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Compact and Transparent Fuzzy Models and
Classifiers Through Iterative Complexity Reduction
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Abstract—In our previous work we showed that genetic algo-
rithms (GAs) provide a powerful tool to increase the accuracy of
fuzzy models for both systems modeling and classification. In addi-
tion to these results, we explore the GA to find redundancy in the
fuzzy model for the purpose of model reduction. An aggregated
similarity measure is applied to search for redundancy in the rule
base description. As a result, we propose an iterative fuzzy identifi-
cation technique starting with data-based fuzzy clustering with an
overestimated number of local models. The GA is then applied to
find redundancy among the local models with a criterion based on
maximal accuracy and maximal set similarity. After the reduction
steps, the GA is applied with another criterion searching for min-
imal set similarity and maximal accuracy. This results in an auto-
matic identification scheme with fuzzy clustering, rule base simpli-
fication and constrained genetic optimization with low-human in-
tervention. The proposed modeling approach is then demonstrated
for a system identification and a classification problem. Results are
compared to other approaches in the literature. Attractive models
with respect to compactness, transparency and accuracy, are the
result of this symbiosis.

Index Terms—Fuzzy classifier, genetic algorithm (GA), Iris
data, rule base reduction, Takagi–Sugeno (T–S) fuzzy model,
transparency and accuracy.

I. INTRODUCTION

FUZZY SETS and fuzzy logic, introduced in 1965 by Zadeh
[2], are applied in a wide variety of disciplines. Fuzzy mod-

eling is one of those disciplines that is often used in systems
identification and control, fault diagnosis, classification and de-
cision support systems [3], [4]. Like many nonsymbolic mod-
eling methods such as neural networks, fuzzy models are uni-
versal approximators [5]. However, fuzzy models differ from
nonsymbolic methods, mainly in that they can represent knowl-
edge in an inspectable manner using fuzzy if-then rules [6]. This
facilitates validation and correction by human experts and pro-
vides a way of communicating with the users. Fuzzy models
can be built by encoding expert knowledge into linguistic rules,
giving a transparent system with knowledge that can be main-
tained and expanded by human experts. However, knowledge
acquisition is not a trivial task. Experts are not always avail-
able and their knowledge is often incomplete, episodic and time-
varying. Hence, there is an interest in data-driven fuzzy mod-
eling.
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Different approaches have been proposed to obtain fuzzy
models from data. Most approaches, however, utilize only
the function approximation capabilities of fuzzy systems and
little attention is paid to the qualitative aspects. This makes
them less suited for applications in which emphasis is not
only on accuracy, but also on interpretability, computational
complexity, and maintainability [7]–[11].

We focus on the design of interpretable fuzzy rule based
models and classifiers from data with low-human intervention.
A modeling scheme is presented that combines three previously
studied tools for rule based modeling: 1) fuzzy clustering; 2)
similarity driven simplification; and, 3) evolutionary optimiza-
tion. Moreover, we show that different tools to initialize, tune,
and manipulate fuzzy models can be favorably combined to
obtain compact fuzzy rule based models of low complexity
with still good approximation accuracy.

First, fuzzy clustering [3] is applied to obtain an initial rule
based model from sampled data. Since rules obtained and tuned
by data-driven techniques often contain redundancy in terms
of similar (overlapping) fuzzy sets, similarity driven rule base
simplification is applied to detect and merge compatible fuzzy
sets in the model and to remove “don’t-care” terms [12]. Fi-
nally, since these methods are based on the separate identifica-
tion and manipulation of the models premise and consequent
parts, a constrained real-coded genetic algorithm (GA) is ap-
plied to simultaneously fine-tune (optimize) all parameters in
the resulting rule base. In our previous work [1 ], it was shown
that such a GA was able to strongly improve the models perfor-
mance by small alterations to the rules.

By combining these tools in an iterative loop with a redun-
dancy search, we propose a powerful fuzzy modeling scheme
with complexity reduction. The algorithm starts with an initial
model, obtained here by means of fuzzy clustering in the product
space of measured inputs and outputs. Successively, rule base
simplification and GA-based optimization are applied in an it-
erative manner. The GA performs a multi-criterion search for
model accuracy while trying to exploit the possible redundancy
in the model. In the next iteration, this redundancy will be used
by the rule reduction and rule base simplification tools to reduce
and simplify the rule base. The result is a compact fuzzy-rule
base of low complexity with high accuracy. When the iterations
terminate, a final GA-based optimization is performed to in-
crease accuracy and transparency as opposed to the GA objec-
tive in the iterative loop, which tries to exploit redundancy.

The next section discusses data-driven fuzzy modeling. In
Section III, rule base simplification tools are described and the
proposed iterative complexity reduction scheme is introduced.
In Section IV, the method is demonstrated on a nonlinear dy-
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Fig. 1. Transparency of the fuzzy rule base premise.

namic systems model and the Iris classification problem—both
known from the literature—and the results are compared to
other published methods. Section V concludes the paper.

II. DATA-DRIVEN MODELING

A. The Takagi–Sugeno Fuzzy Model

Rule based models of the TS type [13] are especially suitable
for the approximation of dynamic systems. In addition, accu-
rate and interpretable TS fuzzy classifiers can be made as was
discussed in [1]. The rule consequents are usually taken to be
constant or linear functions of the inputs

is is

(1)

Here is the input vector, is the output
of the th rule, and are fuzzy sets defined in the an-
tecedent space by membership functions .

are the consequent parameters andis the number of rules.
The overall output of the fuzzy rule base model is computed by
aggregating the individual contributions of the rules

(2)

where is the normalized firing strength of theth rule

(3)

In the following, we will apply the frequently used triangular
membership functions to describe the fuzzy sets in the
rule antecedents

(4)

This choice was made for reasons of simplicity. The proposed
approach, however, is as well applicable for other type of mem-
bership functions, e.g., trapezoids, Gaussians, or piecewise ex-
ponentials.

B. Identification from Data

Given input-output data pairs , the typical identi-
fication of the TS model is done in two steps: 1) the fuzzy rule
antecedents are determined and 2) then least squares parameter
estimation is applied to determine the consequents [3], [14]. In
the examples in this paper, the antecedents of the initial fuzzy
rule bases are obtained from fuzzy-means clustering in the
product space of the sampled input-output data. Following the
approach in [3], [15], each cluster represents a certain region in
the systems input-output state-space and corresponds to a rule in
the rule base. The fuzzy sets in the rule antecedent are obtained
by projecting the cluster onto the domain of the various inputs.

C. Transparency and Accuracy

The initial rule base constructed by fuzzy clustering typically
fulfills many criteria for transparency and good semantic prop-
erties [8]: 1) moderate number of rules; 2) distinguishable sets;
3) normal fuzzy sets; and 4) coverage of input patterns (see
Fig. 1). The approximation capability of the rule base as ob-
tained from fuzzy clustering, however, remains suboptimal. The
projection of the clusters onto the input variables and their ap-
proximation by parametric functions like, e.g., triangular fuzzy
sets, introduces a structural error since the resulting premise par-
tition differs from the cluster partition matrix. Also, the sepa-
rated identification of the rule antecedents and the rule conse-
quents prohibits interactions between them during modeling. To
improve the approximation capability of the initial model, a GA
based optimization method is applied.

The transparency and compactness of the initial rule base are
often also subject to improvement. The distinguishability of the
rules and the terms (fuzzy sets) resulting from the projection de-
pends, among others, on the difficult determination of the cor-
rect number of clusters (rules) in the data an their position in
the product space. To reduce the rule base complexity, we iter-
atively seek for rule base redundancy and apply rule base sim-
plification, as explained in the next section.

III. RULE-BASE REDUCTION AND SIMPLIFICATION

A. Similarity Driven Rule Base Simplification

The similarity driven rule base simplification method was
proposed in [12]. A similarity measure is used to quantify the
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Fig. 2. Similarity driven rule base simplification.

redundancy among the fuzzy sets in the rule base. Similar fuzzy
sets, representing compatible concepts are merged in order to
obtain a generalized concept represented by a new fuzzy set
that replaces the similar ones in the rule base. This reduces
the number of different fuzzy sets (linguistic terms) used in the
model. The similarity measure is also used to detect “don’t care”
terms, i.e., fuzzy sets in which all elements of a domain have a
membership close to 1. Similarity driven simplification differs
from rule reduction in that it is driven by the similarity among
fuzzy sets defined on the domain of the same antecedent vari-
able and not in the product space of the inputs. Thus, the models
term set can be reduced without necessarily any rules being re-
moved.

where
, fuzzy sets to be compared;

denotes the cardinality of a set;
the and operators represent the intersection and union,

respectively.
We apply a similarity measure based on the set-theoretic oper-
ations of intersection and union

(5)

where and are the fuzzy sets to be compared,denotes
the cardinality of a set, and the and operators represent
the intersection and union, respectively. For discrete domains

, this can be written as

(6)

where and are the minimum and maximum operators, re-
spectively. is a symmetric measure in . If ,
then the two membership functions and are equal and

becomes 0 when the membership functions are nonover-
lapping.

Similar fuzzy sets are merged when their similarity exceeds
a user defined threshold . In the examples,
is applied. The optimal choice of this parameter depends on
the number and type of membership functions and is, there-
fore, problem specific to some extent; however, generally we
noticed to values in the range [0.4–0.7] may be a good choice.
Different settings result in more or less conservative fuzzy-set
merging. Merging reduces the number of different fuzzy sets
(linguistic terms) used in the model and, thereby, increases the
transparency. If all the fuzzy sets for a feature are similar to the
universal set, or if merging led to only one membership function
for a feature, then this feature is eliminated from the model. The
method is illustrated in Fig. 2.

B. Genetic Multicriteria Optimization

To improve the approximation capability or classification ca-
pability of the rule base, we apply a GA optimization method
introduced in [1]. Also other model properties can be optimized
by applying multicriteria functions, like, e.g., search for redun-
dancy [16].

The model accuracy is measured as the mean square error for
system approximation (8) and in terms of the number of misclas-
sifications for a classifier (9). To reduce the model complexity,
the accuracy objective is combined with a similarity measure
in the GA objective function. Similarity is rewarded during the
iterative process, that is, the GA tries to emphasize the redun-
dancy in the model (see Fig. 3). This redundancy is then used to
remove unnecessary fuzzy sets in the next iteration. In the final
step, fine-tuning is combined with a penalty for similar fuzzy
sets in order to obtain a distinguishable term set for linguistic
interpretation. The GA seeks to minimize the following multi-
criteria function

(7)

where is either the mean squared error (MSE) for system
approximation problems

(8)

where is the true output and is the model output, or for
classification problems

(9)

where the classifications error is included, withthe class, the
predicted class, and a weight factor. The MSE was needed in
previous optimization schemes without redundancy measures to
differentiate between various solutions with the same number
of classification errors; and it was found to speed up the con-
vergence of the GA [1]. Moreover, it helps to find fuzzy rules
with consequents in the neighborhood of the class labels which
improves the interpretability and prevents the optimization for
making a black-box model based on interpolation between rules
only.

Finally, is the average of the maximum pair-wise
similarity that is present in each input, i.e., is an aggregated
similarity measure for the total model

(10)
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Fig. 3. Search for redundancy.

Fig. 4. Two modeling schemes resulting from a combination of tools.

where is the number of inputs and the number of sets
for each input variable. The weighting functiondetermines
whether similarity is rewarded , or penalized .
The absolute value of determines the trade-off between the
similarity objective and the accuracy. Normally, some experi-
ence is necessary to decide about a good value, however, the
final results seems to be not highly sensitive for the exact value.
For the examples, generally good results were obtained with
values in the range .

C. Proposed Fuzzy Modeling Scheme

When an initial fuzzy model has been obtained from data, it
is successively simplified and optimized in an iterative fashion.
Combinations of the GA with the rule base simplification de-
scribed above can lead to different modeling schemes. The two
different approaches shown in Fig. 4 will be compared.

The first scheme consist of the initial model construction
and fine-tuning based on the multi-objective criterion while the
second scheme includes the iterative complexity reduction. The
second scheme is as follows:

1) Initialization: Obtain an initial fuzzy model.
2) Complexity reduction: Repeat until termination:

a) similarity driven rule base simplification;
b) GA optimization with redundancy objective:model

accuracy while exploiting redundancy.
3) GA fine tuning with transparency objective:model accu-

racy with well separated fuzzy sets.
Step 2 terminates when the rule base can not be further reduced
or simplified.

A real-coded GA [17] is applied for the simultaneous opti-
mization of the parameters of the antecedent membership func-
tions and the rule consequents. The complete GA and fuzzy

model coding is given in [1], however, a few aspects of the fuzzy
model coding are now explained for clearness of the examples
that will follow.

The complete fuzzy model is coded on a chromosome that
consist of a vector of elements . With
a population size , we encode the parameters of each fuzzy
model (solution) in a chromosome , as a se-
quence of elements describing the fuzzy sets in the rule an-
tecedents followed by the parameters of the rule consequents.
For a model of fuzzy rules, triangular fuzzy sets (each given
by three parameters), a-dimensional premise and pa-
rameters in each consequent function, a chromosome of length

is encoded as

(11)

where contains the consequent parametersof rule , and
contains the parameters

of the antecedent fuzzy sets , according to
(4). In the initial population is the initial
model, and are created by random variation (uniform
distribution) around within the defined search space.

The upper and lower limits of the search space are deter-
mined by two user defined bounds and , that determine
the maximum allowed variation around the initial chromosome

for the antecedent and the consequent parameters, respec-
tively. The first bound, is intended to maintain the distin-
guishability of the models term set (the fuzzy sets) by allowing
the parameters describing the fuzzy setsto vary only within
a bound of around their initial values, where is the
length (range) of the domain on which the fuzzy setsare de-
fined. By a low value of , one can avoid the generation of do-
main-wide and multiple overlapping fuzzy sets, which is a typ-
ical feature of unconstrained optimization. The second bound,

, is intended to maintain the local-model interpretation of the
rules by allowing the th consequent parameter of theth rule,

, to vary within a bound of
around its initial value.

IV. EXAMPLES

A. Example: Nonlinear Plant

We consider the 2nd order nonlinear plant studied by Wang
and Yen in [19], [18], [20]

(12)

with

(13)
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Fig. 5. Inputu(k), unforced systemg(k), and outputy(k) of the plant in (12).

The goal is to approximate the nonlinear component
of the plant with a fuzzy model. In [19], 400 sim-

ulated data points were generated from the plant model (12).
200 samples of identification data were obtained with a random
input signal uniformly distributed in , followed
by 200 samples of evaluation data obtained using a sinusoid
input signal (Fig. 5).

This example was also used in [1] and a comparison with the
results of [19], [18], [20] was made. Here we apply the newly
proposed modeling scheme on the original data (not in [1]),
show the results for the linear TS model and compare these with
the results in [18]. Here, various information criteria were used
to successivelypick rules from a set of 36 rules in order to ob-
tain a compact, but accurate model. The initial rule base was
obtained by partitioning each of the two inputs and

by six equally distributed fuzzy sets. The rules were
picked in an order determined by an orthogonal transform. The
best results obtained in each case are summarized in Table I. For
reasons of completeness, we also added the results of [1] in this
table.

We applied both the modeling approach proposed in Sec-
tion III-C. The GA was applied with a population size: ;
number of chromosomes ; domain parameters

% and % and number of generations in
the final optimization; and in the complexity reduc-
tion step. The threshold for redundancy searches and

in the final optimization. The threshold for set merging
was and for removing sets similar to the uni-
versal set (“don’t care” terms).

First, a TS model with linear consequents was considered,
based on scheme 1 (Fig. 4). An initial model of only five rules
was constructed by clustering. The MSE for both training and
validation data were comparable with earlier results in [1].
Moreover, the result on the validation data (low-frequency
signal) is twice as good as on the identification data, indicating
the generality of the obtained model. By GA optimization, the
MSE was reduced by 71% from to on the
training data and by 80% from to on the
evaluation data.

TABLE I
LINEAR TS FUZZY MODELS FOR THEDYNAMIC PLANT TYPE

Second, a TS model with linear consequents was obtained by
scheme 2. The initial model was obtained with five clusters, re-
sulting in a model with five rules and ten-fuzzy sets. The model
was reduced in two steps: 1) simplification reduces from to

fuzzy sets and 2) simplification reduces to sets. The
resulting TS model with linear consequents has only five rules
using fuzzy sets Fig. 6. The identification and validation
results as well as the prediction error are presented in Fig. 7.

The approximation properties are very similar to those in
[18], but much fewer rules and fuzzy sets were necessary which
resulted in a very compact and transparent model. The accuracy
is also similar to the four-rule TS model in [1]. This model has
one rule less but is not based on the original data, which may
explain the difference. The linear consequent TS model extrap-
olates well and the difficult part in the low region is nicely ap-
proximated. The local submodels and the overall model output
are shown in Fig. 8. The submodels approximate the local be-
havior well. In addition, the “real” surface as given by the orig-
inal model is shown and it is clear that the TS model approxi-
mates the regions were data is supplied (system regions). Once
again, the reduced and optimized TS model with five rules and
five sets is comparable in accuracy to the initial TS model with
five rules and ten fuzzy sets.

From the results summarized in Table I, we see that the pro-
posed modeling approach is capable of obtaining good results
using fewer rules and fuzzy sets than other approaches reported
in the literature. Moreover, simple triangular membership func-
tions were used as opposed to cubic-splines in [19], [18], [20],
and Gaussian-type basis functions in [19], [20]. By applying the
GA after each rule base simplification step, not only accurate,
but also compact and transparent rule based models were ob-
tained.

B. Example: Iris Data

The Iris data is a common benchmark in classification and
pattern recognition studies [21], [22], [11], [1]. It contains 50
measurements of four features from each of the three species
Iris setosa, Iris versicolor, andIris virginica [23]1 . The mea-
surements are shown in Fig. 9.

There is a large variety of methods applied to this data set and
the accuracy and complexity varies a lot. Ishibuchi et al. [22]
reviewed nine fuzzy classifiers and ten nonfuzzy classifiers from
the literature, giving between three and 24 misclassifications for
the Iris classification problem for leaving-one-out validation.

1The original Iris data was recently republished in [24].
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Fig. 6. Local linear TS model derived in five steps: 1) initial model with five
clusters (5 rules+10 sets), 2) set merging (5 rules+8 sets), 3) GA-optimization
(5 rules+ 8 sets), 4) set-merging (5 rules+ 5 sets), 5) final GA-optimization (5
rules+ 5 sets).

Fig. 7. Simulation of the five-rule TS model (top) and the error in the estimated
output (bottom).

Fig. 8. Local linear models (top), TS model (middle), and real-surface
(bottom).
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Fig. 9. Iris data: (1)Iris setosa�, (2) Iris versicolor�, and (3)Iris virginica r.

One of the compact and accurate fuzzy models is given by Shi et
al. [21] who used a GA with integer coding to learn a Mamdani
type fuzzy model. Starting with three fuzzy sets associated with
each feature, the membership function shapes and types, and
the fuzzy rule set, including the number of rules, were evolved
using a GA. Furthermore, a fuzzy expert system was used to
adapt the GA’s learning parameters. After several trials with
varying learning options, a four-rule model was obtained, which
gave three errors in learning the data. Recently, Russo [11] ap-
plied a hybrid GA NN approach to learn fuzzy models. He
present a five-rule fuzzy model with 18 fuzzy sets and 0 mis-
classifications. In [1] we presented a two-rule (8 fuzzy sets) and
a three-rule fuzzy model (12 fuzzy sets), both having one mis-
classification only.

We apply the proposed modeling schemes (Fig. 4). The fuzzy
-means clustering was applied to obtain an initial TS model

with singleton consequents. In order to perform classification,
the output of the TS model was used with the following clas-
sification rule:

if
if
if

(14)

The classes are for transparency reasons limited to a certain
model-output range. An initial model with three rules was
constructed from clustering where each rule described a class
(singleton consequents). The classification accuracy of the
initial model was rather discouraging, giving 33 misclas-
sifications on the training data. The rule antecedents sets
are shown in Fig. 10 and the estimated rule consequents
were , which is close to the class labels as
expected. These are changed for transparency reasons into

, before further optimization.
The GA was applied with the same parameter as in Sec-

tion IV-A. The weight in the objective (9) was 1 and the
threshold for the redundancy searches is 0 for scheme 1 and

Fig. 10. Initial fuzzy rule based model with three rules and 33
misclassifications.

0.5 for scheme 2, and for the final optimization step.
The search- space parametersand are varied and given
in Table II. Note, that if is 0 then the consequent values are
fixed.

First, scheme 1 (Fig. 4) was applied. We consider the com-
plete data set, i.e., there is not a separate test and evaluation data
set. This is mentioned in the manuscript. It is done for reasons
of simplicity and comparison with other methods as this is also
the approach in some of the compared approaches. The result
is expected to be similar to the leave-one-out or resubstitution
error, which needs many repetitions for an accurate average re-
sult and highly depends on the chosen samples. Generally, for
more complex problems, or problems with a bad data distribu-
tion, one should apply bootstrap methods to avoid overtraining.
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TABLE II
FUZZY RULE-BASED CLASSIFIERS FOR THEIRIS DATA DERIVED BY MEANS OF

SCHEME 1 (A, B, C) AND SCHEME 2 (D, E, F). RULES GIVES THE NUMBER OF

SETS FOREACH INPUT AND MISCLASSIFICATIONS THEPERFORMANCE, AFTER

EACH RULE-BASE SIMPLIFICATION STEP

The results for three typical runs with different parameters are
presented in Table II (A, B, C). The number of misclassification
is quickly reduced to 3 or 4. The obtained model is accurate and
is suitable for interpretation since the rules consequents are the
same or close to the actual class labels, such that each rule can be
taken to describe a class. The fuzzy sets of the optimized model
B are shown in Fig. 11. The corresponding rules are

is short is wide is short

is narrow class is

is medium is narrow

is medium is medium class is

is long is medium is long

is wide class is (15)

Second, scheme 2 was applied. The results for three typical
runs with different parameters are presented in Table II (D, E,
F). The number of misclassification is quickly reduced to 1, 3
or 4. One intermediate model had 1 misclassification only but
was not very transparent due to overlapping sets, however, re-
sulted in a perfect rule-interpolation which shows the good op-
timization property of the GA. The rule base reduction is one or
two times applied and subsequently, the model is optimized for
transparency. The resulting models are highly reduced, while the
misclassification error is not much increased. The fuzzy sets of
the optimized model E are shown in Fig. 12. The corresponding
rules are

is short is narrow class is

is medium is narrow class is

is long is wide class is

(16)

The proposed iterative reduction scheme removed 7 sets
from the three-rule model, thereby, removing two inputs. By
comparing the reduced fuzzy model with the data in Fig. 9, one
observes that the inputs with the highest information content
are maintained. In addition, it is noted that most models from
research show three or more misclassifications, indicating that
there are a few samples that are difficult to classify correctly.
These are often close to the decision curve; e.g., in [1] we
showed that our 1 misclassification had the typical properties of
another class and may be an outlier in the data. A good method
to describe the plausibility of the classification results is to use
a certainty factor that describes the expectation that a data-pair
belongs to the different classes [25]. This certainty factor can

Fig. 11. Optimized fuzzy rule based model with three rules and three
misclassifications (Table II-B).

Fig. 12. Optimized and reduced fuzzy rule based model with three rules and
four misclassifications (Table II-E).

also be aggregated in the multi-objective model optimization
to improve the fuzzy classifier.

The results obtained with the proposed modeling approach
for the Iris data case illustrate the power of the GA for
optimizing fuzzy rule based classifiers. By simultaneously
optimizing the antecedent and/or consequent parts of the rules,
according scheme 1, the GA found an optimum for the model
parameters in the neighborhood of the initializations, which
gave drastic improvements in the classification performance.
Moreover, compact fuzzy models with a low amount of inputs
and fuzzy sets were obtained by the proposed model reduction
scheme 2.

V. CONCLUSION

We have presented an approach to construct compact and
transparent, yet accurate fuzzy rule based models and classifiers
from measured input-output data based on iterative complexity
reduction. Methods for modeling, complexity reduction, and op-
timization are combined in the approach. Fuzzy clustering is
first used to obtain an initial rule based model. Similarity based
simplification and multi-objective GA-based optimization are
then used in an iterative manner to decrease the complexity of
the model while maintaining high accuracy. The proposed algo-
rithm was successfully applied to two problems known from the
literature. The accuracy of the obtained models was comparable
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to the results reported in the literature, however, the obtained
models use fewer rules and less fuzzy sets than other models re-
ported in the literature. Compact and transparent, yet accurate
fuzzy TS models are the results.
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