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The Shape of Fuzzy Sets in Adaptive Function Approximation

Sanya Mitaim and Bart Kosko

Abstract—The shape of if-part fuzzy sets affects how well feed- to other well-known systems that predate fuzzy systems [3],
forward fuzzy systems approximate continuous functions. We ex- [17], [20], [27], [28], [30]. These Gaussian systems make im-

plore a wide range of candidate if-part sets and derive supervised . tant henchmarks but there is no scientific advance involved
learning laws that tune them. Then we test how well the resulting . . .
in their rediscovery.

adaptive fuzzy systems approximate a battery of test functions. No ) .
one set shape emerges as the best shape. The sinc function often Triangles and Gaussian bell curves also do not represent the

does well and has a tractable learning law. But its undulating side- vast function space of if-part fuzzy sets. But then which shapes
lobes may have no linguistic meaning. This suggests that the engi-do? This question has no easy answer. A key part of the problem
neering goal of function-approximation accuracy may sometimes ; that we do not know what should count as a meaningful tax-
have to outweigh the linguistic or philosophical interpretations of s . .

fuzzy sets that have accompanied their use in expert systems. We®M0mMy of fuz_zy sets. We can d'St'ngu'Sh CO”“”UO‘%S fUZZY sets
divide the if-part sets into two large classes. The first class consists from discontinuous sets, differentiable from nondifferentiable
of n-dimensional joint sets that factor into » scalar sets as found sets, monotone from nonmonotone sets, unimodal from multi-
in almost all published fuzzy systems. These sets ignore the corre-modal sets, and so on. But these binary classes of fuzzy sets may
lations among vector components of input vectors. Fuzzy systems qj)| ha too general to permit a fruitful analysis in terms of func-

that use factorable if-part sets suffer in general from exponential ti mali int foth f teria. Yet
rule explosion in high dimensions when they blindly approximate lon approximation orinterms of other performance criteria. ye

functions without knowledge of the functions. The factorable fuzzy @ taxonomy requires that we draw lines somewhere through the
sets themselves also suffer from what we call the second curse of di-function space of all fuzzy sets.
mensionality: The fuzzy sets tend to become binary spikes in high  \We draw two lines. The first line answers whether a joint

dimension. The second class of if-part sets consists of the more geny,; 7y set js factorable or unfactorable. Consider any fuzzy set
eral but less commonn-dimensional joint sets that do not factor "o , . "
h 4 C R™ with arbitrary set functioms : R* — [0, 1] (or the

into n scalar fuzzy sets. We present a method for constructing such *
unfactorable joint sets from scalar distance measures. Fuzzy sys- Slightly more general case wherenapsR™ or some other space
tems that use unfactorable if-part sets need not suffer from expo- X into some connected real intenjal, v] C R). The multidi-
nential rule explosion but their increased complexity may lead to - mensional nature of fuzzy set presents a structural question
intractable learning laws and inscrutable if-then rules. We prove na qoes not arise in the far more popular scalar or one-dimen-
that some of these unfactorable joint sets still suffer the second _. ) ” .
curse of dimensionality of spikiness. The search for the best if-part S!onal case: Isi factorable? DoesA C R™ factor into a Carte-
sets in fuzzy function approximation has just begun. sian product of: scalarfuzzy setd; C R: A = A;x---xA,,?

The general answer is no. Factorability is rare in the space of
all n-dimensional mappings @™ into numbers. It corresponds
to uncorrelatedness or independence in probability theory. Yet
much analysis focuses on the factorable exceptions of hyper-
I. THE SHAPE OFFUZZY SETS: FROM TRIANGLES TOWHAT?  rectangles and multivariate Gaussian probability densities. And

HAT is the best shape for fuzzy sets in function appros@/most all published fuzzy systems use rules that deliberately

imation? Fuzzy sets can have any shape. Each Sh@gortheif-pqrt sets into scalar sets. This often yields factorable
affects how well a fuzzy system of if-then rules approximat@int set functions of the form; (z) = aj(z1) x -+ x a} (zn)
a function. Triangles have been the most popular if-part @t @;(#) = min(a;(z1),...,a}(x,)). Consider this rule for
shape but they surely are not the best choice [24], [32] for a@-Simple air-conditioner controller: “If the air is warm and the
proximating nonlinear systems. Overlapped symmetric triaQumidity is high then set the blower to fast.” A triangle or trape-
gles or trapezoids reduce fuzzy systems to piecewise linear s§id or bell curve might describe the fuzzy subset of warm air
tems. Gaussian bell-curve sets give richer fuzzy systems wiginperatures or of high humidity values. A product of these two
simple learning laws that tune the bell-curve means and vasfalar sets forms a factorable fuzzy subset< A, C R?. But
ances. But this popular choice comes with a special cost: It coffers tend not to work with even simple unfactorable two-di-

verts fuzzy systems to radial-basis-function neural networks @€nsional (2-D) sets such as ellipsoids: “If the temperature-hu-
midity values lie in the warm-high planar ellipsoid then set the
motor speed to fast.” Few unfactorable fuzzy subsets of the
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Fig. 1. Samples of sinc set functions for one-input and two-input cases. (a) Scalar sinc set function for one-input case. (b) Nine scalar sioesstetrfinpeit
2. All sinc set functions have the same width but their centers differ. (c) Product sinc set function for two-input case. The set function has f{ie)fesm
a;(w1,ws) = aj(a1) X a3(wz). The shadows show the scalar sinc set functionsR — R for i = 1,2 that generate; : R* — R. (d) Joint!* metrical sinc
set functionia; (z) = sinc(d}(x, m;)). (€) Joint quadratic metrical sinc set functien{z) = sinc(d?(x, m;)).

sense. Then we form factorabiedimensional fuzzy sets from Fig. 1 shows scalar and joint sinc set functions. Fig. 1(a)
the scalar factors and compare them both against one anostews the decaying sidelobes that can take on negative values.
and against some new unfactorable joint fuzzy sets. Exponenfifiis requires that we view the sinc as a generalized fuzzy set
rule explosion severely constrains the extent of the simulatiofit4] whose set function maps into a totally ordered interval
We also uncover a second curse of dimensionality: Factoratat includes negative values:: R — [—0.217,1]. An exer-

sets tend toward binary spikes in high dimension. Unfactoraldiese shows that such a bipolar set-function range does not affect
sets need not suffer exponential rule explosion. But we prothee set-theoretic structure df in terms intersection, union, or
that some of them also suffer from spikiness in high dimensioromplementation because the corresponding operations of min-

We draw a second line between parametrized and ndmum, maximum, and order reversal depend on only the total or-
parametrized fuzzy sets. We study only parametrized fuz96ring (with a like result for triangular grnorms [8]). Fig.1(c)
sets because only for them could we define learning lasgows the 2-D factorable sinc that results when we multiply two
(that tune the parameters). We did not study recursive fuzsglar sinc functions as we might do to compute the degree to
sets such as those that can arise with B-splines [33] or oti{#}ich & two-vector input = (1, z») fires the two if-part fac-

recursive algorithms. It also is not clear how to fairly compar@'s Of & rule of the form “IEX, is A; and.X, is A, thenY is

parametrized if-part set functions with nonparametrized s~ Fig- 1(d) and () show two new unfactorable 2-D set func-
functions for the task cdaptivefunction approximation. tions built from the scalar sinc function and a distance metric.

] ] ] ] Below we derive the supervised learning law that tunes these
The simulation results do not pick a clear-cut winner. NQfinc set functions given input—output samples from a test func-
would we expect them to do so given the ad hoc nature of Qg The factorable joint set functions are far easier to tune than
choices of both candidate set functlons_and test func_tlons. BUE the unfactorable sets because we need only add one more
the results do suggest that some nlonobwous.set functions ;hqgh:h to a partial-derivative expansion and then multiply the re-
be among those that a fuzzy engineer considers when buildifigys for tuning the individual factors. Fig. 2 shows how a 2-D
or tuning a fuzzy system. Along the way we also developed @yoraple or product sinc set evolves as the process of super-
ext_enswe library of new set functions and derived their oftgf}geq learning unfolds when a sinc-based fuzzy system approx-
quite complex learning laws. imates a test function.

Perhaps the most surprising and durable finding is that theThe sinc finding raises a broader issue: Does an if-part fuzzy
sinc function(sin /z) of signal processing often convergeset need to have a linguistic meaning? The very definition of
fastest and with greatest accuracy among candidates that incltidesinc set function : R — [—0.217, 1] already requires that
triangles, Gaussian and Cauchy bell curves, and other familiee broaden our usual notion of “degrees” that range from 0%
set shapes. This appears to be the first use of the sinc functiori00% to a more general totally ordered scale. But the sinc’s
as a fuzzy set. We could find no theoretical reason for its perfarndulating and decaying sidelobes admit no easy linguistic in-
mance as a nonlinear interpolator in a fuzzy system despitetaspretation. We could simply think of the smooth bell-shaped
well-known status as the linear interpolator in the Nyquist sarenvelopef the sinc and treat it as we would any other unimodal
pling theorem and its signal-energy optimality properties [21¢urve that stands for warm air or high humidity or fast blower
We also combined two hyperbolic tangents to give a new belbeeds. That would solve the problem in practice and would
curve that often competes favorably with other if-part set canHow engineers to safely interpret a domain expert’s fuzzy con-
didates. We call this new bell curve the difference hyperboleepts as appropriately centered and scaled sinc sets. But that
tangent [18]. would not address the conceptual problem of how to make sense
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Fig. 2. Samples of evolution of a product sinc if-part set function in an adaptive function approximator. Supervised learning tunes the parthespreduct
sinc set function such as its center and width on each parameterarisdzx-: (a) a sinc set function at initial state, (b) the same sinc set after 10 epochs of
learning, (c) after 500 epochs, and (d) the sinc set converges after 3000 epochs.

of all those local minima and maxima in such a multimodal seimesV; of the then-part seB;. The shape of then-part st
function. does not affect thrst-orderbehavior of a feedforward SANI
A pragmatic answer is that a given if-part fuzzy set need nbeyond the effect of the volurmié and centroid:;. This holds
have a precise linguistic meaning or have any tie to natural lavecause the SAM output computes only a convex-weighted sum
guage at all. Function approximation is a global property ofaf the then-part centroids; for each vector input
fuzzy system. If-part fuzzy sets are local parts of local if-then
rules. The central goal is accurate function approximation. This F(z) =) pj(x)c 1)
can outweigh the linguistic and philosophical concerns that may
have attended earlier fuzzy expert systems. Engineers designed
many of those earlier systems not to accurately approximat@erep;(z) > 0 andZ 1 pj(x) = 1for eachz € R" as
some arbitrary nonlinear function but to accurately model atefined in (6)p; depends o3; only through its volume or area
expert's knowledge as the expert stated it in if-then rules.  V; (and perhaps through its rule weight). We also note that (1)
So the real issue is the gradual shift in performance critedad (2) imply that/'(z) = E[Y | X = z] [14]. But the shape
from accuracy of linguistic modeling to accuracy of function apsf B; does affect thesecond-ordeuncertainty or conditional
proximation. Progress in fuzzy systems calls into question tharianceV' [Y | X = z] of the SAM outputF'(z) [14]
earlier goal of simply modeling what a human says. That goal . .
remains important for many applications and no doubt always ] , 2 , o 2
will. But it should not itself constrain the broader considera- VX =a] =D pile)oh, + 3 piolle; - F@)]

tions of fuzzy function approximation. The function space of )
all if-part fuzzy sets is simply too vast and too rich for natural
language to restrict searches through it. wherea%j in an SAM is the then-part set variance
Il. Fuzzy FUNCTION APPROXIMATION AND Tw RSES OF -
VzzY FUNCTIO ° N © CURSES © ah, =/ (v = ¢;)°pp,(y) dy ®)
DIMENSIONALITY oo
We work with scalar-valued additive fuzzy systemgnd Wherq)B ( ) ( )/V is an |ntegrab|e probab|||ty den-

F : R" — R. These systems approximate a functiogity function and; R — [0, 1] is the integrable set function
[+ B" — Rby covering the graph of with fuzzy rule patches of then-part sef3;. The first term on the right side of (2) gives
and averaging patches that overlap [14]. An if-then rule efn input- we|ghted sum of the then-part set uncertainties. The
the form “If X is A thenY is B” defines a fuzzy Cartesian second term measures the interpolation penalty that results from
patch A x B in the input-output spac&” x Y. The rules computing the SAM outpuF'(z) in (1) as simply the weighted
can use fuzzy sets of any shape for either their if-part getssum of centroids. The output conditional variance (2) further

or then-part sets3. This holds for the feedforward standardsimplifies if all then-part set®; have the same shape and thus
additive model (SAM) fuzzy systems discussed below. Theif have the same inherent uncertamﬂ/

generality further permits any scheme for combining if-part
vector components because all theorems assume only that the
set function maps to numbers asdn: R* — [u,v]. The
general fuzzy approximation theorem [11] also allows any
choice of if-part set or then-part sets for a general additi&o a given inputc minimizes the system uncertainty or gives
model and still allows any choice of if-part set for the SAMan outputZ'(«) with maximal confidence if it fires théth rule
case that in turn includes most fuzzy systems in use [15].  dead-on (sd&'(z) = ¢;) and does not fire the othet—1 rules at
The fuzzy approximation theorem does not say which shagk (pi () = 0 for & # j). This justifies the common practice of
is the best shape for an if-part fuzzy set or how many rules centering a symmetric unimodal if-part fuzzy set at a point
fuzzy system should use when it approximates a function. Tivere the othem—1 if-part sets have zero membership degree.
shape of if-part setd; affects how well the feedforward SAM It does not justify the equally common practice of ignoring the
I approximates a functiofiand how quickly an adaptive SAM thickness or thinness of the then-part s8jsand even replacing
F approximates it when learning based on input—output sampthem with the maximally confident choice of binary “singleton”
from f tunes the parameters df; and the centroids; and vol-  spikes centered at the centreid The second-order structure of

m

VIV | X =] =02+ ij(x)[cj — F(z)]?. (4)
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a fuzzy system’s output depends crucially on the size and shapes curse of dimensionality can combine with the better

of the then-part set8;. known curse of exponential rule explosion. The result can be a
We allow learning to tune the volumé§ and centroids:;;  function approximator with a vast set of spiky rules.

of the then-part setB; in our adaptive function-approximation Joint unfactorable sets tend to preserve input correlations [5].

simulations. A then-part seb; with volume V; and centroid They need not collapse to spikes in high dimensions or suffer

¢; can have an infinitude of shapes. And again many of theBem the like rotten-apple effect of falling to zero when just one

shapes will change the output uncertainty in (2) or (4). But wterm equals zero. This also suggests that some unfactorable joint

too shall ignore the second-order behavior that (2) and (4) dazzy sets may lessen or even defeat the curse of dimensionality.

scribe. The second part of this paper shows how to create and tune
High dimensions present further problems for fuzzy funanetrical joint set functions. These joint set functions preserve

tion approximation. Feedforward fuzzy systems suffer at leasitleast the metrical structure of inputs and do not try to factor

two curses of dimensionality. The first is the familiar exponera nonlinear function into a product or other combinatiomof

tial rule explosion. This results directly from the factorabilitterms. The idea is to use one well-behaved scalar set function

of if-part fuzzy sets in fuzzy if-then rules. The second curse li&e sindz) [18] and apply it to am-dimensional distance func-

one that we call the second curse of dimensionality: factoraltien d; () rather than multiply» of the scalar set functions:

if-part sets tend to binary spikes as the dimensioncreases. a;(z) = sinc(d;(z)) rather tharu;(x) =[], sinc(x;). Then
Consider first rule explosion for blind function approximasupervised learning tunes the metrical joint set function as it

tion. Suppose we can factor the if-part fuzzy get: A = tunes the metric. The next section reviews the standard additive

A x--- A, Nontrivial if-then rules require that we use at leasuzzy systems that we use to derive parameter learning laws and

two scalar factors for each of theorthogonal axes ilR™ as in  to test candidate if-part sets in terms of their accuracy of func-

the minimal fuzzy partition of air temperatures into warm antion approximation.

not-warm temperatures or into low and high temperatures. A

fuzzy system must cover the graph of the functjowith rule

patches. That entails that the if-part sets cover the system’s do-  |ll. ADDITIVE FUZZY SYSTEMS AND FUNCTION

main—else the fuzzy syste# would not be defined on those APPROXIMATION

regions of the input space. So such a rule-patch cover of the doyy;g section reviews the basic structure of additive fuzzy sys-

main of a fuzzy systent’ : ' C R" — R entails arule explo- o s The Appendix reviews and extends the more formal math

;5/:/()” q|r|1fthe order of" whef:eC(ljs somef compag;ugietﬁf;é structure that underlies these adaptive function approximators.
e will for convenience often denote functionslas £ — A fuzzy systeml” : R — RP storesm rules of the word

or asa : R* — [0, 1] where we understand that the domain i?orm “f X — A, ThenY = B,” or the patch form4; x
- J - J J

only some compact subset af". B; C X xY = R" x RP, The if-part fuzzy setsi; C R"

3il'he; isha relﬁted exr(]:ep_tfion that desler\lies corrr:mfent. Wat% then-part fuzzy set8; C R have set functions; :
[31], [32] has shown that if we not only know the functional, [0,1] andb; : R? — [0,1]. Generalized fuzzy sets

form of f but build it into the very structure of the if-part sets[14] map to intervals other thao, 1]. The system can use the
A; then we can exactlyepresentmany functions in the sense; ;

of F(z) = f(x) for all z and can do so with a number of ruleéoll?t s;et fug((:tlo;]cgr or(s;m:e fgc(tolr?d )form S‘i‘zh ag(g:r)a;
that grows linearly with the dimension. This does not apply <o dr) & 48] = DR W01 ) o Gy bé
. ; . . . . other conjunctive form for input vector= (zy,...,z,) € R
in blind approximation where we pick the tunable if-part setio _
Aj; in advance _anq then train them and other parameters baseqd | . yditive fuzzy system [10], [11] sums the “fired” then-part
on exact or noisy input—output samples from the apprommag?tsB(
function f. But it suggests that there may be many types o J
middle ground where partial knowledge ffmay reduce the m m
rule complexity from exponential to polynomial or perhaps to Bx)=S w.DB =N "w.a(z)B,. 5
some other tractable function of dimension. (=) ; T Jz_:l (@B, ©)

All factorable if-part sets suffer the second curse of di-
mensionality. They ignore input structure and collapse t€ig. 3(a) shows the parallel fire-and-sum structure of the SAM.
binary-like spikes in high dimensions. The separate factofhiese nonlinear systems can uniformly approximate any con-
aj ignore correlations and other nonlinearities among thimuous (or bounded measurable) functiblon a compact do-
input variables [5]. This structure can be quite complex imain [19]. Engineers often apply fuzzy systems to problems of
high dimensions. The product form}(xl) X «++ X a}(z,) control [4] butfuzzy systems can also apply to problems of com-
tends toward a spike im™ for large n when a;’» < 1. munication [22] and signal processing [5], [6] and other fields.
The Borel-Cantelli lemma of probability theory shows that Fig. 3(b) shows how three rule patches can cover part of the
min(a} (z1),...,a}(z,)) tends to zero with probability one graph of a scalar functiofi : & — R. The patch-cover struc-
[9]asn — ~oifthe random sequence, z, . . . isindependent ture implies that fuzzy systenis : R* — RP suffer fromrule
and identically distributed. This also holds fany ¢t-norm explosionin high dimensions. A fuzzy systeifi needs on the
combination of factors because of the generalizetorm order of 5”2~ rules to cover the graph and thus to approxi-
bound T'(a}(x1),. .., a}(x,)) < min(aj(x1),...,a%(x,)). mate a vector functioff : R* — RP. Optimal rules can help
Factorable joint set functions degenerate in high dimensiomieal with the exponential rule explosion. Lone or local mean-
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| = Fig. 4. Lone optimal fuzzy rule patches cover the extrema of approxinfiand
A lone rule defines a flat line segment that cuts the graph of the local extremum
(a) in at least two places. The mean value theorem implies that the extremum lies

between these points. This can reduce much of fuzzy function approximation to
the search for zeroes of the derivative mag’ : /(&) = 0.

IV. SCALAR AND JOINT FACTORABLE Fuzzy SET FUNCTIONS

A scalar set functiom; : R — [0, 1] measures the degree

------ to which inputz € R belongs to the fuzzy or multivalued set
’ Aj :aj(x) = Degree(z € A;). Ajoint factorable sefl; C R"
derives fromn scalar sets4§ C R. Any conjunctive operator
such as &-norm can combine: scalar sets to obtain a joint
factorable set.

Xr

A. Scalar Fuzzy Sets

(b)

We tested a wide range of if-part set functions. Below we list
Fig. 3. Feedforward fuzzy function approximator. (a) The parallel associatiyge Scala_r form of most of these set funcﬂpns. The S!nC function
structure of the additive fuzzy systef : R™ — R with m rules. Each was multimodal and could take on negative values-i0.p17,

inputxzo € R™ enters the syster as a numerical vector. Atthe set level 1], We viewed these negative values as low degrees of set mem-
acts as a delta pulsé.: — 27) that combs the if-part fuzzy sets; and gives

the m set valuesi;(xy) = [, 8(x — xo)a;(x)dx. The set values “fire” bership. ] ] ] ) ]

or scale the then-part fuzzy seffy to give B}. An SAM scales eacls; with 1) Triangle set functionWe define the triangle set function
a;(x). Then the system sums th¥ sets to give the output “seB3. The system _ . L . ..
outputF(z,) is the centroid oB. (b) Fuzzy rules define Cartesian rule patches as a three-tuplél;, m;, ”).Wherel] > 0 andr, > 0.
A; x B; in the input—output space and cover the graph of the approxinfiand m; € R denotes the location of a peak of the triangle

This leads to exponential rule explosion in high dimensions. Optimal lone rules

cover the extrema of the approximand as in Fig. 4. 1— m; —& i — L < 2 <

lj ? J J - - J
squared optimal rule patches cover the extrema of the approx- a;(2) 1- TJ’ if m; <& <my+7; Q)
imand f [13], [14]. They “patch the bumps” as in Fig. 4. The 0 J else

Appendix presents a simple proof of this fact. Better learning
schemes move rule patches to or near extrema and then fillin ~ We can also define the symmetric triangle set function

between extrema with extra rule patches if the rule budget al-  with two parameters that are itenterm; andwidth d;
lows. as
The scaling choicé3; = a;(z)B; gives an SAM. The Ap-
pendix further shows that taking the centroid Bfz) in (5) 1 [Z2 i ey —my| < d
gives the following SAM ratio [10], [11], [13], [14]: aj(z) = d; (8)

0 else.

7

m . 2) Trapezoid set functionWe define the trapezoid set
F( 2 jmwiai(@)Vie , , 6 function as a four-tuple(l;,ml;, mr;,r;) where
D) = Sy = 2 pi@e () , N . Ny
2o wias(2)V; ml; < mr; € R.l; > 0andr; > 0 denote the

= distance of the support of a function to the left and
Here V; is the finite positive volume or area of then-part right of ml; and mr;. We can view thecenter as
set B; and ¢; is the centroid ofB; or its center of mass. my; = (1/2)(ml; + mr;)
The convex weights pi(z),...,pm(z) have the form T
pi(x) = (wja;(z)V;/ 7, wiai(x)Vi). The convex co- 1==—, iftml—1l; <& <ml;
efficients p;(z) change with each input vectar. Sections V (z) = 1, if ml; <z <mr; )
and VIl derive the gradient learning laws of all parameters of / 1-2200 ifmr; <z <mr;+7;

the SAM for different shapes of if-part sets. 0, else
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3) Clipped-parabola (Quadratic) set functioA clipped- wherem; andd; define the center and the width of the
parabola set function (or quadratic set function) centered bell curve.
atm; and with “width” d; has the form 10) Hyperbolic secant set functiodgain m; andd; > 0
) ) define the center and width of this scalar set function
1—Cqu ifC_mﬂ <1
a;(x) = d; ’ d; (10) a;(x) = sech <a: — mj) . a7
0, else d;
This quadratic set function differs from the quadratic set 11) Differential logistic set functioriThe derivative of the lo-
function in [26]. gistic function is a bell curve form of probability density
4) Gaussian set functiorThe Gaussian set function de- function. S’ (x) = S(z)(1 — S(z)) holds for a logistic
pends on the meam; and standard deviatiofy //2 function S(z) = 1/(1 + exp{—=}). So we define this

new set function as

xr —1my 2
aj(x):exp{—< 7 J) } (11) 0;(z) = 45 <x_dmj> |:1_S<$—mj>:|' (18)

i d;

5) Cauchy set functioriThe Cauchy set function is a bell _
curve with thicker tails than the Gaussian bell curve and __ The factor 4 givesnax,ep a;(x) = 1.

with infinite variance and higher order moments [5] 12) Differ_ence_ logistic set functiorf.he logistic or sigmoid
function withsteepnesa; > 0 has the form of;(x) =
a;(z) = 1 (12) 1/(14exp{—«; 2}). We define a symmetric logistic set
! 14 (== 2 function centered at:; with width/; > 0 as
+ ( 5 )
1
6) Laplace set functiorThe Laplace set function is an ex-  a;j(z) = F[Sj(x —my +1;) = Si(x —m; — )] (19)
ponential curve !
o The normalizerD; = S,(I;) — S;(—;) ensures that
U — _ |z — m _
a;(z) = exp I (13) maxger a;(x) = 1.
J 13) Difference hyperbolic tangent set functidrhis new set
wherem; is the center and; > 0 picks the decay rate function has the difference form
of the curve. 1 v 4L v — L
7) Sinc set functionWe define the sinc set function cenv;(z) = o [tanh(%) - tanh(%)} .
tered atm; andwidthd,; > 0 as J J J
(20)
) . T — mj T — mj
a;(x) = Sm( d; )/( d; ) : (14) This results in a bell curve. The terin> 0 defines the
“width” of the function andD,; = 2tanh(l;/d,) gives

The sinc set function is a map : R — [—0.217,1]. the normalization factor.

So the denominator of a sinc SAM can in theory become Fig . 5 piots the scalar set functions for sample choices of pa-
zero or negative. The system design must take care Whafeters. Simulations in Section VI compare how these scalar

these negative set values enter the SAM ratio in (6). Wet functions perform in adaptive fuzzy function approximation
set a logic flag to check if the denominator is zero of, terms of squared error.

negative.
8) Logistic set functionThe logistic or sigmoid function g jgint Factorable Sets: Product Set Functions
has the form of5;(z) = 1/(1 + exp{—=}). We define

a symmetric logistic set function centeredsag with 1S class includes joint set functiong : R* — [0,1]

widthd; > 0 as that factora;(z) = g(aj(z1),...,a}(z,)) for some function

! g : [0,1]" — [0,1]. The popular factorable joint set functions

r—ma\2 combine the scalar set functions with product
J
a;(x) =25 | — < 7 )
, a;(z) = ab(wy) x - x o (z,) (21)
=T e (15) .
1+ C(d—j) or othert-norms such as min
The factqr 2 givesnax,cr aj(a.v) =L _ a;(x) = min(a} (1), ..., (zn)) (22)
9) Hyperbolic tangent set functiofhis set function has

the form for scalar set functionsj : R — [0, 1]. We form the product set

m;

aj(z)=1 +tanh<— <a: _d
4

(16) Section VI compares the results of adaptive function approxi-

5 functions from scalar set functions in Section IV-A as in Fig. 6.
) ) mation of these set functions for two- and three-input cases.
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..... . (a)

Fig. 5. Setfunctions centeredswat = 0. (a) Triangle? = 1 andr = 3. (b) Symmetric triangled = 3. (c) Trapezoidl = 1, ml = —2, mr = 2, andr = 2.(d)
Parabolad = 2. (e) Gaussiand = 2. (f) Cauchy:d = 2. (g) Laplaced = 2. (h) Sinc:d = 0.4. (i) Logistic: d = 2. (j) Hyperbolic Tangentd = 2. (k)
Hyperbolic secantd = 2. (I) Differential logistic:d = 2. (m) Difference logisticoe = 2 and! = 1. (n) Difference hyperbolic tangent:= 2 and! = 1.

1

2 5 g 1 2 5 s 1 2 55 1 2 55 1 2 5 s 1

2 55 1 2 55 1 2 5 1 2 55 1

Fig. 6. Product joint set functions centeredrat= 0. (a) Trianglex! ~ (0,3, 4) anda? ~ (0, 2, 2). (b) Symmetric triangled! = 4 andd? = 2. (c) Trapezoid:
al ~ (2,—1,1,3) anda® ~ (1,—1.5,1.5,2). (d) Parabolad! = 4 andd? = 3. (e) Gaussiand® = 2 andd? = 1. (f) Cauchy:d' = 2 andd® = 1. (g)

Laplace:d' = 2 andd? = 1. (h) Sinc:d* = 0.8 andd? = 0.4. (i) Logistic: d* = 2 andd? = 1. (j) Hyperbolic tangentd* = 2 andd? = 1. (k) Hyperbolic
secantd! = 2 andd? = 1. (I) Differential logistic:d* = 2 andd? = 1. (m) Difference logistica! = 1,1* = 2,a* = 2, andl? = 1. (n) Difference hyperbolic
tangentd* = 1,1t = 2,d? = 2, andl® = 1.

V. SUPERVISEDLEARNING IN SAMS: SCALAR AND PRODUCT  denote thé:th parameter in the set functier). Then the chain
SETS rule gives the gradient of the error function with respect to the
{Pp@rt set parameteﬁi" with respect to the then-part set centroid

Supervised gradient descent can tune all the parameters in
P g P ,c”) and with respect to the then-part set volume

SAM model (6) [12], [14]. A gradient descent learning law foFJ = (¢ 37 T

a SAM parametef has the form Vi
OB OB _OBOF du; OB _OBOF .
§t+1) =) - Mo (23) ogl — OF 0a; 9¢l”  9c;  OF dc;’
. . . . _— OF  OFE OF
wherey; is a learning rate at iteration We seek to minimize V. = aF v, (25)
the squared error J J
1 where
E(z) = 5(f(2) - F(x))? (24) OF
of the function approximation. The vector functign: R* — or ~ ~Uw = P = =ele) (20
RP has componentg(z) = (f1(z),. ... f,(z))T and so does a_F _ it ai()Ve) (Vie;) = V; (22:1— ai(z)Vic;)
the vector functionF. We consider the case when= 1. A 9a; (it ai(@)Vi)
general form for multiple output whem > 1 expands the error ey = F(o)V; fe; — F(a:)]w 27)

function E(x) = || f(z) — F(z)|| for some norm|-||. Let &¥ YT eV a;j(z)
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The SAM ratios (6) with equal rule weights;, = wy = --- =
wy, = w give [12], [14]

ey = ST, -
OF _ aj(x)[e; — F(z)]

= Sy, e PO @)

Vi
Then the learning laws for the then-part set centreidsind
volumesV; have the final form

ci(t+1) = ¢j(t) + me(z)p;(x) (30)

Vil 1) = V() + (@) - FENP ()
J

The learning laws for the if-part set parameters follow in like
manner for both scalar and joint sets as we show below. s

We first derive learning laws for parameters of the scalar’
if-part set functions. Each set functian gives different par-
tial derivatives of:; with respect to itgth parametefk in (25).
The learning Iaws for the parameters of each scalar set functloﬁs
are as follows.

1) Triangle set function

my (1) = pee(@les ~ PENEGE
m;(t + 1) = mj(t) + /JtE(.’IZ')[Cj — F(x)]fl’j_gjg%’ (32)

if m; <z <my+r;

m;(t), else
LD + mee(@)le; — F@IEE ™.
Lt +1) ifm,; — 1, <z <my (33)
lj(t)v else
i (8) + el — Po)] 28 25,
(t+1) if m; <z <my+r, (34)
r(t), else.

2) Trapezoid set function

— me(@)le; — F@) 2352
j(t+1) Ifml—l <z < mi (35)
), else
g (£) + pee(@)le; — F@) BT
(z) 7y
j(t4+1) Ifm7j<x<m7 +7y (36)
mr;(t), else
J<+ms Jej = Folb ™5
i(t+1) Ifml—l <z <ml (37)
), else
) + () ey — F(@)| 2 2=,
ri(t+1) = |fm7j<a:<m7]+7’j (38)
r;(t), else.

3) Clipped-parabola set function

my () + 2pue(@)le; — F()| 25 7

mit+1) =< (%)2 <1 (39)

m;(t), else
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d;(t) + 2ume(z)[c; — F(x) ngz; (ac—(gj) ’

dit+1) =9 i ( n> -1 (40)

d;(t), else.

4) Gaussian set function

my(t+1) = mj(t) + 2pee(@)p; (x)]e; — F(x)] > _d];”
(41)
di(t + 1) = d;(£)2pue(x)p; ()]c; — F(@]%.
(42)
5) Cauchy set function
S+ = my(t) + 2@ @les — Fal—ga,(@)
(43)
(t+1) = d;(t) + 2pee(x)p; (x)]e; — F(x)] (= _dg”)Q
x a;(x). ’ (44)
6) Laplace set function
m;(t+1) = m;(t) + mee(x)le; — F(@)lp;(x)
X sign(z — m;) |;J| (45)
d;(t +1) = d;(t) + pe(z)[e; — F(x)]p;(x)
x sign(d;) L=l (46)

d2
J
7) Sinc set function

mi(t+1) =m;(t) + pee(x)[cj — F(w)]pj(a:)

a;(x)

x (@) - cos<$ _djmf )) - _1mj (47)

x <aj () — cos<$ _djlf')) dij (48)

8) Logistic set function
m;(t+1) = m;(t) + pue(x)pi(a)le; — F()]

T —my

X (2= aj(@)— 5~ (49)
dj(t + 1) = dj(t) + LLtE(l')pj(.’L’)[Cj — F(.’L’)]
x (2 - o)k (50)

9) Hyperbolic tangent set function
m;(t +1) = m;(t) + 2uee(x)p;(x)c; — F(x)]

x—mj

x (2 aj(@) 5 (5)
d;(t+1) = d;(t) + 2me(z)p; (w)[cgé - F(z)]
x (2 — aj(x))%. (52)
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10) Hyperbolic secant set function

m;(t+1) = m;(t) + pe(@)p;(w)le; — Fx)]
X di tanh <x _dmj ) (53)
dj(t + 1) = dj(t) + MtE(JJ)pj(.T)[Cj — F(JJ)]
X Wtanh( 7 ]> . (54)
11) Differential logistic set function
m;(t+1) = m;(t) + pe(@)p;(x)le; — F(x)]
1 T —m;
Gl e
dj(t+ 1) = m;(t) + pee(@)p;(x)le; — F(x)]
< - (2] 69)
12) Difference logistic set function
mj(t + 1)
=m;(t) + me()p;(z)[c; — F(w)]
X aj[Si(x —my+ 1) + 5 —m; —1;) =11 (57)
a;(t+1)
_ pi(@) 1 . .
= aj(t) + me(@) L Sles = P@)lp-lle = my + 1]
X Sj(x —m;+ lj)[l - Sj(x —my +l')]

— [z —my = []Si(x —my —1;)[1 = Si(z —my —1;)]

— Lia;(z)(S; (1)1 = S;(I)] + S;(=1)[L = S;(=1)])]
(58)
L+ 1)
- pi() oy
= lj(t) + ute(a:)[cj — F({L’)] aj(x) Fj
X [Si(z —mj +1;)[1 = S;(x — m; +1,)]
+ Si(x—my; — 1)1 = S;(x —my; —1;)]
— a;(«)(S;(I)[L = S;IN] + Si(=1)[L = Si(=IHD]-
(59)

13) Difference hyperbolic tangent set function
m;(t+1)
¢; — F(z)

= my(8) + el (1) T
)

X {anh( mj + )—i—tanh(w
d;
+1)
(

(t+1
pj(x) 1
t) + e ¢ — F(x
= d5(0) + e 2D e~ Pl
X[w mj—i—ljtnhQ(x—mJ—i—lj)
d; d;
wmmy =l e (Mg
d; d;

2 obe [ ot (U
i +2dja](az) [1 tanh <dj (61)

645

li(t+1)

= 1) + th(x)zj Eg lej = () Djdj

X |2 — tanh? w _ tanh? w
(62)

— 2a;(x) {1 — tanh? <%>” .

We also can approximate the learning laws for the symmetric
triangle and trapezoid set functions with Gaussian learning laws
for their centers and the widths. Like results hold for the learning
laws of factorablen-D set functions. A factored set function
aj(x) = aj(x1)...a}(x,) leads to a new form for the error
gradient. The gradient with respect to the param&t?rof the
jth set functiorn; has the form

OB _ OE OF da; aj (63)
am ~ OF Qa; daly dmk
where
da; 1T . a;(x)
—_— = a’(x;)) = —=. 64
oul 1;{ i (i) () (64)

VI. SIMULATION RESULTSI: SCALAR AND JOINT PRODUCT
SETS

We trained the SAMs with different set functions to approx-
imate different functions. We scored each test in terms of the
squared error (SE) of the function approximation for a constant
learning rateyu.

We uniformly sampled 201 points of the function in the one-
dimensional (1-D) case to give a training set. The 2-D case used
31 x 31 = 961 samples. The 3-D case us2@ x 20 x 20 =
8000 samples. One epoch passed all 201, 961, or 8000 samples
through the SAM to train it.

We then finely sampled the function to obtain the test data
for each function. So the training data set and the test data set
are different but do overlap due to the sampling pattern. The
one-input cases used 241 samples, the two-input cases used
51 x 51 = 2601 samples and the three-input cases usec
31 x 31 = 29791 samples to test how well fuzzy systems ap-
proximate the approximands.

The 1-D SAMs used 12 rules, while the 2-D SAMs used 64
rules. The 3-D SAMs used 125 rules. Different initializations
led to convergence to different local minima of the SE surface.
There is no formal way to find the initial conditions that lead
to the global minimum, so we had to guess at them. We spread
rule patches uniformly along the input space. So we spread the
if-part set centersn; uniformly along thez-axis. We picked
the then-part set centroids as the values of the sampled ap-
proximandf atm;: ¢; = f(m;). We set the then-part volumes
(areas) to unity at firstt; = --. = V,,, = 1. Then supervised
learning tuned each SAM parameter.

We used a constant learning ratehroughout each training
session. We also tried different learning rates to see whether the
system converged to different solutions and picked the best re-
sults as a representative for that case. But at each try the learning
rates for each parameter were the same. The learning rates were
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Fig. 7. Samples of 1-D and 2-D test approximands.

small because each learning law is highly nonlinear—else the < 100(z +0.95)(z + 0.6)(z + 0.4) )
learning might not have converged. The learning rates that we A\ x(z—01)(z - 0.4)(z — 0.8)(x — 0.9)

used ranged from = 10~ to 10~*. We compared the results Jala) = (z+1.7)(z — 2)?

for each learning rates and picked the best ones. Below we list forz € [-1,1]. (67)
test functions we used as approximands.

A. 1-D Test Functions 2) Exponential FunctionsThis class of set function
includes Gaussian bell-curve and Laplace functions. The hy-

We defined functions of one variabfe: X C It — R10test ,opjic tangent is one form of ratio of exponential functions.
the scalar fuzzy sets in the SAM models. We also used fun_cncwa, tested the approximands below on the intesval [~ 1, 1]
from the literature [1], [7]. We roughly classify the test functions

that we used and list some of them as follow.

1) Polynomial and Rational FunctionsThis class of L] = —0.8| | +0.6]
app)roxinzlands consisted of polynomial functions and rational falw) =10 (C e T ) (68)
functions of different degrees. The two simplest functions in £, () = 10~ (55" — ge=(F5D” — 4= (519" (69)
this class are a constant function and a straight line function. e (e01) | & [(z=01ye (202
We do not list constant functions here because we can represent /6(%) = 15¢ +o [@ o ode e
any constant function with any kind of fuzzy system with only
one rule. We did include a straight line function in our test case
(see Fig. 7). The test functions were as follows:

@ — z40.4 +0.9

T T 4 ] L (70)

+ e

e . 3) Polynomials Based on Trigonometric FunctionBhis

fi(z) =152 +5 forz€[-11] (65) class of functions includes many functions. A truncated Fourier

fo(z) = 3z(x — )(z — 1.9)(z — 0.7)(z + 1.8) expansion of any function belongs to this class. We also include
forz € [-2,2] (66) the inverse of these trigonometric functions within this class
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of test cases. All of the functions have as their domain the seb(z1, o) = 5rizs + 227 — 323 + 6sin(5z123) (81)
X =[5 g3(x1,22)
— 10tan~! <10($1 — 0.2)(371 — 07)(371 + 08))
J7(z) = 10[sin(4zx + 0.1) + sin(14x) z1+14
+sin(11z — 0.2) + sin(17z + 0.3)] (71) 10(x2 —( 0.2)(z2 )420-8)(962 )— 0.7)
. _ +0.2)(x2 — 1.5
fa(z) = 8sin(102% + 5z + 1) (72) X tan ™! X\ T2
14 —-11 0.3)+ 0.7
fo(x) = 0.01 tan®(1.5z) + 10tan?(x) — 20 tan(0.7z) (w2 + L) (e Jaz(z2 +0.3) +
(73) (82)
= ar 3 — ar 2(— — ar — 1
fio(z) = arccos Sx) arccos”(—x) — arccos(—x) (74) g1, 72) = — folw) fs(s) 83)
f11(z) = 10tan™*[10(x 4+ 0.9)(x + 0.5) %0
x (z 4+ 0.1)(z — 0.6)(x — 0.75)] (75)  gs(z1,22) = 3f15($1)f11($2) (84)
2000(z — .1)(z — .3)(z — .5) 1
x(z —.9)(z —1.1)(z + .2) g6(x1, 22) = = fa(x1) f5(2) (85)
1| x(z+ Dz + 6)(z+ 8)(x+1) in(1022 + 523 — 6
— 5tan—t . L osin(10z1 + o) xg)
fz(z) = 5tan 22 + 1562 + 1 grler @) =10 0 e o, (89)
1
gs(w1,72) = Ef7($1)fs($2) (87)
(76)
go(x1,T2)
o _ . _ = fo(x1) tan™*(10(z2 + 0.8)
4) Combination of Exponential, Rational, and Trigono- x (2 +0.3)(xs — 0.4)(2zs — 0.7)). (88)

metric Functions: We formed a mixed class of functions from
the above classes. A sinc functisin «/« also belongs to this

class because it is a rational function of trigonometric ar]qg_ 7 plots the surface of some of these samples of 2-D approx-

polynomial functions imands.
, sl (xffo) C. 3-D Test Functions
fia3(@) = 1410710000 _ 721 for ¢ [0, 1] _
z+0.1 We created 3-D test functions: X ¢ R® — R as products
L (77)  of 1-D test functions. We also define new 3-D set functions that
L0z ((w—ig&r%agz_(gg)? LA 12) were unfactorable. All test functions have as their domain the set
B for2 <z <6 X =[-1,1] x [-1,1] x [-1, 1]. Below we list some samples
fraz) = P (0.005(.7:—2.5)2(.7:—5)2(.7:—9)3.7:3 4 12) of the approximands that we tested
4004200(z—0.8)?
for6 <z <8
1 (78) hl(azl,azg, .773)
fislw) = 7 - 5e= o) 4 7 (5%’ = 6021 (21 — 0.5)(x1 — 0.95)(z1 + 0.35)
x . . —1 2
4 90-2=03)  forp e 1,1]. (79) x (z1 +0.9) (3 sin(6xox3) + 6tan (43:2)
x tan” ! (3z3) tan ! (2z223) — 5x373) (89)
Fig. 7 plots some of the 1-D approximands. hQ(wl’?’ z3)
= 500 15 fo(x2) fro(ws) (90)

B. 2-D Test Functions

We created 2-D test functions: X ¢ R?> — R from the 1
1-D test functions. A product of two 1-D functions created 2-D = ﬁf?’(xl)ﬁ(x?)fl?(x?’) (°1)
test functions. We also defined new 2-D set functions that were  h, (1,20, x3)

]7/3(-1'17 Z2, .1'3)

unfactorable. Below we list some samples of the approximands in( 125 )
that we tested. All test functions have as their domain the set — [ 1 4 106—100(0.52140.3)° S\ 03242
X =[-1,1]x = [-1,1] x [-1, 1] except for the test function S5x1 46
” x fe(x2)f3(x3) (92)
h5($17$27$3)
g1(x1, z2) o (01220.7) (125 —0.5) sin(125/(x1 + 1.5))
= 3.’171(371 — 1)(371 — 1.9)(371 + 07) zo+ 1.1

x (x1 +1.8)sin(zg) for—2<ay,29 <2 (80) + (53:1373 — 63:%) tan™! (103:13:2 + a:g) . (93)
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Fig. 8. Convergence plots of squared error versus iteration steps. We picked the best results from different learning rates from each setefapgtioririands
are 1-D and 2-D approximands in Fig. 7.

D. Results: Comparison of Squared Errors setA; C R™ : a;(x) = Degredxr € A;). Most fuzzy sys-

We gave one point to the set function whose squared ertgms factor the joint set function though some use distance to
(SE) was the lowest for each test approximand. In case ofM@intain the joint structure and thus to maintain the correla-
tie (when their SEs are well within 20%) we gave a fractiof{o" @mong input components [5]. We further examine how fac-
of a point for each tying competitors. We also count as winne‘i‘%raple a_nd unfactorable joint set functions affect function ap-
the set functions whose SEs lie within 20% of the lowest SBroximation.

We tested the learning laws with various learning rates (from

= 108 to x = 10~%) and also with different initial widths
]/J;r set functigns of bell)—curve shape VII. JOINT UNFACTORABLE FUzzY SETS. TRANSFORMED

Fig. 8 plots the SEs against the number of learning cycles. METRICS
The simulation results show that the sinc set function often con-Thijs section considers a class of joint set functiens R —

verged faster and more accurately than did the other set fung-1] that do not factor. We focus on a small class of metrical
tions. The 2-D and 3-D cases with factored set functions showgght set functionsu;[z] = g(d(x;m;, K;)) = g(d;(x)) for

like patterns. The pie charts in Fig. 9 show the frequency wilyme metrial; and some scalar functignsuch as a Gaussian,
which each set function performed best in the test cases for fhg@ngle, or sinc set function.
scalar sets and factorable (product) sets. Note that the sinc shagge first define the metriad; () = d;(z;m;,K;) as a
wins in one and two dimensions while it loses to Gaussian agfadratic form with positive definite matrik
hyperbolic tangent shapes in three dimensions.

A joint set functiona; : R* — [0,1] measures the degree
to which inputz € R" belong to the fuzzy or multivalued di(z)? = (xz — m;)" K;(z — m;). (94)
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Titargla SAM [4.5%) So K; is analogous to the inverse covariance matrix
i Jusdatc SAM (1.2%) (1/2)K ! andm; is analogous to the mean vector in the
s normalized joint Gaussian probability density [23]. The
¥ aree & ! .. . . .. .
Lapiacn AN (0] joint Gaussian set factors when the positive definite matrix
Bine SAM (44 T5) K; is diagonal.
| LRt Sl (B fJu} The joint Gaussian set function has the Mahalanobis dis-
Hyparbokb tangant SAM (85%) . 1 . .
M R tance as its exponent K is a covariance matrix. We
| Hypakois sace SAM (0% - 7 . ’
| Differontial Ingisti SAM [2.56%) apply this method to scalar set functions to create metrical

joint set functions below.
e 3) Metrical parabolic set functionThe set value linearly falls
Councraic SAM (1.4%) as the square of the distanéggrows
N Geasion Sk %)
e B 1—dj(2)2, i dj(e) < 1
iy el = {5~V L ©7)
| Logistic SAR (10.4%)
Hyporbolo tangant SAM (0]
Hyperbolic secant BAM {1.8%) 4) Joint CauchyThe joint Cauchy set function derives from
(b) Citfnrantial logistic SAM {1.2%) the probability density function of joint Cauchy random
variables [25]. We discard the constant that normalizes
Trangle SAM {T.4%) the density function to a unit integral and obtain the joint

Crancinaic SAM (1.9%) Cauchy set function

Gaassan =AM [20.5%)

Caiedy SAM (4 795

Laplace SAM (5.2%:) 2] 1 (98)
Binez BAK [ 13.3%) a;| x| = .

Logistic SAM (18 19) ! 1+ (z— mj)TKj (- mj)](n+l)/2

Hyparbokc Bangant SAR [15.1%)
Hyparbokc ascand SAM {1.0%)
Cettarential kegistio SAM [B%

5) Metrical Cauchy set functiofmhis set function differs from
the actual joint Cauchy density in (98). It has a simpler form

[T

Fig. 9. Proportions of test cases where each function performed best.

Multidimensional sets are factorable (product) sets of the scalar ones. The 1 1

winners in each case are from the best learning rates from 10~° to aj[a:] = 14 di(z)2 = 1 NT K . N (99)
= 10—*. (a) 1-D, (b) 2-D, and () 3-D test cases. +d;(x) + (@ —my)T K (x —my)

6) Metrical Laplace set functiorlhe scalar Laplace function

Then we can create metrical joint set functiansfrom this forms the metrical set function as

metric d; and the scalar set functions a;[z] = g¢(d,;(x)).
Below we show the cases whentakes the form of a piece-
wise linear functiory(xz) = az + b (this gives a metrical tri- a;z] = exp{—d;(z)} = ¢ VETm)TKi@=my) 0 (100)
angle), parabolic functiop(z) = ax? + bz + ¢, Cauchy func-
tion g(z) = 1/(1 + 2?), Gaussian functiog(z) = =,
Laplace functiory(z) = ¢~1#1, sinc functiong(z) = sinz/z,
hyperbolic tangeng(z) = 1 + tanh(—=?), logistic function
g(z) = 25(—=2%) where S(z) = 1/(1 + ¢=*), hyperbolic
secantg(xz) = sech z, or the derivative of logistic function
g(z) = §'(x). |
1) Symmetric metrical triangle set functichhis set function o] = sin(d;(z)) (101)
CLJ X
defines the degree to which an input vectag R™ belongs d;(x)
to setA; with linear function

This metrical set function reduces to the factorable product
set if the positive definite matriX; is diagonal.

7) Metrical sinc set functionThe scalar sinc function forms
a joint metrical set from a metri¢; as

8) Metrical logistic set functionThe logistic function defines

| = di(x), if di(z) <1 this metrical joint set as
—d:(x , | Az <

wlid= @) = {5~ i (95)

’ 2

[t e (d; (07 (102)

a;lz] =

2) Joint Gaussian set functiofhis set function derives from
the probability density function of a jointly normal random 9) Metrical hyperbolic tangent set functiofThis metrical
vector [23] joint set has the form

a;[z] = e~ = e (@mmy) T K (w—my) (96) a;[z] = 1 + tanh(—d;(x)?). (103)
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% -2 -2 %

2 -1
Fig. 10. Metrical joint set functions withe = 0 and K = | 11 | and?? distance. (a) Symmetric metrical triangle set function. (b) Metrical parabola set

function. (c) Joint (metrical) Gaussian set function. (d) Metrical Cauchy set function. (e) Metrical Laplace set function. (f) Metrical siratisat {gh Metrical
logistic set function. (h) Metrical hyperbolic tangent set function. (i) Metrical hyperbolic secant set function. (j) Metrical differentta sgifunction.

10) Metrical hyperbolic secant set functiovle form the met- ¢ : R — R can be any generalized scalar set function. Popular
rical joint set from the hyperbolic secant function as examples of; are triangle and Gaussian functions.
We also tested the metrical sets with theor “city block”

a;[x] = sech(d;(x)). (104) metric

1 . " Ty — m”
dj(x) =) TJ (109)

11) Metrical differential logistic set functiorlhe derivative of ~ 5

the logistic function also defines a metrical joint set ‘
whereo’ > 0in (107). Thel' set functionz} has the form

a;[z] = 45(d;(2))(1 — S(d;(2)))- (105) B )
Ty — M
- . o ajlz] = g (dj(@) =g | D |—=| |- (110)
Fig. 10 shows some of the above joint set functions with cen- i=1 7
ters atm; = 0 and withK; = 2 1 _ _ _
_ -1 1 . Fig. 11 shows some of thB metrical sets withm = 0 and
_The metricd; reduces to thelvae|ghteI:? metric for the 5 = [2 1] for the 2-D input case. The functiontakes the form
diagonal matrixK; = diag((x;)*,...,(x})%) d;(z) = ofasymmetrical triangle, parabola, Gaussian, Cauchy, Laplace,
Z;L:l |,{;1($i _ m§)|2. So we can generalize this metricabinc, logistic, hyperbolic tangent, or differential logistic func-
measure to the weightgd metric tion. . .
We now consider the extreme case of thenetrical set func-
1 tions whenp = co. This gives the “max” metric. Thé&* set
"L ; function has the form
di(z) = Z |K% (i — mj)|p (106)
i=1
0 lr] = g (d5°(2)) (111)
for p > 0 and use it to create joint metrical set functions. We m g —mi |7 g
replaced the weights!, from the diagonal matri¥ with scales =g lim [ Y |=—— (112)
1/c%. So we replacegk’ (z; — m?)|? with [(z; — m?)/ok[P to PNl %
conform with the form of factorable sets in Section IV-B. The T —
I? metrical distance has the form =g| max |——2|]. (113)
1<i<n O'j
P 1
By = |3 Li Ty _ (107) Note tha/(z; —m})/o%| is never negative. So if(x) is mono-
! pet 7 tone decreasing far > 0 (such as for a triangle or Gaussian
function or any unimodal function whetg peaks atc = m;)
So thel” metrical set function? follows as then
T — mi»
oo _ t J
a%(z) = g (d(x)) (108) a"le] =g | max o (114)
for some scalar functiop : R — R and ford’ as in (107). — min g Li —im’; (115)

This gives a general form f@f metrical sets. The real function 1<i<n o



IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 9, NO. 4, AUGUST 2001 651

Fig. 11. Metrical joint set functions with: = 0, 0 = [2 1], and!* distance. (a) Symmetric metrical triangle set function. (b) Metrical parabola set function. (c)
Metrical Gaussian set function. (d) Metrical Cauchy set function. (e) Metrical Laplace set function. (f) Metrical sinc set function. (g) Mgisteaskt function.
(h) Metrical hyperbolic tangent set function. (i) Metrical hyperbolic secant set function. (j) Metrical differential logistic set function.

T; — TnZ
R (116)

= I Gy

1<i<n ot

the /> metrical joint sets:3° with ¢ monotone decreasing are
equivalent to the factorable sets with the min conjunctive oper-
ator. Fig. 12 shows the sets of points that give the same distance
from the origin with/? metric forp = 1, 2, and. So factorable
set functions with min bound the metrical set functions in (108)
through the” metric in (107).

The shape and orientation of the “hills” of if-part fuzzy sets
may help fuzzy systems better approximate certain functionstiff: 12
that region. So we transform the translated input ve¢tor-

D=0
J p=2
holds for a scalar set functiaty; (x;) = g(|(z; —m})/a}|). So

Spheres in different metric spaces.

m;) € R"to Aj(x — m,) where4; : R* — R"is any pe
linear or nonlinear operator [16]. We transform the translated =/ (@ —m)T\ K] VEK;(x —m;) (120)
vectorz — m; instead of the input vectar because it is easier = IVE; (@ —m))|2. (121)

to keep track of the “center” vecten; (if we use a unimodal

set function such as the Gaussian and some mappjnguch

thatA;(z) = Oifand only ifz = 0). __Thishasthe fornj A, (x—m;)|, whered; = \/K, andp = 2.
Here we show the simple case of alinear transformation. Sayjsers may encode more useful information in the nonlinear

Ajis ann x n matrix A; € R™*". Then define the norm (or operatorA; to reduce the number of fuzzy rules and perhaps

distance with the vector;) as lessen the rule explosion. Finding good combinations of non-
linear mapsA; and metrics?; and functional formy remains
di(z) = [|A;(x —my)ll, (117) an open research problem.

for the jth metrical set function;[z] = g(d”(z)) as above. The

p-norm||z||,, of a vectorr = [z1,...,z,]7 € R™ has the form
VIIl. SUPERVISEDLEARNING IN SAMS. METRICAL SETS
- » ! The learning laws for the then-part set centraiggnd vol-
21l = Z i ’ (118) umesV: remain the same for any if f Only th
P f y if-part fuzzy sets. Only the

learning laws for if-part set parameters have new forms. The
joint metrical set functions depend on the mettjcSo we tune
the parameters that define the metfjcFor the quadratic metric
di(z)* = (x — m;)* K;(z — m;) we tune the vectom; and

the matrix K ;

So we can rewrite the quadratic distancg(z) =
V(z—m)TK;(x —m;) in (94) in the form of (117). The
matrix K; is symmetrical nonnegative definit&; = K > 0.

SoK,; = /K,;\/K; and\/K; = (\/K;)* [29]. This implies

that

m;(t+1) =m;(t) — Vo, E (122)
dj(x) = \/ (. —m)TK;(z —m;) (119) K(t+1) = K;(t) — Vi, E. (123)
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The partial derivatives (or gradients in the vector-matrix cases)10) Metrical hyperbolic secant set function
follow from (24) in like manner

da;
v o a_Ea_F%V . 124) a—dj = —tanh(d;(z))a,[z]. (135)
mi o or 8aj 8dj ™y
OF OF Oa; 11) Metrical differential logistic set function
E=_— " IVg.d. 125
Vi E = 3F bay 0d, © Y (125)
00 = —S(d(e)asl] (136)
ad,; = i(z))a;|x|.

We have derived the first two partial derivatives in (26) and (27).
The partial derivativéda; )/(dd;) depends on which scalar set

function we use to create the joint set function. These partial derivative§a;)/(9d,) hold for any metricd,
1) Symmetric metrical triangle set function that users might choose. They are independent of the function

if dj(l’) <1

a; _ [ —1,
od; 10, else,

2) Metrical parabola set function

% . —2dj(.7}), if dj(l’) <1
ad; 0, else.

3) Joint Gaussian set function

9a;

ad, = —2d;(z)a,[x].

4) Joint Cauchy set function

da; _ di(z)
ad, ~ —(n+ 1)W% []-

5) Metrical Cauchy set function

8aj - ) 12
ad; ~ 2d;(x)a;[x]".

6) Metrical Laplace set function

8aj
8de = —CL] [.I']

7) Metrical sinc set function

8aj_ 1 . —a;
7, = a) @)~ ).

8) Metrical logistic set function

da; _
gq, ~ ~ L@ =aleDajl]

9) Metrical hyperbolic tangent set function

aaj _ . . :
S = ~25()(2 = e fo]

(126)

(127)

(128)

(129)

(130)

(131)

(132)

(133)

(134)

d; that we use to transform the input vectointo the scalar

We now derive the gradients of the metrigwith respect to
the vectorm; and matrixK; for the quadratic casé;(z)? =
(x —m;)' K;(x — m;). The gradients have the form

ij dj = — dj(l’) Kj(a: - mj) (137)
V](jdj == Wl(x)(l’ - mj)(a: - mj)T (138)

sinceK; = K7 .

We might use diagonal matrices; to reduce the compu-
tation. This reduces the quadratic formdfto a weighted?
norm. We can also use ayy norm to computel’ (x) as men-
tioned earlier. We also examine set functions fromitheorm
as in (109). The partial derivatives have the form

ad: 1
b= —sgn(xp —mY) — (139)
ot~ e =) Lo
od: xp — mk~
ok s :_7| b - 2J| (140)
9; (oF)

for af > 0. The learning laws for the set functions that use
thel? metric in (106) follow in like manner. We now derive the
learning laws for the metrical set functien[z] = g(d%(x))
whered!, takes the formin (117) and; is a matrix4; € R"*".
Let [A4,]; denote theith row of ann x n matrix A; and put

my = [mj,...,m}]". We can rewrite the norn#, (z) as
&} () = || 4; (= — my)llp (141)
= <Z 4] — mj>|f“> : (142)
=1

So the gradient (in row vector notation) for thih row of A; is

1
1 [ v
Via, 45 = » <Z |[A;]i(x — mj)|p>
=1

X VA Z |[As]i(z = my)P (143)
=1
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— (@) Vi e - mp @e)
= iy Aol = mP s = my)
x Vi (At — m;) (145)
1 1
= Akt = )
x sgn([Al (@ — my)) (@ —m;)". (146)

The gradient of the metrid” with respect tom; (in column
vector notation) follows in like manner

L1
1 (& ’
Vi ) = <Z [ENEES mjw")
=1

X Vin, Z [[A)iw = my) P (247)
:p (dp vaj [A,]i(x —m;)|? (148)

P 1. N
= W ;p|[AJ]Z(‘T - m])|

X Vo, [[As]i( — my)| (149)
- dftx) ; |[A]i(= )Pt
x sgn([Ay]i(x —my)) (=[4,17) (150)
1 & ot
) ; |[4;]i(z — m;)|
x sgn([Ay]i(z — my)) 47 - (151)
We can further tune the parametein the {? metric in (106)
8d§»’ _ L ) Indi(z
o =@ ()

1
1 (& i i ’
+ <Z 55 (2 = m3) |p>
=1

(3o o i s )
=1

(152)
1 1
= le@)md( )+ L1
P P (@)
(3205 sl o))
- (153)

The partial derivative when the metd(} has the form (117) has

the similar form

A NS
o T T
x (Zm] x—mj>|P1n|[A1<x—mJ>|>.

(154)
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Triarsgie SAM (50%)

Cusdmlic SAM (25%)
Gaussan SAM | HR T
Cauchy SAM (0¢8]

Laplesa SAM J09%)

Sirc SAM (%)

I_I ol SAM (0]

__ [Hyperbobc tengent SAM (0%
| [Hyparholic secant SAM (T.19%})
{a) Ditimniial kegete SAM (7.1%)

Triangie SAM (§0.6%)
Quadrbic SAM [B0%)
Coussian SAM [5.8%)

Cauchy SAM (5 E8%]

Laplacs SAM [55%)

Sinc SAM [2.8%])

Logpsio SAM [1.B%]
Hypaibolis magenl SAM {2.0%)
Hyparbolic sscant SAM {5.6%)
Diflarentinl logistic SAM [9.79%)

Fig. 13. 12 metrical sets. Proportions of test cases where each metrical set
function performed best. (a) 2-D test cases. (b) 3-D test cases. Note that the
metrical triangle and the metrical quadratic switch from first and second place

for the 2-D test cases to second and first place for the 3-D test cases.

Trangls SAM (1.5%])

Chaacratic SAM (1.8%)
Gaussian BAM (7 .1%)

Cauchy SAM {1.8%)

Lapiace SAM (11%)

0| Zino SAM [50%)

Losgintc SAM (5 5%)
Hypartadic langanl SAL [1.4%)
Fyperolic secant SAM [15 9%)
':i|'| Ciffererdnl logistic SAM 0|

Trangle SAM (23

Chuscienlic Sl 13.1%)
Gausssinn BA8 {15,250
Caucrey SAM |E.2%)

Lapkice SAM (41 65%)

Sino SAM (0E%)

Logetic SAM i5.7%)
Hypsrbolic tamgsnt SAM (5. 75]
Hyperbalio sooant SAM (4 5%)
Diffwrisriinl logisic Sak (4 5%)

Fig. 14. I* metrical sets. Proportions of test cases where each metrical set
function performed best. (a) 2-D test cases. (b) 3-D test cased* rhetrical

sinc goes from winner for the 2-D test cases to loser for the 3-D test cases. The
I*-metrical Laplacian emerges as the winner for the first time in the 3-D case.

IX. SIMULATION RESULTSII: JOINT METRICAL SETS

Figs. 13 and 14 show the second results of quadiatiadi*
metrical sets in 2-D and 3-D test cases. Fig. 13 shows that the
metrical triangle performs best in the 2-D experiments while
the I2-metrical quadratic performs second best. This outcome
reverses in the 3-D experiments. Therelthenetrical quadratic
if-part set performs best while the metrical triangle performs
second best. Fig. 14 shows that tHemetrical sinc wins for
the 2-D test cases but loses for the 3-D test cases (when the
['-metrical Laplace wins).
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A. The Second Curse of Dimensionality and Unfactorable Note that the set functiod; may not count as a factorable
Metrical Sets set function since each compon@rjuttakes as input the whole
vectorz € R™. Then theith row of A; transforms the input
Our final result is negative: even unfactorable joint set fungectorx into a scalat;. Therefore{z;}?_, may not be inde-
tions can suffer the second curse of dimensionality of spikingséndent and so the theorem (Borel-Cantelli lemma) [9] need
in high dimensions. The following theorem illustrates this claimot apply. The theorem does applyAf is diagonal.
for metrical set functions that depend on diagonal matrices. The
result may also hold for many nondiagonal matrices.
Theorem: Suppose that a metrical set functiefj has the

form X. CONCLUSION. THE SEARCH GOESON

At least three main conclusions follow from the above if-part

a(x) =g (dz;(x)) (155) fuzzy—;et definitions, Iearning laws, and simulations .of h_ow
these if-part sets affect adaptive fuzzy function approximation.

for the ? metricd?(a:) = || A;(z — m;)||,- Here A, is ann x The first _conc_lus_mn is that_c_urses of dimensionality alone will
n positive-definite diagonal matrix angl : R, — [0,1]is a IMPOSe tight limits on empirical searches for the best shape of
monotone decreasing function such that) — 0 an’ _, ~. Parametrized if-part fuzzy sets. The complexity of the learning

Thena? suffers the second curse of dimensionality: it collapsé@Ws further compounds this computational burden. It limited

to a spike in high dimension asgrows toc. our simulation experiments to no more than three dimensions.
Proof: Recall that factorable set functions with min contN€ Sets that performed well in these smaller dimensions may
junctiona;(z) = min, g(|(z; — m})/dﬂ) collapse to spikes in not do so in higher dimensions_. The winner histograms even
high dimensions for monotone decreasingich thag(z) — 0 changed dramatically when going from one to two to three
asz — oo (see Section I1). So we need show only that for dimensions. The second dimensionality curse of set spikiness
given metrical set function? in (155) there exists factorable will also have greater force for searches through the spaces of
set functioniz,; (generated from the same functigythat bounds four- and higher dimensional set functions.
aj: aj(x) < a;(x). Then the metrical sef; collapses to a spiky The second conclusion is that common sense or even expert

surface in high dimensions. intuition may offer little guidance for picking good if-part sets in

For a matrixA; it follows that higher dimensions. Indeed, they may mislead even in the scalar
case. The frequent winning status of the sinc set in the simula-
ProN , , tions shows that. This seems to be the first time anyone has used
(@) = 9(ll45(z = m;),p) (156) the sinc function as a fuzzy set and yet such sets may well have

= gl Az = Ajmylp) (157) improved the performance of many real fuzzy systems. Surely

= g(||Z — v |) (158) there are many more scalar if-part sets that would perform even

< g9(|1F — mylloo) = a5°(x) better for these and other test functions and that would appear

even less intuitive or have less linguistic meaning than does the
: ) sinc function. Again, the engineering goal of accurate function
andg : Ry — [0,1] is monotone decreasing  (159);55oximation will tend to lead the search for the best if-part
=g (max | & — |) = min g (|&; — m}|) set far beyond where the earlier goal of accurate linguistic mod-
‘ i eling would take it. And the success of the sinc set and the
o N hyperbolic-tangent bell curve further suggest that the familiar
= mina;(x) = a;(w) (161)  Gaussian or Cauchy or other familiar unimodal curves will not
emerge as optimal set functions in other searches.
whered’(z) = g(|[A;]ix — [A;]imy]) and[A;]; is theith row The third conclusion follows from the other two: The search

sincel|z||, = ||x]|- (€€ Lemma below)

sinceg is monotone decreasing (160)

of A;. Somin; @ () boundsa?(x). Q.E.D. forthe best shape of if-part (and then-part) sets will continue.
Lemma: ||$||;2 |#]|oo if &= [#1,...,20] € R There are as many continuous if-part fuzzy subsets of the
Proof: Considerz € R™. Then real line as there are real numbers. The set of all if-part fuzzy

subsets of the real line has the higher cardinality of the set of all
n subsets of the real line. Fuzzy theorists will never exhaust this
Z |zi|? = |z;]F forallj=1,...,n (162) search space. Each theorist can draw different lines through the

i=1 space to form set taxonomies or to focus the search or to pose
n 1r narrow or broad optimality problems. We suspect that many
& <Z |a:i|p> >|z;| forallj=1,...,n (163) such searches will take care to distinguish factorable from
i=1 unfactorable sets though they may well ignore our distinction
n 1/p n r of parametrized versus nonparametrized sets. The unfactorable
& <Z |xi|1“> > max |z;| = lim <Z |xi|”> sets hold the promise that they may lessen if not defeat ex-
i=1 ’ TN ponential rule explosion even if they may still suffer from set

(164) spikiness. These searches may be endless in principle but that
itself does not mean that they are not worthwhile. They can on
So||z]lp > [|2|eo- Q.E.D. occasion produce new tools.
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APPENDIX
THE STANDARD ADDITIVE MODEL (SAM) THEOREM

This Appendix derives the basic ratio structure (6) of a stan-
dard additive model fuzzy system and review the local structurrgl
of optimal fuzzy rules.

SAM Theorem:Suppose the fuzzy systeli : R* — RP
is a standard additive modeF'(x) Centroid B(z)) =
Centroid > -, wja;(x)B;) for if-part joint set function
a; : R* — |0,1], rule weightsw; > 0, and then-part fuzzy set
B; C RP.ThenF(z) is a convex sum of the: then-part set
centroids

m

= _pi(a)e.

i=1

Y wiai(@)Vie
S wiai(x)V;

F(z) =

655

_ X wiai(@)Vie;

Yin wia(w)Vi

(176)

Now we give a simpléocal description of optimal lone fuzzy
es [13], [14]. We move a fuzzy rule patch so that it most
reduces an error. We look (locally) at a minimal fuzzy system
F : R — R ofjust one rule. So the fuzzy system is constant in
that region:F' = ¢. Suppose thaf(x) # ¢ for « € [a,b] and
define the error

(fz)—e?.  (A77)

We want to find the best plac& So the first-order condition
(165) givesVe = 0 or

de(x) f(x)
The convex coefficients or discrete probability weights 0= oz = 2(f(z) ~¢) o9r (178)
..., pm(z) depend on the input through o
Pr(@): o pm() dep P g Then f(x) # ¢ implies that
wja;(z)V;
H(2) = =t 166
pite) 2 iz wiai(x)V; (160) ag(;;) =0e ag(;) =0 (179)

V; is the finite positive volume (or areagf = 1) andc, is the
centroid of then-part se®;
Vi = (167)

bilyt, - Up)dur ... dyp >0

Rr
cszPbe(y177yp)dy1dyp
’ fRP bj(y17~~~7yp)dy1...dyp

(168) 1]
Proof: There is no loss of generality to prove the theorem [2]
for the scalar-output cage = 1 when# : R* — RP. This
simplifies the notation. We need but replace the scalar integralé‘o’]
over Iz with the p-multiple or volume integrals oveR? in the

proof to prove the general case. The scalar gase 1 gives (4]
(167) and (168) as
o0 (8]
= ybi(y)d
J f‘;’.ﬁ’y i(y) dy arg D
oo bily) dy
[8]
Then the theorem follows if we expand the centroid ®f
and invoke the SAM assumptiafi(z) = Centroid B(z)) = 9
Centroid 37~ wja;(x)B;) to rearrange terms [10]
= yb(y)d
() = Centroid B(a)) = == W W0
S0 0y) dy a2
Syl wibl(y) dy
= ES m 7 (172) [13]
f—oo Ej:l wjbj(y) dy
o0 mo (VD [14]
_ ffgg Y %:1 wja;(x)b;(y) dy (173)  [15]
S0 2o wias(2)by(y) dy a6
> wia(x) [T ubi(y) dy
=== = (174) 17
i wiag(@) [22bi(y) dy
m 7w dy
T owsai(x Vfooif [18]
_ 21_1 i (2)V; V; (175)

> wiai(x)V;

atr =
shows how fuzzy rule patches can “patch the bumps” and so
help minimize the error of approximation.

Z. So the extrema of and f coincide in this case. Fig. 4
O
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