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A Stable Adaptive Fuzzy Sliding-Mode Control
for Affine Nonlinear Systems with Application to
Four-Bar Linkage Systems

Chih-Lyang Hwang and Chia-Ying Kuo

Abstract—In this paper, a stable adaptive fuzzy sliding-mode convergence of weight, fuzzy basis function must be persistently
control for affine highly nonlinear systems is developed. First, the excited. Furthermore, Su and Stepanenko [3] have presented a
external part of 4 transformed system via a feedback linearizing 4 ified version of Sanner and Slotine [10]. It has assumed that
control evolves a linear dynamic system with uncertainties. A ref- the Lie-derivati f t tout i t onl tant. but
erence model with the desired amplitude and phase properties is e _'e' enva 'Ye of system output is not only g cons an. » U
given to obtain an error model. Because the uncertainties are as- als0 is known in advance. They use a modulation function to
sumed to be large, a fuzzy model is employed to model these un-combine a robust control scheme outside of a compact set and
certainties. A learning law with e-modification for the weightofa gn adaptive scheme inside the compact set. Hence, the global
fuzzy model is considered to ensure the boundedness of Ieam'ngstability of overall system is guaranteed. However, the above

weight without the requirement of persistent excitation condition. . - s .
Then, an equivalent control using the known part of system dy- method has the following disadvantages: i) The scheme is too

namics and the learning fuzzy model is designed to achieve the de-COmplex to realize. ii) The possibility of discontinuous control
sired control behavior. Furthermore, the uncertainties caused by occurs. iii) The compact set for the proposed control is unclear.
the approximation of fuzzy model and the error of learning weight  The paper discussed by Spooner and Passsino [5] have investi-
are tackled by a switching control. Under some mild conditions, - gate stable indirect and direct adaptive fuzzy controller using
the stability of the internal part of the transformed system is guar- - - L

anteed. Finally, the stability of the overall system is verified by Prori knowledge about thetimes derivative of system output.
the Lyapunov theory so that the ultimately bounded tracking is Thatis, ther times derivative of system output contains known
accomplished. Simulations and experiments of velocity control of part and unknown part of system dynamics. However, its un-
four-bar-linkage system are also presented to verify the usefulness certain term is too specially and the first— 1 derivatives of

of the proposed control. system output must be available. In 1999, Fischle and Schroder

Index Terms—Adaptive fuzzy control, four-bar-linkage system, [9] present the solutions to the above problems. For instance, the

Lyapunov stability, sliding-mode control. controller does not necessarily adapt itself to every change of
reference signal, the method is not limited to the system where
I. INTRODUCTION the Lie-derivative of system output is constant. However, they

must satisfy the following conditions: i) The relative degree
F UZZY (or adaptive) control has widened its applicabilitynyst be equal to the order of systemii) The firstn — 1 deriva-

‘to many engineering fields, itis increasing the need of thggyes of system output must be available for the learning algo-
oretic analysis, e.g., stability, robustness, and performanceyihm_ jii) For the convergence of weight, the fuzzy basic func-
is generally applicable to the systems that are mathematica|lyns must be persistently excited.
poorly modeled. However, the major disadvantages of fuzzy (or; js well known that sliding-mode control provides a robust
adaptive) control are the lack of systematic design, without thgsans for controlling a nonlinear dynamic system with uncer-
insurance of stability of closed-loop system in the presencegfnties [11]-[15]. It often results in a chattering control input
uncertainties, and a poor performance due to the probable diiffe to its discontinuous switching control used to deal with
of learning weight [1]-{9]. _ the uncertainties. The larger uncertainties take place, the larger

Although many papers discuss the stable adaptive fuzzy cQiyitching control happens. In the current paper, the nonlinear
trols [3], [5], [6], [9], they have made many assumptions. Fa(nctions include known part (i.e., nominal system) and un-
example, Wang [6] used a Lyapunov-based learning law to ilfnown part (i.e., uncertainties). The known part is achieved by
prove a probable local minimum of error measure. Despite E%riving from the physical law, e.g., Lagrange’s dynamic prin-
advantages, the control method in [6] has three substantial dr%e_ Then, a coordinate transformation satisfying some con-
backs: i) The controller must adapt itself to every change of r&jitions is employed to achieve a transformed system, including
erence signal. ii) The method is limited to the system where thg external part with the order that equals the system relative
Lie-derivative of system output is constant. iii) To ensure th&’egree and an internal part [16], [17]. The external part of trans-

formed system via a feedback linearizing control becomes a
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Fig. 1. Control block diagram.

requirement of persistent excitation condition [18]-[20]. Themlerivatives of the scalal’(x) = C¥z(t) in the direction of the
an equivalent control using the known part of system dynamiesctor fieldsA(x) and B(z) [16], [17]:
and the learning fuzzy-model is applied to achieve the desired

i i i N Te,
control beh_awor. Beca_use the fuzzy m(_)del is not applied to the L.O(z) = Z (x) Ai(x)
whole nonlinear functions, the resolution of the fuzzy model ~ ox;
increases or a good description of system uncertainties is ac- -
complished. Furthermore, the uncertainties caused by the ap- — N aC(z) ,,
proximation of the fuzzy model and the error of learning weight LpCle) = Z ox; Bi(@). @

=1

are tackled by the switching control. The system performance

is much improved as compared with traditional fuzzy (or adaf-hen the derivative of output with respect to time, idgi(t) /dt
tive) control because the uncertainties are reduced by the peg(t), is described as follows:

vious equivalent control. The proposed control is then more ef- - o

fective to cope with the fuzzy control problem of nonlinear sys- y(t) = LaC(x) + LC(x)u(t). 3)
tems with large uncertainties. Under some mild conditions, the __ )
stability of the internal part of transformed system is guarafi--BC(2) # 0, then the system (1) has the relative degree one.

teed. The stability of the overall system is then verified by theimilary, t-he system (1) with the relative degrees expressed
Lyapunov theory so that the ultimately bounded tracking is a@S follows:

complished. Simulations and experiments of velocity control of;, i = L 07/ N

four-bar-linkage system confirm the usefulness of the proposgd () =L4C(z), 0=i<r—1, Lille)=Clz)  (49)

control. v (#) =L, C(x) + L L'y C(x)u(t), LpL77*C(x) #0.
(4b)

Il. PROBLEM FORMULATION

Consider the following affine nonlinear single-input—single- 't IS @ssumed that:

output dynamic systems: Al: the system state(t) is available;
A2: the nominal system has the relative degreevhere
2(t) = A(z) + B(x)u(t), y(t) = CTa(t) (1) r < n.

Definition 1 [17]: The solutions of a dynamic system are
wherez(t) € R™ denotes the system statét), y(¢t) € R rep- said to be uniformly ultimately bound (UUB) if there exist pos-
resents the system input, system outgiiite R is a known itive constantss andx, and for eveny € (0, «) there is a posi-
constant vector. Furthermorg(z) = A(x) + AA(z), B(x) = tive constanfl’ = 7°(§), such that|z(to)|| < § = ||z(¢)|| < v,
B(z)+ AB(x) are highly nonlinear functions, wherz) and V¢ > to + 7.

B(z) denote the nominal part of system matricasi(z) and The problem is to develop an indirect-adaptive fuzzy
AB(z) represent the unknown (or uncertain) part of system msliding-mode control for a class of affine highly nonlinear

trices, and are bounded and smooth. Define the following Li/namic systems subject to huge uncertainties (see Fig. 1). A

Authorized licensed use limited to: Tamkang Univ.. Downloaded on April 12,2023 at 02:56:19 UTC from IEEE Xplore. Restrictions apply.



240 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 9, NO. 2, APRIL 2001

Fuzzy Rule Base

Fuzzifier Defuzzifier ’

Y
xelUcR” f(x)eVc®h

p| Fuzzy Inference Engine

fuzzy sets in U fuzzy setsin V

Fig. 2. Basic configuration of fuzzy logic system.

jap

— | s
AT e Foiur-Bar
l.r. ¥ ;

. Linkuge

Mode DA ke
Contred T |
PC [Inferface

Fig. 3. Experimental setup. (a) Photograph. (b) Block diagram.

feedback linearizing control makes the external part of transentrol is given to deal with the uncertainties caused by the
formed system with relative degreebecome a linear dynamic approximation of the fuzzy model and the error of learning
system with uncertainties. Then a reference model is designeeight. Finally, the simulations and experiments of velocity
to obtain a desired behavior including phase lag and amplitucentrol of four-bar-linkage system are presented to verify the
relation. A fuzzy model is applied to model these huge umsefulness of the proposed control.

certainties. A learning law witk-modification for the weight ~ Remark 1: If A(x) = Az(¢) andB(x) = B, whereA andB

of a fuzzy model is constructed to ensure the boundednessacé constant matrices, thenA(z) andAB(x) are highly non-
learning weight without the requirement of persistent excitatidimear. A feedback linearizing control is applied to the system
condition. Then, an equivalent control using the known part ¢f) such thathe external part of transformed system becomes
system dynamics and the learning fuzzy model is designedadinear dynamic system with reduced uncertaintesd such
achieve the desired control behavior. Furthermore, a switchitighta good nominal model for the controller design is achieved
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Fig.4. Comparison of sinusoidal responses between physical sfsterand mathematical modél—-) for system inputi(t) = u,, sin(27 ft). (@) u,. = 2.5,
f=02.(b)u, =35, f=05.(c)u, =45, f =0.38.

Then the performance of proposed control can be better than thiagjine performs a mapping from fuzzy seté/irc 1™ to fuzzy

of traditional sliding-mode control. sets inV C R, based upon the fuzay—THEN rules in the fuzzy
rule base and the compositional rule of inference.Agbe an
. Fuzzy LOGIC SYSTEM arbitrary fuzzy set in/. The fuzzifier maps a crisp point(t)

] o ] into a fuzzy setd,, in I7. The defuzzifier maps a fuzzy setin
An important contribution of fuzzy system theory is to progg g crisp point in”. More information can be found in [21].

vide a systematic procedure for transforming a set of linguistic| et ,, ., (z;) and yic« (wy,) be membership functions. The

rules into a nonlinear mapping. The basic configuration of thgy |ogic systems with center-average defuzzifier, product in-

fuzzy logic system is shown in Fig. 2. The fuzzy logic systeference and singleton fuzzifier are in the following form [1}-[3],
performs a mapping frorty € ®™ to )t. There aré fuzzy con- [5}[9], [21], [22]:

trol rules and the upper scriptdenotes thé&th rule from human
experts in the following form:

{ n { n
fl@) =Y <H 1Rk (xz‘)) > <H tops (xz‘)) (6)
1F z1(t) is FF andz,(t) is FF¥, k=1 =1 k=1 \i=1

THEN f(z) is G* (5) wherew; (1 < ¢ < [) denotes center of thith fuzzy set
and is the point at whicl» achieves its maximum value and
wherez(t) = [z1(t) z2(t) ... z,(0)]F € U Cc R and g+ (wi) = 1. Equation (6) can be rewritten as
f(x) € V C R are the input and output of the fuzzy logic L
system, respectiveli* (1 < ¢ < n,1 < k < I) andG* f(z) =W'e(x) )
are labels of sets ity; andV/, respectively. The fuzzy inference
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whereW = [w; w. ... ]’ is a parameter vector, and
O(z) = [01(z) O2(x) ... Gi(x)]' is afuzzy basis function
defined as follows:

)= [Lonte) /32 (owrta0) - @

If the fuzzy systems can approximate any nonlinear conti
uous functions to arbitrary accuracy, then they would be ve
useful in a wide variety of applications. The fuzzy logic systern
in the form of (6) are proven in Wang [6] to be an universal a;
proximator; i.e., for any given real continuous functipon the
compact set/ there exists a fuzzy logic system in the form o
(6) such that it can uniformly approximate ovérto arbitrary
accuracy. The universal approximation theory is stated as f 30 40 50 60 70
lows (e.qg., [2], [6], [7], [21], [23]): Time (sec)

Theorem 1 (Universal Approximation Theoren§uppose
that the input universe of dlsc_ourééls a co_mpact set ifR™. Fig. 6. The responses of typical weightss(f)(---), s (f)(——-), and
Then, for any given real continuous functigfiz) on U/ and 4 +)(—) for Fig. 5 case with the exception of high gain = 83 and
arbitrarye > 0, there exists a fuzzy systeff(x) in the form d. = 85.
of (6) such that

Weights

A. Matched Uncertainties

:1615 |f(z) —g(@)] <e. If the uncertainties satisfy the following matching condition:

There are two main reasons for using the fuzzy logic systems.A4(z) = B(z)Aa(z) and AB(z) = B(z)Ab(z) (9)
First, it was proven in [23] that the fuzzy logic systems in the . o . )
form of (6) are universal approximators. Second, the fuzzy logic!S called “matched uncertainties.” The following Ier_nma“ IS
systems (6) are constructed from the fuzzyrHeN rules of (5) 9Ven to discuss a transformation for the system (1) into “tri-
using some specific fuzzification, fuzzy inference, and defuzA9ular form'. , _ _
fication strategies: therefore, linguistic information from human Leémma 1:Consider the nonlinear system (1) with
experts [in the form of the fuzag—THEN rules of (5)] can be di- th‘?f foIIoww;g glgbal diffeomorphismz(¢) = T(z) =
rectly incorporated into the controllers. [T (z) @1 (x)] ar_ld the satl_sfactlon o_f matthng condition

Remark 2: The more complex of nonlinear function is to bd®)- Then the following dynamic system is achieved:
approximated, the more number of rule is required for the spec- . B 1
ified accuracy (i.e.g). The minimum number of rule for odd V(w) = AV (@) + Bofy ™ (¥, )

and symmetric distribution of input signalig’, wheren,; de- [u(t) — ao(¥, @) + Aao(¥, P)
notes the number of input signal. The reason for using the odd + Abo(W, @)u(t)] (10a)
and symmetric distribution of input signal is that the input signal <i>(a:) = Ao(L, @) (10b)

often can be zero, and that the learning uncertainties are prob-
ably known in a compact set only. Based on the previous studigiere w(z) € ®*, ®(z) € R" ", the functionsao(¥,

(e.g., [5]-[10]), the Gaussian membership function is suitab@g Bo(¥, @), Aag(l, ®), Aby(¥, ®) are the func-

for many function approximations. The other types of membejpns alz) = —{0P.(x)/0xA(x)}/{oY.(2)/0xB(x)},
ship function have similar result. B(z) = 1/{8¢,(2)/0xB(z)}, Aa(z), Ab(z) evaluated at
x(t) = T1(2), respectivelyAo (¥, @) is the representation in

IV. FEEDBACK LINEARIZING CONTROL the transformed coordinate(t) = 7~ (z) of 9 (x)/dxA(w).

. . . L The matricesA.., B. are described as follows:
In this section, the feedback linearizing control for matched

and unmatched uncertainties are discussed. Before trans- 01 0 ... 0 0

forming system (1) into another coordinate, the following

definition about diffeomorphism is given. A, = B.=|1]. (11)
Definition 2 [16], [17]: SupposeX, Z are open subsets of 1 0

R" and7: X — Zis C* (i.e., T is continuously differentiable 0 1

with respect to each of its arguments). THErs a diffeomor-

phism of X onto Z if: i) T(X) = Z; i) T is one-to-one; iii) Proof: See Appendix A.

T-1: Z — Xis alsoC". T is said to be a global diffeomor- Equation (10) is said to be in the normal form [16], [17]. This

phism if and only if: i)d7" /9« is nonsingular for all:(¢) € #*™; form decomposes the system into an external péxt) and an

i) T is proper (i.e.Jimy|;)| o0 || T(z)|| = 00). internal part®(z). The external part is linearized by the (14),
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Fig. 7. The responses of Fig. 6 case witk= 0. (a) B4 (1)(- - -) — () (—-). (b) u(t). (C) s (t)(- - -), 15 (£)(— =), andriryo (#)(—-).

while the internal part is unobservable by the same control. Fowhere v(¢) is the stable adaptive fuzzy sliding-mode control
bounded smooth trajectory(t), the following reference model discussed in the next section. Then the external part of system
is considered. by using the linearizing feedback control (14) becomes the fol-

N _ o _ lowing linear error system with uncertainties:
U(t) = AV(t) + B[KTU () + krpara(t+6)]  (12)

where constan € R" is selected to obtain the desired re-

sponsek,.+1 € R is chosen to accomplish the desired ampli- V() =A:0(1) + Bed[1 + Abo(¥, P)]u(?)

tude relation between input and output, #enotes the phase — KTU(t) = kpyprra(t +0) + 55 (¥, @)
lag of reference model. The state tracking error of system can - [Aag(W, )+ Aby (W, ®)ag(WV, )]}.  (15)
be written as follows:
U(t) = AV () + BBy (¥, ©)[u(t) — ao(V, D) In short, (10b) and (15) represent the stability of closed-loop
+ Aao(V, ©) + Abo(U, du(t)] system. If the control(t) asymptotically stabilizes the dy-
— KTU(t) — kyrra(t+6)} (13) namicsW¥(t) in (15) and the dynamic®(x) is input-to-state

stable in (10b), then the asymptotic tracking of the closed-loop
wherel(t) = ¥(z)— ¥(t). The following linearizing feedback System is guaranteed. Settilgx) = 0 in (10b) results in
control is designed for the system (13)

u(t) = ao(¥, ) + Bo(¥, ®)u(t) (14) d(z) = Ao(0, ®) (16)
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which is called the zero dynamics. For input-to-state stabili
of (10b), the origin of (16) must be exponentially stabl
and Ay, ) is Lipschitz in (¥, ®), i.e., ||[4o(¥2, 2) —
Ao(¥1, @1)|| < LI[(W2 = ¥1)T (22— 21)T]||, whereL
is a constant.

Furthermore, the following assumption about the uncertain
of control gain is made.

A3 |Ab(V, )| < 49 < 1, 2(t) € 2, wheref2 = {z(t) €

R ||2(t)|| < ¢ }is a compact set.

If the uncertainties 35 (¥, ®)[Aao(¥, &) + Aby(Y,
®)ao (T, ®)lare large, a robust control for the system (15) wil
be poor (i.e., see [20] and Fig. 10). Based on the approximati
theory of Theorem 1, the following fact exists

Reference Input and System Output (rad/sec)

77 0 2 4 6 8 10
f(p) =W=O(p)+e(p) (17a) Time (s60)
where Fig. 8. The responsé.(t)(- - -) andé(t)(—-) of v,, = 6 andf = 0.5 for
matched uncertainties and unmatched uncertainties.
T
p(t) = [veg(t) WE(E) T, le(p)l <eo (17b) whereAA,(x) andAB,(x) denote the uncertainties those do
f(p) = Abo(W, ®)veqy(t) + 65 (T, @) not satisfy the matching condition. Then (10b) and (15) become
: [AGO(\Pv (I)) + AbO(\Ijv (b)aO(\Pv (I))] (17C)

(x) = Ag(W, @) + 9P /Ir{AAuo(V, &) + AB,o( T, &)
wherew.,(t) is described in (25) angd(¢) € 2, x Q which Jeo(¥, D) + Bo(¥, D)u(t)]} (20a)
is a compact set [i.eteq(t) € @, = {veq(t) € R||veq(t)] < SN 4
Ceq}]- Furthermore, the dimension and upper bound of Weightqj(t) _AC\IJ(Tt) + Be{[l + Abo(V, @)
are described as follows: +B. 0U/9xABuo(¥, 2)lu(?)

— KTU(t) = kpgara(t +0) + 65 (0, @)
W e R HWH < w (18) [Aag(V, @) + Abg(V, @)ao(V, P)]
’ L + BYOU 0z A Awo (U, ©)} (20b)

where ||-|| denotes the Frobenius’ norm (i.g/W|% = i
tr{WIW} = tr{W WZ}) and{, wmax are known. The fact v_vhere the function® A,o(V, ¢), AB,o(¥, ) 1are the func-

that the dimension of7, the upper bound of(p) and the ONSAAu(z), AB,(x) evaluated ak(t) = T7'(x), respec-
fuzzy basis functior®(p) is known, implies that the function tively. , )
WTO(p) + e(p) can represent a class of uncertaintjé). Fortunately, many phys_lcgl systems (e.g., four-bar-linkage
Because the uncertaintf(p) is assumed to be completerSVStem’ robot systems, frictional system) can be expressed as
unknown, the value of must be guessed from low value tcfn affine nonlinear system with constant nominal control ma-
high value. Fortunately, if the uncertaint§(p) is partially trix gain, i.e.,B(z) in (1) is a constant matrix. Under the cir- _
known based on the system analysis, the suitable valde gumstances, the unmatched uncertainty probably does not exist
can be attained. Furthermore, the fuzzy model is not applifdt iS Within the range space ab(z), i.e., AB,o(¥, ¢) = 0.

to the whole nonlinear system, the resolution of the fuzZynder the circumstances, (20) becomes

model increases or a good description of system uncertainties

is accomplished. :

B(x) = Ag(T, ©) + Ad(T, ) (21a)
B. Unmatched Uncertainties U(t) =A V() + B.
If the matching condition (9) does not satisfy, the stability of AL+ Abo(¥, 2)]u(t) — KTU(t)
closed-loop system is discussed as follows. The uncertainties — kpgara(t +0) 4+ 55 L (W, @)
are assumed to be the following form: [Aao(, ®) + Abo(L, D)ao(T, )]
+ BToWU/0zA AW (T, &)} (21b)
AA(z) = B(x)Aa(x) + AA,(x)
and B whereAAq (U, ®) = 9®/0xAA,o(¥, ). For input-to-state
AB(x) = B(z)Ab(z) + AB,(z) (19) stability of (21a), the origin of the following system (22a) must
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Fig. 9. The responses of experiment without using fuzzy adaptive law (i.e., robust contro)). fay, f = 0.2. (b) v,, =6, f = 0.5.(C)v,. =8, f = 0.8.
be exponentially stable andy (¥, ®) + AAy(¥, @) is Lips- V. STABLE ADAPTIVE FUZZY SLIDING-MODE CONTROL
chitz in (¥, @) First, a sliding surface is defined as follows:

d(x) = Ag(0, @) + AAo(0, ®). (22a) s(t) = DTU(t) (23)

whereU(t) = [¢1(t) .(t) HT V@) andD =
[d. ... dy 1]*. The coefficientss; (2 < i < r) are chosen
such that the sliding surfacgt) = 0 is Hurwitz. Furthermore,
the following updating law for the weight is considered

In addition, the approximation of uncertainties becomes

f(p) = AbO(\Ijv (I))Ueq(t) + /30_1(\117 (I))
) [AGO(\I}v (I)) + AbO(\Pv (I))QO(\Pv (I))]

+ BYoU /9xAA,0(T, @). (22b)

W(t) = s(t)AO(p) — nAls()|W (£) (24)

As compared with (17c) and (22b), an extra term caused by theere A = diag{X;;}, A; > 0, andn > 0 denote the learning
unmatched uncertainties [i.e37 0V /0xAA,0(¥, ®)] is ap- rate and the-modification rate, respectively. Because the fuzzy
proximated by the fuzzy model. Similarly, an extra term causdxsis functior®(p) in (8) is small as compared with the radical
by the unmatched uncertainties [i.& Aq(0, ¢)] is added into basis function in neural-network control (e.g., [10], [20]), the
the (16). As compared with the case in Section IV-A, the margiaarning rate of (24) is chosen large enough to accomplish an ef-
of input-to-state stability of internal system decreases. fective learning of uncertainties. The selectiomaf s(¢)|W (¢)
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in (24) is the reason for the boundedness of learning weight nvelere the symbol8/. (65), B,,, + B;, andCy(6>) denote effec-

trix without the requirement of persistent excitation [18]-[20Live inertia, linear damping of motor and load, centrifugal and
In generaly; is small to allow a possibility of effective learning Coriolis, respectively; the symbols,,, R, Ky, ¢ (), O (t),

of W(t). Too large value ofy will force W (t) converge into the and 7,,(¢) represent motor inductance, resistance, back-emf
neighborhood of zero. Under the circumstances, a poor learnoanstant, current, angular position, and torque, respectively.
of W(t) occurs if W is not small. The following theorem dis- More details of the proposed four-bar-linkage systems can refer
cusses the stable adaptive fuzzy sliding-mode control for ttee Appendix C. Rewrite the above four-bar-linkage system as

system (21). the form of (1) with the following definitions:
Theorem 2: Consider (21) and the following stable adaptive
fuzzy sliding-mode control: [1(8) a(t) w3(t)] =[6a(t) a(t) im(D)]
v(t) = Veq(t) + vsw(t) (25) U(t) = E,(t)
where and
y(t) =z2(t). (32)

r—1
Veg(t) = D dr—igihiga () + KU (1)
=1 The system (29)—(32) has relative degree 2. The modeling check

r+17d 6 i p is shown in Fig. 4. It indicates that the dynamics of mathe-

+Epyrra(t +0) + W ()O(p) (26) h Fig. 4. It ind hat the d f math
Y25(t) matical model captures the dominant dynamics of real four-bar

Usw(t) = — [’hé’(t) + W} /(1 — 70); linkage system. Beside the parameters of mathematical model

in Appendix C, the other parameters are described as follows:
M2 >0, 620 7) B, = B,,, = 0.01 kgms/rad,/,,, = 0.3 kgm. In this paper, not

The overall system satisfies the following conditions: i) a stabtbe signalA(x) or B(x), but the uncertainty caused byA(x)

sliding surface (23); ii) the assumptions A1-A3; iii) the satisor AB(x), i.e., f(p), is approximated by the fuzzy model. Sup-

faction of input-to-state stability; and iy)t) € 2, x Q. Then pose the following coordinate transformation:

s(t), W(t), v(t), u(t), andz(t) are UUB, and the system per-

formance satisfyings(¢)| < g, where b1 ()

g=\/ai+0—-n 2(@)

e fer o2}/, o) =

2 where A, () denotes théth component ofd(x), t, = 4, and

nwmaxg 505

o (28) t; # t5. The values of; = 2,t, = t3 = t, = 1 are selected
_ because a1 (x) = v2(x) = 0, ¢(t) = —P(t)t1/t2 = —2¢(%)

Proof: See Appendix B. is exponentially stable. Furthermod@{'(x)/dx is nonsingular

~ Remark 3: The first term of the proposed control, i-€.q(#),  for all z(¢). In short, the input-to-state stability is satisfied. One
is to assign the desired linear dynamic behavior and to cancel ta@not lett; = ¢, = 0, t, = t3 = 1 because)(t) = 0 is not

effect of uncertainties by using the learning uncertainties. It ixponentially stable [16], [17].

much improved as compared to traditional fuzzy (or adaptive) The desired velocity is set asy(t) = vy, sin(27 ft + 6)
control because the uncertainties are attenuated by the equiggys, wherdd = tan=[27 fk2/(k; — 472 f2)], thenw14(t) =
lent control. In addition, the uncertainties caused by the APPIORz oy (1) dr = —wy, cos(2n ft + 6) /(2 f) rad. The parame-
imation of the fuzzy model and the error of learning weight aig@rs of reference model are chosenkas= 50, k» = 10, and
tackled by the switching control, i.e..(t). The proposed con- ., — V@r )  + (k2 = 2k1) (27 )? + k2. Hence, the refer-
trol is then more effective to cope with the fuzzy control probence input for (12) becomes(t) = ty214(t) + t224(t). Ac-
lems of nonlinear system in the presence of large uncertaintiggrding to the explanation of Remark 1, three fuzzy déts

(k = 1, 2, 3) have the following Gaussian membership func-

tlxl(t) + t2$2(t)
tlzl (J}) + tQZQ(x)
tgail(t) + t4$2(t) (33)

g2 =

VI. SIMULATIONS AND EXPERIMENTS tions:
A. Simulations
The four-bar-linkage driven by a direct-driven motor through i (z1) = ¢~ (1 =ex)/70  wherec;; = [-10 0 10],
arigid coupling in horizontal plane is expressed as follows (e.g., i=1,2, 3ando, =80
[24]): pie) =e~(@2=¢20/72)  Wwhereey; = [~25 0 25)],
L (t) + R (t) + K0, (t) = Eo(t) (29) i =1, 2, 3andoy = 200
M (02)62(t) + (B + Bp)62(t) + Oy (02)63(t) =T, () pi(ws) = e ((Famesd/os) — wherecs; = [~10 0 10],
= Kyim(t) 1=1,2 3andos = 80
(30)  f1i(Veq) =~ (ameai)/7) - wherecy; = [-100 0 100],
B2(t) = O (t), O2(t) =0, (t), 6a(t) =0,(t) (31) i =1, 2, 3ando, = 800. (34)

Authorized licensed use limited to: Tamkang Univ.. Downloaded on April 12,2023 at 02:56:19 UTC from IEEE Xplore. Restrictions apply.



248 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 9, NO. 2, APRIL 2001

The total number of fuzzy rule Is= 81. The control parameters unstable (see Fig. 7). Its maximum steady-state tracking error

are assigned as follows: for the 70-s interval is 31.71%. As compared with Figs. 6 and
7, the proposed updating law (24) guarantees the boundedness

do =55, v = 0.1, v = 45, Yo = 0.2, of weight. Similarly, the system with unmatched uncertainties

—05, A=5x10* and 7 =107 (35) (37a)—(37c) and matched uncertainties (36), which still satisfies

the input-to-state stability, is considered. The corresponding re-
sponse is presented in Fig. 8. Its maximum steady-state tracking
error 0.324 rad/s is a little larger than that of Fig. 5 (i.e., 0.214

Aa(z) = —0.521 (t)w2(t)as(t) sin(40zs — 0.27) ;ii/;)lé:]ttseems that the robustness of the proposed control is

The matched uncertainties are supposed to be as follows:

+ 0.0423(t) + 3x3(t) sin(0.2524) (36a)
Ab(z) =0.25sin(10z3) + 0.5sin(0.5x7 ). (36b) B. Experiments
1) Experiment SetupThe hardware of the four-bar-linkage
system mainly consists of five parts: a direct-driven motor,

a driver, a four-bar-linkage, an AD/DA card, and a personal
computer (refer to Fig. 3). The direct-driven motor and the

BecauseB(z) = [0 0 1/L,,]¥, the unmatched uncertain-
ties have the following form:

Ady(e) =[AAu(z) Adp(z) 0] driver in this study are a Model No. DM1075B and a Model
AB,(z)=[0 0 0]* (37a) No. SD1075B-2 from the Yokowaga Co. The specifications
of this direct-driven motor system are briefly introduced as
where follows: rate speed 12.56 rad/s, maximum output torque 7.653
kgm, power consumption 1.6 KVA, and stiffne$ss x 10~
AAn(x) =H(x){0.15sin(35(p1 + ¢)) rad/kgm. After sampling by the 12-b A/D card (PCL-1800), the

—0.25sin(0.5¢2) + 0.1}  (37b) reg;luticlag gf velocity andt.cu:rer_urth'&686 X 1(?‘3 fradt/s ar;d
_ , 5.63 x 10~% amp, respectively. The conversion factor of ve-
Adua(w) = $(){0.1 Sm(_40(¢1 +9)) locity and current for voltage are 0.55 rad/s/V dntb3 x 10~2
+ 0.2sin(0.25¢2) — 0.05}.  (37¢)  amp/V, respectively. The control cycle time of the current paper
is 0.007 s.
The responses for matched uncertainty (36) are shown in Fig. 52) Experimental ResultsThe initial state and weight are the

The tracking performance is excellent. The maximum steadsame as Fig. 5. The control parameters for experiment are as-
state tracking error is 0.214 rad/s or 3.56% of amplitude of refigned as follows:

erence input. The responses of system states shown in Fig. 5(a),

(e), and (f) are smooth enough. Because the high-frequency un-

certainties occur, the control signal in Fig. 5(b) has high-fre-d2 =25, Yo = 0.1, " =9 v2 = 0.1,

guency components. Owing to the existence of uncertainties¢ =0.5, A =5 x10% n=10""° o1 = 100,

and _th_e feature of_ tim_e-varyin_g refergnce inpqt, the responsg, _ 300, 05 =100 and o, = 800. (38)

of sliding surface in Fig. 5(c) is only in the neighborhood of

zero. The responses of real and learning uncertainties are quiet

matched in the sense of low-frequency dominant trend [referTo avoid the saturated input and the drift of weight, the con-
Fig. 5(d)]. The proposed fuzzy logic system (6) and the updatitigl gains in experiment are smaller than those in simulation
law for weight (24) demonstrate an effective tool for the learningompare (34), (35), and (38)]. The responses of experiment
of uncertainties. Similarly, the responses for the reference inputghout using fuzzy adaptive law [i.e., the equivalent control
Uy = 4, f = 0.2 andwv,, = 8, f = 0.8 can be achieved. The without the terrr‘WT(t)G(a:), or call it as “robust control”] are
maximum steady-state tracking errorsfgr = 4, f = 0.2and shown in Fig. 9. Then the responses of experiment using the
vm = 8, f = 0.8 are 0.044, 0.681 rad/s (or 1.09%, 8.51% gbroposed control are shown in Figs. 10 and 11. The maximum
amplitude of reference input), respectively. For brevity, thosteady-state tracking errors fof,, = 6, f = 0.5, v,,, = 4,

are left out. In summary, the tracking error for the referengé = 0.2 andv,, = 8, f = 0.8 are 0.79542, 0.32688, 1.5552
input with small amplitude and low frequency is smallest; orad/s (or 13.257%, 8.172%, and 18.44% of amplitude of ref-
the contrary, the tracking error for the reference input with larggence input), respectively. As compared with Figs. 5, 9, and
amplitude and high frequency is largest. To demonstrate the &8, the following conclusions are drawn: i) The responses of
fectiveness of the updating law (24), the responses of typigabposed control indeed better than those of “robust control.”
weights of Fig. 5 case with the exception of control paramé-reveals that the learning uncertainties can be used to cancel
ters:v1 = 83, d = 85 (which is high gain) are shown in the real uncertainties and then the system performances are im-
Fig. 6. Its maximum steady-state tracking error is 3.32% thptoved. ii) The maximum tracking error for experimentis larger
is a little smaller than that of Fig. 5. The responses of typictlian that of corresponding simulation. The main reasons are
weight for updating law withoug-modification [i.e., = 0 in  that the dynamics of physical system is more complex than
(24)] are shown in Fig. 7. The response of weight in traditiothe dynamics of mathematical model (see Fig. 3) and that a
updating law (e.g., [2], [5], [9]) cannot guarantee its boundedmaller control gain for the experiment is used to prevent prac-
ness. The drift of weight eventually makes the overall systetical instability (e.g., saturated input, drift of weight). iii) For
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Fig. 10. The responses of experimentéor = 6 andf = 0.5. (@)8,(t)(- - -) andf(t)(—-). (b) u(t). (c) s(t). (d) #(2)(—-). () #(¢).

improving the system performance, the more accurate matipgtenomenon of joint) must be considered (or derived). Then a
matical model (e.g., the flexible coupling of linkage, frictiorhigher control gain can be used to achieve an excellent perfor-
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mance. iv) Without the requirement of persistent excitation comhe derivative of the transformation
dition, the updating law (24) ensures the boundedness of weight.

Then the stability of closed loop is assured. i [\I/T o7 ]T _ g_i ;
VII. CONCLUSION
o . . . is described as follows:
In the beginning, a feedback-linearizing control with a de-
sired reference model makes the external part of transformed U ov_ oV _
system become a linear-error dynamic system with uncertain- V=—A+4+— Bu+ — B(Aa+ Abu) (A2)
ties. Without the requirement of persistent excitation condition, | O O O
a fuzzy model with are-modification weight updating law is . OB 9b b _
employed to on-line model these uncertainties. Then, an equiv- ¢ = o A+ 52 Bu + B B(Aa+ Abu).  (A3)

alent control using the known part of system dynamics and the
learning fuzzy model is applied to achieve the desired contrgl . .
behavigr. Sin></:e the fuzz;)rr)nodel is not applied to the Who|%zeWrIte (A2) as the following form:
nonlinear system, the resolution of the fuzzy model increases

or a good description of system uncertainties is accomplished. W = AU+ BBt
Because the uncertainties are reduced by the equivalent control ) )
and because the uncertainties caused by the approximation of

fuzzy-model and the error of learning weight are tackled by thgnhere the paif A.., B.) is described in (11) and is controllable,
switching control, the system performance is much improved 3 is expressed in (10) an®{z) nonsingular for alk: € R™.
as compared with traditional (adaptive) fuzzy controls. Undgihe function that transforms (A2) into the form (A4) must
mild conditions, the stability of the internal part of transformedatisfy the following partial differential equations:

system is guaranteed. Simulations and experiments of velocity

control of four-bar-linkage system confirm the usefulness of the ov

proposed control. The authors believe that the proposed scheme — A = A, ¥ — B3 'a, — B=B.p" (A5)
can be applied to many control problems. Oz Oz

(v —a)+ g—i B(Aa+ Abu)  (A4)

or
APPENDIX A
THE PROOF OFLEMMA 1 Op; — O: —
¢i+1: r(/)zAv dszIOv 1<i<r -1,
In the sequence, the arguments of variables are omitted if ey P Oz
there are not vague. With the matching condition (9), the non- ﬁﬁ =3"1#£0. (A6)
linear system (1) becomes Oz
S Theny; (1 <4 < ) can be found. To transform the system into
& = A+ Bu+ B(Aa+ Abu). (A1) the normalform, afunctiof® is chosen such th&®/dzB = 0
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and®(0) = 0. Theng; (1 < i < n —r) can be found and (A3) then

is simplified into the following equation:
P = 8P /dzA.
Finally, (10) is achieved.

APPENDIX B
THE PROOF OFTHEOREM 2

(A7)
Q.E.D. where

vV <—G(ls)

W)

C2(|3|7

VT/H) > 0.

Hence, if

First, the matched uncertainties are considered. Define a Lya-

punov function candidate for the closed-loop system as follows:

V=s2/2+ WIATIW/2

=o'Po>0, ass#0, W#0
where
W=Ww-W, o=[s WT|"
and
P=diag{1 X At /2

The derivativeV is given

V=s5+ WTA_IW.

Similarly, the derivative ofs using (15) and (17) is given as

follows:
5=DT{AV + B.[(1 4 Abo)v — KT — kyy17g
+ By (Aag + Abycvo)]}

r—1

= Z dr—i—l—lr(/;i—l—l + [(1 + Abo)(veq + USVV) - KTE

=1

— Eygira + By (Aag + Abgag)]

= (14 Abg)vew + W7o +e.

Substituting (24), (26), (27), and (B3) into (B2) yields
V =s{(1+ Abo)vew + WTO + e} — sWTO + n|s| WTW

< bl {eo = [l + 225 ]+ mivrw - i |

|s| +¢

—’Yl|3|{ |s|+¢ 72
= - eo +|s|([s| +&§) + — s
rel o, oot lsllsl+ 9+ 2 s

—mls| :
< P {G(Is) + HZW)}

where
G(ls)) =sI? + 2a11s] — g2
H(IWI) =n(ls| + EUW | — wimax/2F /71
Becausey; > 0, g > 0 is achieved. Hence, if

s|>g, thenV < —C1(|3|, WH) ,

where

Gi (sl

WH) > 0.

Similarly, if

. 2
HWH >wmax/2+ M_FE_O = Win
\/ 4 n

|s| >¢g and HWH > Win
then

v <o 7)) < )}

Hence, outside of the following domaihmakes (B7) exist.

(B1)
(B7)

Q= {a e R0 < HWH < wim, 0 < |s] < g} . (B8)

Finally, from (25)—(27)p is UUB. Because the dynamics (10b)
is input-to-state stablel, ¢, or z is UUB. From Lemma L¢
andg are also UUB. Them is UUB.

Similarly, the system with unmatched uncertainties can be
achieved. For simplicity, those are omitted. Q.E.D.

(B2)

APPENDIX C
THE PARAMETER VALUES OF FOUR-BAR-LINKAGE SYSTEM

Mo (62) = Jpy + G1 +177Go + 71 cos(fy — 03)Gs
+ 713Gy
Ci(02) =r1g1G2 + [g1 cos(fz — 03)
—71(1 —ry)sin(fs — 63)|G3/2 + rag2Ga (C2)
G1=mazs + I +m3l3, Ga=mal3/4+ I,
Gs =malsls, Ga=mal2/a+ 1, (C3)
q1 = [~lar3 + 1z cos(Ba — 0,) + lz73 cos(63 — 64)]/
[l4sin(6s — 63)] (C4)
@2 =[~lsr] — Iy cos(Bz — 3) + 1473 cos(8s — 63)]/

(C1)
(B3)

[l4sin(f3 — 64)] (C5)
ry =lasin(fy — 0,)/[lssin(fy — 63)]
(B4) re =lasin(fa — 03)/[lssin(fs — 63)] (C6)
6; =2tan™" [— (bi +vb = 4aici)/ (2%‘)}
(B5) a; =[1 4+ (1) ko) cos(82) 4 kiz — ki1,
(B6) i =3, 4 (C7)
b; = —2sin(6s)
ci =—[14 (=1)"kio] cos(B2) + kiz + ki1,
i=3,4 (C8)
ki =1 /13, kio =11/1;
kis =[IF — 5 4 (= 1)°(13 +1)]/(2l2L,),
i =3, 4. (C9)

Furthermore, four-bar-linkage has the following length, mass
and inertialy = 0.31 m,l>, = 0.1m,l3 =0.35m,l, = 0.25
m, ms = 1.55 kg, ms = 4.3 kg, myg = 3.95 kg, I, =
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5.8125 x 10~* kgm, I = 1.3125 x 10~2 kgm, andl, =

(18]

1.3313 x 10—2 kgm. Because the first linkage is fixed, the in-
formation ofmy andi; are not required. The torque constant [19]
is K; = 3.5 kgm/amp achieved from the maximum torque and

the maximum current. The following system parameters are alsg
assigned<;, = 0.7 V/rad/s,R,, = 1.0 Q, L,, = 0.1 H.

(1]
(2]

(3]

(4

(5]

(6]
(7]

(8]

El
(20]

(11]

(12]
(13]
(14]

(15]

[16]

(17]

(20]
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