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Graph Matching by Relaxation of Fuzzy Assignments

Swarup Medasani, Raghu Krishnapuram, and YoungSik Choi

Abstract—Graphs are very powerful and widely used represen- Vi such that(u, v) € E4 iff (f(v), f(v)) € Ep. The sub-
tational tools in computer applications. In this paper, we presenta graph isomorphism problem can be formulated as follows. Find
relaxation approach to (sub)graph matching based on a fuzzy as- V), C Vg andE/, C Ep, and a mapping functiofi: V, — V},

signment matrix. The algorithm has a computational complexity : 4
of O(n?m?) where n and m are the number of nodes in the two such thatu, v) € E iff [f(u), f(v)] € Ep. Inthe same vein,

graphs being matched, and can perform both exact and inexact the inexactgraph matching problem can be framed as follows. If
matching. To illustrate the performance of the algorithm, we sum- labels are assigned to nodes and edges from twa\setsd £,

marize the results obtained for more than 12 000 pairs of graphs find Vh C Vg, By C Eg,and amapping functiofi: V.4 — V4
of varying types (weighted graphs, attributed graphs, and noisy such that the number of nodestif, andV;, with matching la-
graphs). We also compare our results with those obtained using bels s>/ and th ber of ed i B hth B
the Graduated Assignment algorithm. 'fe(j‘éss ,fa(n)) N nEu/m_ er>0 el geSEth . H a(?hi'}) €La b
. . . . i w), f(v)) € is >m. Inexact graph matching can be
Index Terms—Graph isomorphism, graph matching, inexact . B .
graph matching, subgraph matching. furthe'r genergllzed to .the case where the I_abeN iand £’ are '
not crisp. In this case, inexact graph matching means comparing
graphsbasedonthe overall structure and the compatibility of node
. INTRODUCTION and edge labels. In this paper, we consider the exact as well as in-

RAPHS of various types have been widely used as rep@Xact subgraph matching problem.

G sentational tools in many applications. For example, ob- The computational complexity of graph isomorphism is still
ject recognition can be accomplished by establishing a corg open question, i.e., whether it belonggter N P [2], [3].
spondence between the graph representing the object andHbwever, the problem of subgraph isomorphism and inexact
graphs representing the models in the database. Graphs tgi@@h matching is known to b& P-complete [2]. There are
also been used for knowledge representation and scene deséhifge basic approaches to graph matching [4]. The first approach
tion. The process of determining the correspondence betwéghased on group-theoretic concepts and aims at classifying the
graphs is called graph matching. For real-time applications, fasljacency matrices into permutation groups. Unfortunately, this
and efficient graph matching is mandatory. approach is not practical due to a large overhead. The second ap-

One of the most commonly used graph structures for moproach employs a state-space search. In this approach, a state-
eling objects is the attributed relational graph (ARG). An ARGpace is constructed and searched for a solution. One of the
is a relational structure, which consists of a set of nodes cdrest known methods is the depth-first backtracking search [5].
nected by edges. The nodes and edges have attributes asJd-state-space search methods have a high computational com-
ated with them. Each node represents a component of the plexity, i.e.,O(k31?), where %, [ are the number of edges in the
ject being modeled, and the properties of the component are s graphs. The third approach uses concepts from nonlinear
signed as attributes to the node. The edges of an ARG represgiimization. Relaxation labeling methods are the most com-
the structural relationships between the components. A fornmapnly used among the nonlinear optimization methods [6]-[8].
definition of ARGs is given in [1]. Since these methods do not search the entire state-space, their

A graphA = (V4, E4) is a collection of nodes and edgescomputational complexity is quite low, nameBy( k7).
V.4 is the set of nodes anBl, is the set of edges. An edge con- The graduated assignment (GA) algorithm [4] is an example of
necting nodes andv is denoted byu, v), and belongs to the setthe relaxation approach. The GA technique can potentially pro-
E ,.fthe edges and nodes are labeled, we obtain labeled graplige good (sub)optimal solutions for problems that use a “match
The problem of comparing graphs can be classified as either exagitrix” to denote correspondence between two groups of objects.
graph matching or inexact graph matching. Graph isomorphigret graphA haven nodes and grapB havem nodes. Without
usually entails finding an exact match between two graphs, whitgs of generality, we assume that m. In the graph-matching
subgraph isomorphism means finding an exact match betweegpplication, if the elements of the match matrix are binary, then
graphandasubgraph ofanothergraph. The exactgraph-matcling” in thesth row andjth column means that nodén graphA4
or graph-isomorphism problem can be stated as follows. Givatatches nodg in graphB. In other words, the match matrix is
two graphsd = (V4, E£4) andB = (V, Ep),find f: V4 — an assignment matrix in which the sum of the elements in each
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In this paper, we present@wapproach to graph matching byln (1), n, is a constant that controls the relative influence of the
relaxation of fuzzy assignments. Itis similar in principle to Goltvo terms in the minimization process, represents the ab-
and Rangarajan’s graduated assignment algorithm [4] and Creskute compatibility between nodésc V,4, j € Vg (given
and Hancock’s dual-step expectation maximization (EM)-bas#tk fuzzy assignment®), taking into account the attributes of
algorithm [16], but only to the extent that all these algorithmthe edges incident on nodésand j and those of the neigh-
use (partial) matching degrees in each step and apply whab@ing nodes ot andj. In other wordsC = [¢;;] is the com-
known as the “alternating optimization” technique. GA tries tpatibility matrix. The functionf() a decreasing function that
match graphs edgewise, while our algorithm tries to match thenvertsc;; to a kind of “dissimilarity.” In this paper, we use
graphs nodewise. The dual-step EM approach solves the prgbe;;) = exp(—pfc;;), whereg is a control parameter. This
lems of finding correspondences and projection transformatifumction was chosen mainly due to its simplicity. Our experi-
between points by maximizing the data-likelihood over the spageents indicate that the choice of this function is not critical. In
of correspondence matches and transformation parameters. /ASestion Ill, we provide a more detailed discussion on lag\s
lational consistency measure [17], [18] based on supercliques# be chosen. As mentioned earlier, the compatibilijede-
used to assign probabilities to putative correspondences. A bipaend onU. Similarly, the assignmenis depend on the compat-
tite graph representing the most probable correspondence madtbilities C. We updatdJ andC in an alternating fashion, giving
is used to gate the likelihood function for obtaining the transforise to a relaxation process. To accomplish robust matching, we
mation parameters. In the maximization step of the EM the cantroduce dummy nodes in each of the graphs being compared.
respondence match is updated and is used to update the trandode » + 1 in graph A and nodemn + 1 in graph B repre-
mation parameters in turn. The highlights of our approach are:sBnt dummy nodes. These dummy nodes [4] are similar to slack
the objective function is simple and easy to interpret; 2) the obariables that are used to deal with inequality constraints in op-
jective function encodes fuzzy memberships explicitly so thatimization problems. When a particular node in graplidoes
discrete optimization problem is converted to a continuous onet match any of the nodes in gragh it can be assigned to
thatis amenable to optimization;@yactupdate equations can bethe dummy node of grapB, and vice versa. The dummy node
derived by using techniques commonly employed in fuzzy clusnables us to minimize the objective functidrsubject to the
tering and optimization theory; and 4) the algorithm is easy following constraints:
implement. Our experimental results indicate that the matching

accuracy of FGMis consistently higheracrossthe board, although mtl
GA tends to be faster for sparse graphs. Z u; =1, fori=1,...,n
The rest of the paper is organized as follows. In Section Il, we j=1
introduce the fuzzy graph matching (FGM) algorithm and derive as ) ) @
the update equations. In Section III, we discuss the compatibility Z wij =1, forj=1,....,m
measure used in FGM and present an analysis of the complexity ;ZJI >0 Viand;j

of the algorithm. In Section IV, we present results on exact and
inexact subgraph matching using FGM. Finally, in Section he first term in (1) is minimized if the matching degrees

we present the conclusions. are high whenever the compatibilitieg; are high. However,
ideally we wanty;; € {0, 1}. To accomplish this goal, we add
II. FGM ALGORITHM the second (entropy) term in (1) which tries to push the values

The proposed fuzzy graph matching algorithm [19] uses ide@&i; toward either zero or one.

from relaxation labeling and fuzzy set theory to solve the sub- 1° Minimize (1) subject to (2), we use Lagrange multipliers.
graph isomorphism problem. The algorithm can handle exact 33 Objective function then takes the form

well as inexact subgraph matching. The objective function of

FGM is inspired by the assignment prototype (AP) [20], fuzzy J(U, C) = ni:“g:l u?, flei)
c-means FCM [21], and GA [4] algorithms. Let and B de- ’ ps st EAd
note the two graphs being matched with vertex $atandVp, (4, F(+1, m+1)
respectively. The complexity of FGM algorithm &(n?m?), el mal
wheren = |V4| andm = |Vg|. The FGM algorithm uses a + 7 Z Z wij (1 — wij)
membership matriU = [u;;] whereuw;; represents the relative o1 o1
degree to which nodee V4 matches the nodge Vg, i.e.,, U (3, 5)#(n+1, m+1)
is the fuzzy assignment matrix. n m+1

The objective function used for the FGM algorithm is — Z A\ Z ui; — 1

n+lm+1 i=1 J=1

J(U, C)= 2 f(ciy) ™ il
;; U5 T\ Cij _Zuj<zuij_]_>
j=1 i=1

(i, ))F#(n+1, m+1)

n+1lm—+41 n+1m+1
+n >y wg(l-wy). (D) - D> i ®)
i=1 j=1 i=1 j=1

(i, ))F#(n+1, m+1) (i, §)#(n+1, m+1)
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In (3), A, 11, vi; are the Lagrange multipliers that handle thevhered = [A{, ...

175

’ )‘n]Ty

w = [p1, ..., um]* are the La-

three sets of constraints in (2). Taking the partial derivativé ofgrange multipliers in (3) in vector form

in (3) with respect ta:,,, we obtain

[ 2upq f(epg) + (L = 2upg) — Ap — g — Vpq
forp=1ton,g=1tom
aJ 2upq [ (cpg) + (1 — 2upg) — Ap — Ypq
Oy forp=1ton, g=m+1
2upq f(epg) + (L = 2upg) — g — Vpg
L forp=n+1,¢g=1tom.

Taking into account the objective function and the constraints of m1
the problem, and letting, = {(i, j)]i = 1ton+1,j =1to0 x=—1 [Z 1/Dyy, ..
§) # (n+1, m+1)}, we can write the following 2

m—+1, and(z,
Karush—Kuhn-Tucker conditions fép, ¢) € I,:

Ypg 20
aJ
Oty
Ypqtpg =0-

Equations (4) and (6) can be combined into

(Ap+ g +¥pg — 7
Z(f(cpq) - )

p=1ton,g=1tom

/qu+’qu_77
=4 La e Ty = 1tom
e 2(f(cpq) =)

Ap + Y =7

2(f(epg) —m)

7

Since (5) and (7) must hold, we have two possible cases de-

pending on whether some of the valuesypf are zero or not.
Case 1: Here we assume that, = 0 for (p, ¢) € I,.. Using

the m column constraints and the row constraints [see (2)],

we obtain

p=1ton, g=m+1.

m+1 m+1 m—+1 1
=-d _—
Iaglz qu Z D2 Z an]
q=1 q=1
n+l n+1 n+1 1
== dlaglz Z Z ]
(4) D 2= Dpm
1 .
R =[ri;], Tij:QTij’ 1=1,...,n,7=1, ,m
and b
m—+1 T
" 1/an]
q=1 q=1
n n+1 m—+1 T
y=-5 lz 1/Dp1, ooy Y 1/ Dy (12)
(5) r=1 p=1

(6) We cansolvethén+m) linear equations fok andu as follows.
From (11) we have

(7
K +Rp+x=1 (13)
and
R'A+Lp+y=1. (14)
®) From (13), we have
A=K (1-x—-Rp). (15)
Substituting (15) into (14), we obtain
=P '[1-y-R"K"1 -R"K'x] (16)

whereP = [L — RTK'R].
Case 2: In this case, we assume thaj, >0 for at least
some(p, q) € I,. Let us define two set§ and.S, whereS =

{6, )|uij >0, (4, j) € L} andS = {(i, j)luy; =0, (i, j) €

zn: = nif oy 1,,}. It follows from (5) and (7) that for alfz, j) € S, v;; =0
2D, and for all(i, j) € S, u;; = 0, andv;; > 0. Let us also define
= = 5;; as follows
g=1 tO m o v as
and 1 if(,45)es
6 =4 » J) 17
mAl oy m m+1 1o otherwise. @n
RIS S S - -
— 2Dpy = 2Dy, ‘= 2D, ’ Note thaté;; is not the Kronecker delta. Since some of the
- = = up,'s are zero, them column constraints can be written as
p=1ton (20) Ti1
2pmi Opqtipg = 1, for ¢ = 1,..., m. Similarly, then
row constraints can be written aE"’“ pqlpg = 1, for
where Dy, = (f(cpq) — ). Equations (9) and (10) form a,,_ | " ", "Using the constraints along with (8) we obtain
consistent system af 4 m linear equations that can be easily
solved. Equations (9) and (10) can be written as Soads n+l n+l
Z pa Z bpaliq + Z bpqTpg
K | R : x|[[A S
cee e e = 6
. . " ! (11) -y 2;’)—“7:1, g=1tom (18)
RT : L : vy p=1 Pq
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node j O ‘3‘3

il
node m
(]
*«Oe °
node k node !
Graph A graph B
Fig. 1. Computation of compatibility between nodes.
and FGM Algorithm
m+1 m m+1 Initialize compatibilitiesC = [c,,];
Z bpgAp + Z bpqliq + Z bpqTpg REPEAT
o 2Dpe i 2Dpq o 2Dy Compute\ and g using equation$15) and (16);
m+1 Compute membershi§ = [u,,] using(8) with v, set to
- Z S g iton. (19)  zerg
= 2Dp, If any u,, is negative
Sinceé, vy, is always zero, the third term is eliminated from Initialize setsS and S, whereS = {(4, j)|u;,; > 0,
(18) and (19). Equations (18) and (19) can then be written as (i, §) € L} and S = {(4, j)lui; = 0, (4, j) € L };

Find A and i using(22) and (23);

K : R : x|[A For w,, € S use(8) with ~,, set to zerp
pl=1 (20) Setu,, € S to zerg
RYT : L' !
(R) Y UpdateC = [c,,] using(24);
where UNTIL (memberships stabilize)
Use the Sinkhorn techniq{@?] to further crispify thdJ matrix;
m—+1 61 m—+1 62 m—+1 6
== dlag —Z 7 , -4
Z Z ; Dy IIl. COMPATIBILITY
"+1 "+1 ntl Spm The compatibilityc;; is a quantitative measure of the (abso-
Z Z D, lute) degree of match between nade V4 and nodej € Vi,
r=1 p=1 " given the current fuzzy assignment matfix For example, if
R =[ry], 7= 1 85 ¢ € [0, 1], thene;; = 1 indicates complete compatibility of
d 2D the nodes and;; = 0 indicates no compatibility. In this paper,
an we define the compatibility;; as
n m—+1 m—+1 n+1m-+1 m m
=—3 | 2 81a/Dias - Z %/an cy=wl? 3OS PEMu g 41, and
7=1 k=1 I=1
n+1 m—+1 T (k, DF#(,5)
' :_g [Z 8p1/Dp1s - r Y 61,,,,/me] . (21) J=1...,m+1 (24)

=1 p=1

wherew;; is the degree of match between (the attributes of)
nodei € V, and nodej € Vg, my € [0, 1] is the matching
score between the eddé k) € E, and edgej, ) € Fp,
M = [my], M’ = [m},] is the crisp assignment matrix closest
A=K '1-%x —R'p) (22) toM satisfying the constraints in (2) for= 1 ,n+1and
and j=1...,m+1, andnJB is a normallzat|on factor equal to
the number of edges (with nonzero weights or attribute values)
p=P'[1-y -RTK™1-R'K'x] (23) thatareincidentonnodee V. Note thatM’ acts as a filter so
that each edge in graph that is incident on nodg (except the
whereP’ = [’ — R'TK'~1R/]. one from the dummy node) contributesdg only once. Also,
OnceX andy are computed, we can usg to update mem- w;; is raised to the power 0.5 for enhancement purposes. Fig. 1
bershipsu;; using (8). The FGM algorithm is presented belowillustrates the notation used.

As in case 1, we can solve tlte +m) linear equations in (20)
for A andu as follows:
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To computeM’, we can apply the Sinkhorn technique [22]since good (exact) matches are not possible, this leads to a poor
which repeatedly normalizes the rows and columns to give therformance. A better alternative is to use the dummy node to
solution. The complexity of this technique @3(nm). How- the degree that a reasonable match is not possible among the
ever, this method sometimes takes too many iterations to corendummy nodes. This is what (27) accomplishes. This method
verge. There are also other standard algorithms for the assigan also be used in the exact case, but we found that the perfor-
ment problem that can be used here as well [23]. Rather thaance is satisfactory even otherwise.
implement these, we used a rather straightforward method. Wen the case of attributed graphs, node V, is assumed to
identify the largest element iM, set it equal to 1, and zero outhaver,, attributes associated with it, and each etige:) € E.4
the remaining elements of the row and column correspondingttasn,. attribute associated with it. Each node and edge attribute
the largest element. We repeat this proeessiore times. This has a value in [0, 1]. The values of thg attributes of node of
method has a somewhat higher complexity)¢f.m?), but does graphA are denoted by = (a3, ..., az} ). Similarly, the
not impose a noticeable computational burden in practice. Walues of theu,. attributes of edgéi, k) of graphA are denoted
refer to this method as the greedy algorithm. by rs, = (515 -+ Titn,)- The matching degree;; between

The degree of match; can be defined in many ways, andhe (attributes of) nodec V4 and nodej € Vi is defined as
the choice of the definition is application-dependent. In this , )
paper, we deal with weighted graphs and attributed graphs. In 1- 13}f?2a|a3’ —aj|, ifi#n+1and
what follows, we consider these cases separately. wij = o jEm+1 (28)

In the case of weighted graphs, the nodes have no attributes, 0
but each edge has a weight associated with it. We denote the ’
weight associated with edde, k) in graph A by r7, where  aAgain, we initialize the compatibilities as; = exp{—w;;},
ik € [0, 1]. Similarly, the weight associated with edge ) in  and use (24) in later iterations. However, with attributed graphs
graphB is denoted by-j;. Since the nodes have no attributesifor both exact and inexact cases), we define
we define the matching degreg; between the (attributes of)
nodei € V4 and nodej € Vg as

otherwise.

0.5 . AB
My = uy,; min <wkz, 1-— 1%(1}; pijkl,P)

. = J 1 ifnP <nitandi#n+1landj#m+1 (25) if k#£n+1landl #m+1 (29)
* 0, otherwise

where
wherens* is the number of edges with nonzero weights inci- o B
dent on node of graphA, andn? is the number of edges with AB L, if i, =00rr;, =0 30
nonzero weights incident on nodeof graph B. We initialize Pijkt,p = |rit, — 1], otherwise. (30)

the compatibilities as;; = exp{—w;, }, and use (24) in later
iterations (for updating). For the exact matching case (i.e., whernThe FGM algorithm requires the specification mfand 5.
no noise is added to the edge weights of gr&)hwe define  The value ofn was always chosen to he”. The algorithm
is quite insensitive to a range @&fvalues. However, for faster
M = u%;" min (wkh (1- (T{i — Tﬁ))l/‘*) convergence, the value gfwas determined as follows. For the
. weighted graphs, we us¢h= 3.5 + (n — 20)/10 for the exact
it s # n+1andl #m + 1. (26) matching case, whereis the numbe(r of noél/es. For the inexact
atching case, we usgd= 20 if connectivity <50, andg = 40
fierwise. In the case of attributed graphs, we ysed2.5.
The computational complexity of the FGM algorithm can be
shown to beD(n?m?). The A, u computation step requires the
€ inversion ofP (which is anm x m matrix) andK (which is a
giagonal matrix). In addition, two matrix vector multiplications
are required [see (15) and (16)]. Thus, we have a complexity of
O(m® + n + m? + n?). To compute the membershipg,, we
haveO(nm) computations [see (8)]. If any of the memberships

For the inexact case (i.e., when noise is added to the e(ﬁ
weights of graplB), the weightau;,; are defined as in (25), and
my IS given by (26). However, the compatibilities are com-

formulas are used to compuféc;, ) directly. [Note that the al-
gorithm requites only(c;;), and note;;.]

2
Fengr.i) = [1 — min f(ck,,)} are negative, we have to repeat the process pfcomputation
! 1<k<n ! and then recomput®. Computing compatibilities is the most
and ) expensive part of the FGM algorithm. Computation of e
_ _ matrix is O(nm), finding the M’ matrix is O(nm) [O(nm?)
e, mir) = {1 B 1%%21,,,f(c”“)} : @7 if the greedy algorithm is used]. Thus computiag for all 4

andj using (24) isO(n?m?). Therefore, the overall complexity
The reason for using the modified updating technique, shownahthe algorithm isO(n?m?), wherem is the number of nodes
(27), for the compatibilities involving dummy nodes is as folin the smaller graph and is the number of nodes in the larger
lows: Equations (24) and (25) give a compatibility of 0 when onene. The complexity of the GA algorithm i9(pq), wherep
of the nodes involved is a dummy node. This forces the nodessahe number of edges in the first graph angé the number
seek matches among the nondummy nodes. In the inexact casedges in the second graph. Thus, the two complexities are
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Plot Showing Accuracy of GA and Improvement with FGM for
Non-Noisy Graphs Vs. Graph Size

TABLE I
COMPARISON OFFGM AND GA FOR NONNOISY GRAPHS n = 40. AERAGE
NUMBER OF MISMATCHED NODES NUMBER OF CORRECTMATCHES,

100 AND CPU TiME IN MIN
- 80
£ 8 OFGM en=25% =50% en=175% en=100%
8 4o wGA
< 2 FGM| GA |{FGM| GA |FGM| GA |FGM | GA
0 ' ' ' del=25 | 0,100 | 0,100 | 0,100 | 0,100 | 0,100 { 0,100 | 0,100 | 0,100
20 40 80 100
Graph Size 0.1 ] 008 | 023 | 0.15 | 0.41 | 0.25 | 0.39 | 0.37
Fig. 2. Comparison of matching accuracies of FGM and GA: nonnoisy cas del=>50 | 0,100 | 8.1,64 | 0,100 | 12.6,91 | 0,100 | 1,93 | 0,100 | 15,95
Plot of Ratio of GA to FGM CPU performance vs. Graph 009 | 006 | 0.14 | 01 | 023 | 017 | 0.24 | 0.27
Connectivity for the Non-Noisy Graphs
1.4 TABLE Il
2 1.2 1 COMPARISON OFFGM AND GA FOR NONNOISY GRAPHS n = 60. AVERAGE
; : NUMBER OF MISMATCHED NODES NUMBER OF CORRECTMATCHES,
s 1 AND CPU TIME IN MIN
2 8 08
§= 087 n=25% | on=50% | en=75% | cn=100%
-] 0.4
% 02 FGM| GA |FGM| GA |FGM| GA |FGM| GA
-
0 . r :
2% 50 75 100 del=25 | 0,100 | 0,100 | 0,100 | 0,100 | 0,100 | 0,100 | 0,100 | 0,100
Percent Connectivity
o nne 057 | 026 | 128 {075 | 29 | 145 | 22 | 26
Fig. 3. Comparison of CPU times of FGM and GA in the nonnoisy case. del=50 | 0.100 | 10.1.87 | 0.100 | 20.97 | 0.100 | 1.99 | 0.100 | 6.100
TABLE | 027 | 018 | 07 [ 646 | 1.8 | 1.0 | 1.3 | 1.6
COMPARISON OFFGM AND GA FORNONNOISY GRAPHS n = 20. AVERAGE
NUMBER OF MISMATCHED NODES NUMBER OF CORRECTMATCHES,
AND CPU TiME IN MIN
TABLE IV
COMPARISON OFFGM AND GA FORNONNOISY GRAGHS, n = 100. AVERAGE
cn=25% cn=50% cn=75% cn:l()O% NUMBER OF MISMATCHED NODES, NUMBER OF CORRECT MATCHES,
AND CPU TiME IN MIN
FGM| GA {FGM|{ GA |FGM | GA |FGM | GA
del=25 | 0,100 | 4.8,87 | 0,100 | 1,98 | 0,100 | 0,100 | 0,100 | 0,100 en=25% en=50% en=75% | cn=100%
002 | 002 | 0.02 | 0.02 | 0.02 | 0.03 | 0.03 | 0.03 FGM| GA |FGM| GA |FGM | GA |FGM | GA
del=50 | 0,100 | 3.8,34 | 0,100 | 3.7,69 | 0,100 | 4.4,71 | 0,100 | 5,81  del=25 0,100 | 0,100 | 0,100 | 0,100 | 0,100 | 0,100 | 0,100 | 0,100
001 | 0.01 | 0.03 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 475 | 15 11108 | 55 | 262 | 12.6 | 19.9 | 22.7
del=50 | 0,100 | 21.6,92 | 0,100 | 0,100 | 0,100 | 0,100 { 0,100 | 0,100
similar. (Note that in our model, the graphs are complete, ev 299 | 094 | 67 | 32 | 88 | 80 | 81 | 146

though the strengths of relations between edges may be zer

IV. EXPERIMENTAL RESULTS from 20 nodes to 100 nodes. In particular, we used graphs with

The FGM algorithm was tested on both weighted and a29, 40, 60, and 100 nodes. The number of edges with nonzero
tributed relational graphs of varying sizes. For both types wfeights (or nonzero attribute values) were constrained by a
graphs, we tested the exact matching case as well as inexaser-specified connectivity levetst), which was specified as
matching case. In the inexact matching case, the weights éither 25%, 50%, 75%, or 100%. A connectivity of 50% implies
attributes) of the smaller graph are perturbed by adding noisieat only 50% of all possible edges will have nonzero weights
so that exact matching is not possible. The results from mdgattribute values). In the case of weighted graphs, the nodes
than 12 000 experiments are summarized here. The resultsn@re unlabeled and the edge strengths were chosen randomly
weighted graphs are compared with results obtained using frem the [0, 1] interval. For attributed relational graphs, there
GA algorithm. The code for GA was obtained from the authorseere five attributes for each node and each edge, and these

We randomly generated weighted and attributed relatiorattributes were assigned random values in the [0,1] interval.
graphs for our experiments. The sizes of the graphs vari®tce the random graph of the specified size was generated,
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Plot Showing Accuracy of GA and Improvement with FGM for TABLE VI
Noisy Graphs Vs. Standard Deviation of Noise COMPARISON OFFGM AND GA FOR NOISY GRAPHS, . = 40, o = 0.04.
AVERAGE NUMBER OF MISMATCHED NODES NUMBER OF CORRECTMATCHES,
100 AND CPU TIME IN MIN
=]
. 80
o — —_ — —
g 80 = GFOM Improvement cen=25% en=50% en=75% en=100%
e 40
< mGA FGM | GA |FGM | GA |FGM| GA |FGM| GA
0 - - del=25 | 0,100 | 6.2,70 | 0,100 | 14.5,96 | 0,100 | 14.5,98 | 0,100 | 0,100
802 0.04 c.o8 01
Standard Deviation of Noise 0.12 0.09 0.24 0.17 0.38 0.28 0.54 | 0.43

Fig. 4. Comparison of matching accuracies of FGM and GA: noisy case. 4el=50 | 1.5,52 | 6.4,20 | 1.4,76 | 49,44 | 0,100 | 6.7,50 | 0,100 | 7.2,88
0.09 | 007 | 0.17 0.11 0.25 0.19 035 | 0.27

Plot of Ratio of GA to FGM CPU performance vs.
Percent Connectivity for Noisy Graphs

TABLE VII

09 CoMPARISON OFFGM AND GA FORNOISY GRAPHS n = 40, 0 = 0.08.
g 0.8 AVERAGE NUMBER OF MISMATCHED NODES, NUMBER OF CORRECTMATCHES,
2 07 / AND CPU TIME IN MIN
o T
[*

8 05 |

SEor] on=25% en=50% n=T5% | cn=100%
O

0.3 4
5 ;) FGM| GA |[FGM| GA |FGM| GA |FGM| GA
AR
&= 0 : i . del=25| 1,98 | 25,31 | 1,98 |12.3,96 | 0,100 | 14.5,98 | 0,100 | 0,100

25 50 75 100

Percent Connectivity 0.14 | 0.08 | 0.29 0.16 0.62 0.26 0.87 | 0.38

. ) . ) ) del=50 |3.2,54 [6.4,24 |{3.3,62 | 6.0,50 |5.4,62 | 5.1,40 {0,100 [4.1,52
Fig. 5. Comparison of CPU times of FGM and GA in the noisy case.

0.08 | 0.06 | 0.12 0.12 0.25 0.19 0.43 | 0.31

TABLE V
COMPARISON OFFGM AND GA FORNOISY GRAPHS n = 40, ¢ = 0.02.
AVERAGE NUMBER OF MISMATCHED NODES NUMBER OF CORRECTMATCHES, TABLE VI
AND CPU TIME IN MIN COMPARISON OFFGM AND GA FORNOISY GRAPHS n = 40,0 = 0.1.
AVERAGE NUMBER OF MISMATCHED NODES, NUMBER OF CORRECTMATCHES,
AND CPU TIME IN MIN
cn=25% en=50% en=75% cn=100%
FGM | GA |[FGM| GA [FGM!| GA [ FGM| GA en=25% en=50% en=T75% en=100%
del=25| 1,94 | 5.8,92 {0,100 | 0,100 | 0,100 | 0,160 | 0,100 | 0,100 FGM | GA |FGM| GA |FGM| GA |FGM| GA

0.12 | 0.08 | 0.39 | 0.15 0.6 0.25 | 0.53 | 0.38 del=25 | 3.5,66 | 7.5,64 | 0,100 | 7.8,96 | 0,100 | 13.8,94 } 0,100 | 14.5,98

del=50 | 1.4,60 | 5.2,40 | 0,100 | 5.3,78 | 0,100 | 4.8,74 | 0,100 | 4.3,90 029 | 0.08 | 0.59 | 0.17 | 0.76 | 0.29 | 1.08 | 0.46

008 | 0.07 | 016 | 01 | 025 | 017 | 022 | 026  del=50 |15,24 16.4,14 |1.6,34 |5.2,30 |2.5,40 | 4.8,22 |4.3,42 | 6.1,40

0.11 | 0.06 0.2 0.11 | 0.35 0.19 0.29 0.31

the nodes of the graph were permuted. The permuted graph
was then modified by deleting randomly selected nodes. Tlevels and two deletion levels, which gives us eight cases.
number of nodes to be deleted was specified in terms ofFar each case, we generated 100 random graph-pairs. The
deletion percentdel), which was either 25% or 50%. TheFGM and GA algorithms were run on the 100 graph-pairs and
true-matching assignments between the original graph and the results were averaged. We recorded the number of times
modified subgraph were also recorded and used as the grothal graph-pairs were matched perfectly by FGM and GA, as
truth when comparing the assignments obtained from FGMell as the average number of nodes that were mismatched.
and GA algorithms. This method of scoring only comparebhe average was computed over only those cases in which
the modified graph with the original, and may ignore bettgrerfect matching did not occur. The results are presented
matches that result from the modification. This is particularlyn Tables I-IV. Each entry in the tables shows the average
true in the inexact matching case, where the noise addedntamber of mismatched nodes (in the cases where mismatching
the weights (attribute values) may cause the best match todmeurred), total number of correct matches, and the CPU time
different from the recorded ground truth. in minutes. From the results, we see that FGM results are 100%
In our first experiment, we selected graphs of sizes 20, 40, é@curate while the GA fails in several cases. As a summary
and 100 nodes. For each graph size, we used four connectiafythe tables, Fig. 2 shows the improvement in accuracy (i.e.,
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TABLE X
FGM RESULTS ONEXACT MATCHING OF ATTRIBUTED GRAPHS AVERAGE NUMBER OF MISMATCHED NODES, NUMBER OF CORRECT
MATCHES, AND CPU TIME IN MIN

n=20 n=40

en=25% | en=50% | en=75% | cn=100% | cn=25% | cn=50% | cn=75% | en=100%

del={ 0,100 0,100 0,100 0,100 0,100 0,100 0,100 0,100

25% 0.01 0.02 0.02 0.02 0.11 0.23 0.36 0.49

del=| 0,100 0,100 0,100 0,100 0,160 0,100 0,100 0,100

50% 0.01 0.01 0.01 0.01 0.05 0.09 0.15 0.2

TABLE X
FGM RESULTS ONINEXACT MATCHING OF ATTRIBUTED GRAPHS ATNOISELEVEL o = 0.04. AVERAGE NUMBER OF MISMATCHED NODES, NUMBER OF CORRECT
MATCHES, AND CPU TIME IN MIN

n=20 n=40

en=25% | cn=50% | en=75% | cn=100% | cn=25% | cn=50% | en=75% | cn=100%

del=| 1,98 0,100 | 0,100 0,100 0,000 | 0,100 | 0,100 0,100

25% 0.01 0.02 0.02 0.03 0.11 0.24 0.28 0.39

del=| 0,100 0,100 0,100 0,100 0,100 0,100 0,100 0,100

50% | 0.005 0.01 0.01 0.012 0.06 0.09 0.12 0.16

percentage of correct matches) achieved by FGM over thatroérize the tables, Fig. 4 shows the improvement in matching
GA for the nonnoisy case. Fig. 3 depicts a plot of the ratio @fccuracy provided by FGM over GA as a function of standard
CPU time taken by GA to that of FGM as a function of percerteviation of noise. It can be seen that the improvement is sig-
connectivity. It can be seen from these figures that for théficant for intermediate-level noise. Fig. 5 shows that the ad-
nonnoisy case, the improvement provided by FGM in matchingintage of GA in terms of CPU time diminishes with higher
accuracy is significant for graphs of relatively smaller siz&onnectivity even in the noisy case.3
Although the GA algorithm is somewhat quicker than the FGM The next two sets of experiments deal with attributed rela-
algorithm in many cases, FGM has an advantage for large amhal graphs. Each node and edge in the attributed relational
highly connected graphs. The experiments were conductg@ph is represented by five weights in the interval [0, 1]. The
on a Pentium Il 450-MHz workstation and no attempt wa®sults on attributed graphs of sizes 20 and 40 nodes are given
made to optimize the code of the FGM algorithm. The G#n Table IX. In both cases, the FGM results are 100% accurate
algorithm is essentially edge-based, and is quite efficient fand are quite fast. The attributed graphs generated in the pre-
sparse graphs since it uses special data structures. vious step were then perturbed by adding noise. The noise was
The second set of experiments deal with inexact weightadded to the subgraphs, and standard deviations of 0.04, 0.1,
graph matching. The random graph-pairs from the previous ead 0.2 were used. The noise added here was higher than in the
periment were used again. The subgraphs from each graph-paighted graph case. The results on the 20- and 40-node graphs
were perturbed by adding uniform noise. Since this experimeot the noise levet = 0.04 are presented in Table X. Tables Xl
intends to find the efficiency of FGM for inexact matching, wand Xl contain the results for the noise levels= 0.1 and
fixed the size of the larger graph to 40 nodes and varied the stan= 0.2. From the results, we can see that FGM is quite robust
dard deviation of the noise added to the smaller graph. In pand insensitive to increased noise levels. The matching results
ticular, we trieds = 0.02, 0.04, 0.08, and 0.1. We averaged thare good. The version of the GA code we had was not able to
results of inexact matching over 100 graph-pairs. The resuttandle attributed graphs, and so no comparison was possible.
are presented in Tables V=VIII. From the results, we can see
that FGM matching accuracy is always better than or similar to
that of GA. The percent of nodes mis-matched is also smaller
for FGM. However GA is again somewhat faster than FGM in In this paper, we present a fuzzy approach to exact and in-
finding the solution. These results also show that as the connexgact (sub)graph matching. As in [4], we use a type of relax-
tivity increases, the influence of noise diminishes. This is bation technique. Fuzzy assignments are used in each iteration
cause matching becomes easier with more constraints. To stioavoid premature convergence to local minima. We update the

V. SUMMARY AND CONCLUSION
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TABLE Xl
FGM RESULTS ONINEXACT MATCHING OF ATTRIBUTED GRAPHS ATNOISELEVEL ¢ = 0.1. AVERAGE NUMBER OF MISMATCHED NODES, NUMBER OF CORRECT
MATCHES, AND CPU TiME IN MIN

en=25% | ecn=50% | en=75% | en=100% | cn=25% | cn=50% | ecn=75% | cn=100%

del=1| 1,97 0,100 | 0,100 0,100 0,100 | 0,100 | 0,100 0,100

25% | 0.008 | 0.014 0.02 0.024 0.11 0.24 0.35 0.47

del=| 1,98 0,200 | 0,100 0,100 1,97 0,100 | 0,100 0,100

50% | 0.004 | 0.007 | 0.008 0.01 0.05 0.096 0.24 0.19
TABLE XII

FGM RESULTS ONINEXACT MATCHING OF ATTRIBUTED GRAPHS ATNOISELEVEL 0 = 0.2. AVERAGE NUMBER OF MISMATCHED NODES NUMBER OF CORRECT
MATCHES, AND CPU TIME IN MIN

n=20 n=40

en=25% | en=50% | en=T5% | ecn=100% | ecn=25% | cn=50% | cn=75% | cn=100%

del=| 1,97 0,100 | 0,100 0,100 0,100 | 0,100 | 0,100 0,100

25% | 0.008 | 0.014 0.02 0.03 0.1 0.19 0.28 0.39
del=1| 1,92 0,100 1,99 1,98 1,96 0,100 1,99 1,96
50% | 0.004 | 0.006 | 0.009 0.012 0.05 0.08 0.12 0.16

fuzzy assignments based on fuzzy compatibilities, giving rise The low computational complexity of the FGM algorithm
to a relaxation procedure. We incorporate robustness into tinekes it suitable for several real-time computer applications.
matching process by adding dummy nodes to the two grapghGM is easy to implement, and has a matching accuracy that
being matched. The computational complexity of the algorithia higher than the GA algorithm. We are currently looking into
is O(n?m?). ways of improving the speed of the algorithm, and applying it to
The GA algorithm solves several assignment problems usiggntent-based retrieval of images [24], [25]. Another attractive
a continuation method to obtain a double stochastic match nigature of FGM is that when the algorithm converges, the value
trix after each iteration. The control parametg) ¢f the contin- of the objective function can be used as a measure of similarity
uation method is slowly increased to obtain a crisp solution fetween the two graphs. This is useful in many applications,
the match matrix. In the case of FGM, the use of a fuzzy objeguch as clustering.
tive function eliminates the use of a continuation method. FGM
first uses a greedy method to compute compatibilities between ACKNOWLEDGMENT
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