii) Evident, since any Choquet integral is unan-

imously increasing.
vii) ⇒ i) See Proposition 5.1.

A very particular case of Boolean max-min function is
given by the projection functions, already encountered in
Theorem 2.4.

Definition 5.4 For any k ∈ N , the projection function
Pk : [0, 1]n → IR, associated to the kth argument, is defined
by

Pk(x) = xk (x ∈ IRn).

The projection function Pk consists in projecting x ∈
[0, 1]n onto the kth axis. As a particular aggregation func-
tion, it corresponds to a dictatorial aggregation.

6 Sugeno integral and preferential
independence

In this final section, we deal with the problem of depen-
dence between criteria when aggregated by the Sugeno in-
tegral.

Consider a Sugeno integral Sµ defined on Xn. The as-
sociated fuzzy measure µ, which gives the relative impor-
tance of each subset of criteria, enables us to observe pos-
sible interaction phenomena between criteria. For exam-
ple, two criteria i, j ∈ N such that µ({i}) = µ({i, j}) are
clearly dependent since in this case j is redundant in the
presence of i.

Since the fuzzy measure µ takes its values in the ordi-
nal scale X, the independence of criteria by means of the
identity

µ(S ∪ T ) = µ(S) + µ(T ) (S ∩ T = ∅),

makes sense only when µ ranges in {0, 1}. In that case, by
Proposition 5.2, the Sugeno integral becomes an additive
Boolean max-min function. Since it is also an additive
Choquet integral (that is, a weighted arithmetic mean), it
corresponds to a projection function.

Another type of independence between criteria is the
preferential independence, well-known in multiattribute
utility theory (MAUT), see e.g. [3, 7, 20]. Suppose that
the preferences over A (the set of alternatives) of the de-
cision maker are known and expressed by a weak order º
(i.e., a complete and transitive binary relation). Through
the natural identification of alternatives with their profiles
in [0, 1]n, this preference relation can be considered as a
preference relation on [0, 1]n.

To define the preferential independence condition, we
introduce the following notation. For any subset S ⊆ N
and any x, y ∈ [0, 1]n, xSy denotes the vector of [0, 1]n

whose ith component is xi if i ∈ S, and yi if i /∈ S.

Definition 6.1 The subset S of criteria is said to be pref-
erentially independent of N\S if, for all x, x′, y, z ∈ [0, 1]n,
we have

xSy º x′Sy ⇔ xSz º x′Sz. (6)

The whole set of criteria N is said to be mutually prefer-
entially independent if S is preferentially independent of
N \ S for every S ⊆ N .

When N is mutually preferentially independent, the
weak order º is said to satisfy independence of equal al-
ternatives [20]. A weaker property of independence for º,
called weak separability, corresponds to the restriction of
(6) to S = {k} for all k ∈ N . We will use this concept at
the end of this section.

Now, let us assume the existence of an aggregation func-
tion M : [0, 1]n → IR which represents º, that is such that

a º b ⇔ M(xa) ≥ M(xb) (a, b ∈ A),

where xa
i := Ui(gi(a)) for all i ∈ N and all a ∈ A. Such a

function M is called a utility function in MAUT.
Murofushi and Sugeno [11, 13] proved a fundamental

result relating preferential independence and additivity of
the fuzzy measure associated to the Choquet integral. To
present it, we need a definition.

Definition 6.2 A criterion k ∈ N is called essential if
there exist x, x′, y ∈ [0, 1]n such that

x{k}y Â x′{k}y.

Theorem 6.1 Assume that the utility function is the
Choquet integral Cµ on [0, 1]n. If there are at least three
essential criteria in N then the following assertions are
equivalent:

i) The criteria are mutually preferentially independent.

ii) µ is additive.

We now investigate the case where the utility function
M is the Sugeno integral. We then have the following
lemma.

Lemma 6.1 Assume that the utility function is the
Sugeno integral Sµ on Xn. Then the criterion k ∈ N is
preferentially independent of N \ {k} if and only if either
Sµ = Pk or Sµ = S(k,0)

µ .

Proof. (Sufficiency) Trivial.
(Necessity) By definition, k ∈ N is preferentially inde-

pendent of N \ {k} if, for all x, x′, y, z ∈ Xn, we have

Sµ(x{k}y) ≥ Sµ(x′{k}y)
m

Sµ(x{k}z) ≥ Sµ(x′{k}z),
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or, equivalently, by Lemma 4.1,

median(S(k,0)
µ (y),S(k,1)

µ (y), xk)

≥ median(S(k,0)
µ (y),S(k,1)

µ (y), x′k)
m (7)

median(S(k,0)
µ (z),S(k,1)

µ (z), xk)

≥ median(S(k,0)
µ (z),S(k,1)

µ (z), x′k).

Of course, this equivalence holds if S(k,1)
µ = S(k,0)

µ on Xn.
In this case, we have Sµ = S(k,0)

µ on Xn.
Assume now that there exists y ∈ Xn such that

S(k,1)
µ (y) > S(k,0)

µ (y). Then, for any z ∈ Xn, we should
have

S(k,0)
µ (z) ≤ S(k,0)

µ (y) and S(k,1)
µ (y) ≤ S(k,1)

µ (z).

Indeed, suppose for example that there exists z ∈ Xn such
that S(k,1)

µ (y) > S(k,1)
µ (z). Then, setting

{
xk := S(k,1)

µ (y),
x′k := max(S(k,1)

µ (z),S(k,0)
µ (y)),

we have

S(k,1)
µ (y) = xk > x′k = max(S(k,1)

µ (z),S(k,0)
µ (y)),

which violates the preferential independence condition (7).
Now, for any z ∈ Xn, we should have

S(k,0)
µ (z) = S(k,0)

µ (y) and S(k,1)
µ (y) = S(k,1)

µ (z).

Indeed, suppose for example that there exists z ∈ Xn such
that S(k,1)

µ (y) < S(k,1)
µ (z). Then, applying again the pre-

vious reasoning, we have

S(k,1)
µ (y) < S(k,1)

µ (z) ≤ S(k,1)
µ (u)

for all u ∈ Xn, a contradiction.
Therefore, S(k,0)

µ and S(k,1)
µ are constant functions on

Xn. Hence, we have

S(k,0)
µ = S(k,0)

µ (0, . . . , 0) = 0

and
S(k,1)

µ = S(k,1)
µ (1, . . . , 1) = 1.

By Lemma 4.1, we then have Sµ = Pk, which completes
the proof.

Theorem 6.2 Assume that the utility function is the
Sugeno integral Sµ on Xn. The following assertions are
equivalent:

i) The criteria are mutually preferentially independent.

ii) º is a weakly separable weak order.

iii) There exists k ∈ N such that Sµ = Pk.

Proof. iii) ⇒ i) ⇒ ii) Trivial.
ii) ⇒ iii) By definition of weak separability, each i ∈ N

is preferentially independent of N \ {i}. By Lemma 6.1,
we then have

Sµ ∈ {Pi,S(i,0)
µ } (i ∈ N).

Consequently, there exists k ∈ N such that Sµ = Pk. In-
deed, otherwise we would have Sµ = S(i,0)

µ for all i ∈ N ,
implying that Sµ is constant, which is impossible.

Note. It is worth comparing Theorems 2.4 and 6.2. In-
deed, for the Sugeno integral, both the mutual preferential
independence and the comparison meaningfulness from in-
dependent ordinal scales seem to be close forms of indepen-
dence and each of them leads to a dictatorial aggregation
model. A comparison with the Arrow’s Theorem [1] in
social choice theory seems interesting as well.

7 Concluding remarks

We have presented an axiomatic-based model to aggre-
gate criteria measured on qualitative scales. First, it has
been observed that aggregating non-commensurable eval-
uations leads to a dictatorial aggregation. Next, assuming
the commensurability of the evaluations over all criteria,
we have observed that the importance of each group of
criteria is always an extreme value of the common scale.
Finally, assuming commensurability between the evalua-
tions together with the importance coefficients, we were
able to point out a rather suitable aggregation function,
namely, the Sugeno integral.

Thus, the Sugeno integral is now axiomatized for its use
in multicriteria decision making. The next step will be to
drop the continuity hypothesis from this axiomatization.
A research is now in progress along this line.
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