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Abstract

This paper presents an analog current-mode VLSI implementation of an unsupervised clustering
algorithm. The clustering algorithm is based on the popular ART1 algorithm [1], but has been modified
resulting in a more VLSI-friendly algorithm [2], [3] that allows a more efficient hardware
implementation with simple circuit operators, little memory requirements, modular chip assembly
capability, and higher speed figures. The chip described in this paper implements a network that can
cluster 100 binary pixels input patterns into up to 18 different categories. Modular expansibility of the
system is directly possible by assembling anN×M array of chips without any extra interfacing circuitry,
so that the maximum number of clusters is 18×M and the maximum number of bits of the input pattern
is N×100. Pattern classification and learning is performed in 1.8µs, which is an equivalent computing
power of 4.4×109 connections per second plus connection-updates per second. The chip has been
fabricated in a standard low cost 1.6µm double-metal single-poly CMOS process, has a die area of 1cm2,
and is mounted in a 120-pin PGA package. Although internally the chip is analog in nature, it interfaces
to the outside world through digital signals, and thus has a true asynchronous digital behavior.
Experimental chip test results are available, obtained through digital chip test equipment. Fault
tolerance at the system level operation is demonstrated through the experimental testing of faulty chips.

  I. Introduction

Two types of neural hardware engineers can be distinguished. The first designs “general purpose”

hardware accelerators or systems that speed up neural algorithms running on conventional computers

[4]-[12]. This kind of hardware allows considerable flexibility in the topology and operations of the neural

systems. In this way algorithm researchers have a powerful tool to further develop neural algorithms and

industry engineers have some attractive chips that significantly speed up their neural commercial products.

The second type of hardware engineers are those who design a real-time system for a specific application.

They must select the best-suited algorithm and map it into hardware. This achieves a close-to-optimum

efficient hardware for a limited range of applications. The work described in this paper falls into this second

category of hardware engineering. The specific application is real-time clustering of binary input patterns.

A clustering device is a device able to build categories from a collection of patterns. Areal-time

clustering device has to be able to do this at the speed of arrival of the patterns. There are some clustering

algorithms [13]-[18] that need to be trained off-line to build the categories. For a real-time clustering device,

however, it would be desirable to use an algorithm that can be trained on-line: if a new pattern arrives the

algorithm updates it internal knowledge (instead of erasing all the accumulated knowledge and retrain with

the old and new collection of patterns).

For the second type of neural hardware engineers, the issue of efficiently implementing in hardware a real

size neural network is not a trivial task. Many neural network algorithms are available in the literature which

have been developed, studied, and optimized for applications through computer and/or software based

systems. Consequently, when designing a hardware realization, engineers face many problems like excessive
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interconnectivity, high resolution of weights, high precision of operations, complicated operator requirements

(e.g., integrals and derivatives), high number of neurons required for a real-world application, etc. Many

times some of these requirements can be relaxed, the topology modified, or the operations simplified, with no

significant deterioration of global operation of the neural system but with a considerable boost in the hardware

performance. Modifying neural algorithms to make them more VLSI-friendly and produce more efficient

hardware should be a common practice among neural hardware engineers of the second type [19]-[22]. After

selecting an appropriate neural algorithm the next step consists of studying how far the algorithm can be

simplified without performance degradation. The simplifications have to be hardware-oriented, so that the

final combination of “theoretical algorithm” + “ hardware circuit technique” results in a high performance real

time system. The success of the hardware system depends on the selection of the algorithm, the selection of a

powerful circuit design technique, and how the algorithm is modified to efficiently “marry” the circuit

technique resulting in an optimum performance final system.

In the case of our application, real-time binary patterns clustering, we chose the ART1 algorithm mainly

due to the attractive hardware-oriented properties, as well as the theoretical computational properties that will

be highlighted below. We also chose to slightly modify the mathematical ART1 algorithm to obtain more

efficient hardware. This modification (described in the next Section) allows the use of simpler operations

while preserving all the computational properties of the original ART1 architecture [2], [3]. As an extra

bonus, the hardware circuit introduces a significant speed improvement as it automatically parallels the

sequential ART search process [1] inherent in the mathematical neural algorithm.

The advantageous features of the ART1 algorithm are described next, as well as different possible

mathematical levels of description:

A. Computational Properties of the ART1 Algorithm:

From a purely algorithmic point of view, the ART1 architecture is capable of learning, in an unsupervised

way, recognition codes in response to arbitrary orderings of arbitrarily many and complex binary input

patterns. This architecture has a collection of interesting computational properties [1]:

• Self-Scaling: The self-scaling property discovers critical features in a context-sensitive way.

• Vigilance or Variable Coarseness:There is a vigilance parameter ( ) that allows tuning the

coarseness of the categories to learn.

• Subset and Superset Direct Access:The system is able to classify a new input pattern as belonging to either

a subset or a superset category, depending on global similarity criteria. No restrictions on input

orthogonality or linear predictability are needed.

• Stable Category Learning:In response to an arbitrary list (finite or infinite) of binary input patterns,

learning is assured to self-stabilize within a finite number of learning trials.

• Biasing the Network to form New Categories:There is a parameter that can bias the tendency of the system

to code unfamiliar patterns into new categories, independent of the vigilance parameter.

• On-Line Learning: The ART1 algorithm learns as it performs, as opposed to other algorithms, where first

the algorithm must be trained and second, it can be used in an application. The ART1 algorithm can

incorporate new knowledge as it is being used. This property makes ART1 an excellent candidate for

real-time clustering.

0 ρ 1≤<
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• Capturing Rare Events:ART1 is able to identify and build clusters of events that appear with a very low

frequency. Even if an event corresponding to a clearly distinct cluster appears only once, ART1 is able to

detect it while building and preserving the corresponding cluster or category.

B. Hardware-Oriented Attractive Properties of the ART1 Algorithm

In performance comparison of hardware implementations, a common figure of merit is the number of

interconnections per second. More refined figures have recently been proposed that include resolution and

precision [23]. However, these figures would be reasonably fair criteria for the first type of hardware

engineering mentioned above, thegeneral-purpose one. In order to compare hardware systems of the second

type, thespecific-application neural hardware, some global figure must be used that evaluates the overall

system performance. Usually this figure will be application dependent. In our case, since we are concerned

with a real-time clustering application of binary input patterns, an appropriate figure of merit might be

(1)

where,

• number of patterns processed/second is the speed at which patterns are classified and learned (including

the number of learning trials required). This speed generally depends on the patterns themselves, and on

the knowledge already stored in the system. Therefore, this speed can be given as an average or as the

slowest case measured.

• pixels is the maximum number of pixels of the input patterns.

• categories is the maximum number of categories the system is able to form.

As we will see later in the Section on experimental results, the chip described in this paper is able to cluster up

to 18 different categories of binary patterns with 100 pixels, while classifying and learning each pattern in less

than 1.8µs. Since ART1 learns on-line, 1 iteration of input patterns presentations provides the system with

sufficient knowledge to perform properly1. This results in appc/s of

(2)

If we would like to obtain the same performance usingBackpropagation based hardware, and assuming the

network would learn with 10,000 iterations of patterns presentations, this means that a speed of 180ps would

be needed for each pattern classification and corresponding weights update. Assuming this task could be

performed with a Backpropagation network with 100 input neurons, 5 hidden-layer neurons, and 5 output

neurons2 (which means a total of  interconnections), and that the speed of feedforward

classification is the same as for feedback learning, hardware able to perform

(3)

1.  The input patterns set can be iterated several times to stabilize the internal weights, but this is not necessary for the
system to start working.

2.  Optimistically, a backpropagation net with 5 output nodes might be able to code up to  categories.

ppc/s
number ofpatterns processed

seconds
----------------------------------------------------------------------- pixels categories××=

ppc/s
n patterns

1 iteration n patterns× 1.8µs×
--------------------------------------------------------------------------- 100 pixels 18 categories×× 1.0 9×10 ppc/s= =

100 5 5 5×+× 525=

2
5

2 525 connections×
180ps

------------------------------------------------ 5.83 12×10 connections/s plus connection-updates/s=
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would be needed. For the chip described in this paper, since it is based on the powerful ART1 algorithm, the

above performance can be achieved with a hardware of only connections/s plus

connections-updates/s, as discussed in Section IV.B.3.

Note that the Backpropagation algorithm is not appropriate for clustering applications, and comparing it

against ART1 is slightly unfair. There are other algorithms available in the literature that have been developed

specially for clustering applications [13]-[18]. However, they usually do not provide all the computational

properties mentioned in subsectionA previously, specially the “On-Line Learning” property which is crucial

for real-time clustering, or they present serious difficulties when mapped into hardware.

Another hardware attractive feature that an ART1 based implementation offers with respect to others, is

that the interconnection weights do not have to be analog, as shown in the next Section. Most of the neural

algorithms reported in the literature require a real-valued set of weights defined within a certain interval.

These weights can be discretized in a number of digital steps, but the granularity required for proper operation

of the system is usually very fine (around 16-bits for the Back-Propagation algorithm [24]). Even worse, in

some cases the granularity requirements become more severe as the size of the system increases. For example,

in a BAM system [25] of  neurons, storage capacity has been heuristically estimated to be around

 [26], where  is the average maximum number of patterns that can be stored. The

resolution required by the interconnection weights in this case is at least . In the chip described in this

paper, since it is based on the ART1 algorithm and requires only binary-valued weights, the resolution of the

weights is not affected by the size nor the storage capacity of the system. This, and the non necessity of analog

weights is one of the most hardware attractive features of the ART1 algorithm.

Another consideration to take into account during the design of a hardware system is how it scales up with

size and performance. We have already mentioned that some neural systems need to increase their weight

resolution as they scale up. Another feature is how their size and interconnectivity scale up with pattern size or

storage capacity. For an ART1 based system, the number of neuronsN in the bottom layer is the number of

pixels of the patterns, the number of neuronsM in the top layer is the maximum number of categories, and

 is the number of synapses. This system scales up linearly with storage capacity (M) and input pixels

(N). For a BAM system, for example, the size scales quadratically with the storage capacity and the number of

pixels.

Section V will present other scaling considerations, more directly related to the hardware technique

selected. In the case of an analog hardware, random and systematic errors due to fabrication process variations

will appear. A neural network can usually cope very well with random errors, even if the size of the system

increases. However, systematic errors may accumulate as the system increases and may render the complete

network useless as it scales up. The chosen circuit technique must be either insensitive to the accumulation of

systematic errors, or allow for some kind of calibration technique to overcome them.

C. Description Levels of the ART1 Algorithm:

In the original ART1 paper [1] the architecture is mathematically described by sets of Short Term Memory

(STM) and of Long Term Memory (LTM) time domain nonlinear differential equations. A valid assumption

also done by Carpenter and Grossberg, is to make the STM differential equations settle instantaneously to

their corresponding steady state, and consider only the dynamics of the LTM differential equations. In this

4.4 9×10

N M×
np N M×( ) 1/4

= np

np 1+

N M×
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case, the STM differential equations must be substituted by nonlinear algebraic equations that describe the

corresponding steady state of the system. Furthermore, Carpenter and Grossberg also introduced the fast

learning mode of the ART1 architecture, in which the LTM differential equations are also substituted by their

corresponding steady-state nonlinear algebraic equations. Thus the ART1 architecture originally modelled as

a dynamically evolving collection of neurons and synapses governed by time-domain nonlinear differential

equations, can be behaviorally modelled as the sequential application of nonlinear algebraic equations: an

input pattern is given, the corresponding STM steady state is computed through the STM algebraic equations,

and the system weights are updated using the corresponding LTM algebraic equations.

At this point three different levels of ART1 implementations (both in software or in hardware) can be

distinguished:

Type-1: Full Model Implementation:Both STM and LTM time-domain differential equations are realized.

This implementation is the most expensive (both in software and in hardware), and requires a large

amount of computational power.

Type-2: STM Steady-State Implementation:Only the LTM time-domain differential equations are

implemented. The STM behavior is governed by nonlinear algebraic equations. This implementation

requires less resources than the previous one. However, proper sequencing of STM events must be

introduced artificially, which is architecturally implicit in theType-1 implementation.

Type-3: Fast Learning Implementation:This implementation is computationally the least expensive. In this

case, STM and LTM events must be artificially sequenced.

Regarding hardware implementations of the ART1 architecture, several attempts have been reported in the

literature. Ho et al. suggested aType-1 implementation [27]. Tsay and Newcomb proposed a CMOS circuit

technique that would realize a partialType-2 implementation [28]; Wunsch et al. [29] have built optical-based

Type-3 implementations; this paper presents a CMOS VLSIType-3 circuit.

The next Section explains how we slightly modified the ART1 algorithm to make it more VLSI-friendly.

Section III describes the circuit implementation of the so-modified ART1 algorithm using analog

current-mode circuit design techniques. Experimental results of an actual prototype chip are given in Section

IV. Section V highlights some potential improvements that would help to make this chip an industry-ready

commercial chip, and finally, some conclusions are made in Section VI.

  II. A VLSI-friendly ART1 Algorithm

Let us start describing theType-3 model of the original ART1 architecture. The ART1 topology is shown

in Fig. 1, and consists of two layers: layerF1 is the input layer and hasN nodes (one for each binary “pixel”

of the input pattern), and layerF2 is the category layer. Each node in theF2 layer represents a “cluster” or

“category”. In this layer only one node will become active after presentation of an input pattern

. TheF2 layer category that will become active is that which most closely represents the

input patternI . If no preexisting category is satisfactory for a given input pattern, a new category will be

formed. EachF1 nodexi is connected to allF2 nodesyj through bottom-up connections of weights3 zij
bu, so

that the input received by eachF2 nodeyj is given by

I I1 I2 … IN, , ,( )≡
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(4)

LayerF2 acts as a Winner-Take-All network, so that all nodesyj remain inactive, except that which receives

the largest bottom-up inputTj,

(5)

Once anF2 winning node arises, a top-down pattern is activated through the top-down weights4 zji
td. Let us

call this top-down pattern . The resulting vectorX is given by the equation,

(6)

Since only oneyj is active, let us call this winningF2 nodeyJ, so thatyj=0 if  andyJ=1. In this case we

can state

(7)

where . This top-down template will be compared with the original input patternI

according to a predeterminedvigilance criterion, tuned by thevigilance parameter , so that two

alternatives may occur:

a) If5  the active categoryJ is accepted and the system weights will be updated to

incorporate this new knowledge.

3.  Bottom-up weightszij
bu may take any real value in the interval [0,K], where , and  [1].

4.  In theFast Learning (Type-3) model top-down weightszji
td may take only the values ‘0’ or ‘1’.

5.  The notation |a| represents the cardinality of vectora, i.e., .

K
L

L 1– N+
----------------------= L 1>

Tj zi j
bu

I i
i 1=

N

∑=

yj

1 if Tj maxk Tk{ }=

0 otherwise




=

F  (WTA)

F1

y y

I1 I2 I3 IM

|X|

ρ|I| comparator

RESET

ji
td

z

Tj

z
bu
ij

1 2 3

1x x2 x3 x

y
2

yM

N

 Fig. 1: Simplified block diagram of the architecture of aType-3 ART1 system

X X1 X2 … XN, , ,( )≡

Xi I i zj i
td

yj
j

∑=

j J≠

Xi I izJi
td

= or X I z J
td∩=

zJ
td

z1J
td

z2J
td …zNJ

td, , 
 ≡

0 ρ 1≤<

ρ I I z J
td∩≤

a ai
i 1=

N

∑=
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b) If  the active categoryJ is not valid for the actual value of thevigilance parameterρ.

In this caseyJ will be deactivated (reset) making , so that anotheryj node will become active through

the Winner-Take-All action of theF2 layer.

Learning takes place when an activeF2 node is accepted by the vigilance criterion. The weights will be

updated according to the following algebraic equations,

(8)

or using vector notation

(9)

where parameterL has to be larger than ‘1’ [1]. Note that only the weights of the connections touching theF2

winning nodeyJ are updated. Therefore, operation of theType-3 (or Fast Learning) implementation of the

ART1 architecture is described by the algorithm depicted in Fig. 2(a).

From a hardware implementation point of view, one of the first issues that comes into consideration is that

there are two templates of weights to be built. The set of bottom-up weightszij
bu, each of which must store a

real value belonging to the interval [0,K], and the set of top-down weightszji
td, each of which stores either the

value ‘0’ or ‘1’. The physical implementation of the bottom-up template memory presents the first hardware

difficulty, because their weights need either an analog or a digital memory with sufficient bits per weight so

that the digital discretization does not affect the system performance. However, looking at eqs. (8) it can be

seen that the bottom-up set {zij
bu} and the top-down set {zji

td} contain the same information: each of these

sets can be fully computed by knowing the other set. It can be seen that the bottom-up setzij
bu is a normalized

version of the top-down setzji
td. Therefore, from a hardware implementation point of view it would be

desirable to physically implement only a binary valued set (one bit per weight) and let the hardware do the

normalization of the bottom-up weights during the computation of {Tj}. This way, the two sets {zij
bu} and

{ zji
td} can be substituted by a single binary valued set {zij}, and eq. (4) modified to take into account the

normalization effect of the original bottom-up weights6,

(10)

6.  Note that we are using the notation  to represent the vector .

ρ I I z J
td∩>

TJ 0=

ziJ
bu

new

L

L 1– zJ
td

old
I∩+

----------------------------------------------Xi
L

L 1– zJ
td

old
I∩+

----------------------------------------------I izJi
td

old
= =

zJi
td

new
Xi I izJi

td

old
= =

zJ
bu

new

LI zJ
td

old
∩

L 1– I zJ
td

old
∩+

----------------------------------------------=

zJ
td

new
I zJ

td

old
∩=

zj z1j z2j …zNj, ,( )

Tj

LTAj

L 1– TBj+
--------------------------

L zi j I i
i 1=

N

∑

L 1– zi j
i 1=

N

∑+

---------------------------------
L zj I∩

L 1– zj+
-------------------------= = =
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Considering this minor “implementation” modification the algorithm of Fig. 2(a) would be transformed into

that depicted in Fig. 2(b). The system level performance of the algorithms described by Fig. 2(a) and Fig. 2(b)

are identical. There is no difference in the behavior between the two diagrams, and the one in Fig. 2(b) offers

more attractive features from a hardware (as well as software) implementation point of view.

However, in Fig. 2(b) an extra division operation, , need be performed for

each node in theF2 layer. This is an expensive hardware operation and would probably constitute a

performance bottleneck in the overall system for both analog and digital circuit implementations. If possible,

it would be very desirable to avoid this division operation. In [2] and [3] we show that this division operation

can be substituted by a substraction operation, while preserving all the computational properties of the

original ART1 algorithm. For some sequence of patterns a different behavior can be observed with respect to

the original ART1, but the overall clustering behavior is still equivalent. Mathematically, the input to theF2

layer is now,

(11)

where LA and LB are positive parameters that play the role of the originalL (and L−1) parameter. The

condition  must be imposed for proper system operation [2], [3].  is a constant parameter

needed to assure that , for all possible values of  and .

 Fig. 2: Type-3 implementation algorithms of the ART1 architecture: (a) original ART1, (b)
ART1 with a single binary valued weights template, (c) modified VLSI-friendly ART1
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Tj LATAj LBTBj– LM+=

LA LB> LM 0>
Tj 0≥ TAj TBj



November 22, 1995 4:31 pm 9

Replacing a division operation with a substraction one is a very important hardware simplification with

significant performance improvement potential. Fig. 2(c) shows the final VLSI-friendlyType-3 ART1

algorithm, which has been mapped into hardware, as described in the next Section.

  III. Circuit Description

The operations in Fig. 2(c) that need to be implemented are the following:

• Generation of the terms . Since  and  are binary valued (0 or 1), “binary multiplication” and

addition/substraction operations are required.

• Winner-Take-All (WTA) operation to select the maximum  term.

• Comparison of the term  with .

• Deselection of the term  if .

• Update of weights.

The first three operations require a certain amount of precision, while the last two operations are not precise.

We intended to obtain a precision between 1 and 2% (equivalent to 6-bits) for our circuit, while handling input

patterns of up to 100 binary pixels. Fig. 3 shows a possible hardware block diagram that would physically

implement the algorithm of Fig. 2(c). The circuit consists of an 18×100 array ofsynapses ,

a 1×100 array ofcontrolled current sources ,two 1×18 arrays of unity-gain current mirrors

, a 1×18 array of current comparators , an 18-input

WTA circuit, two 18-output unity-gain current mirrorsCMM andCMC, and an adjustable-gain ( )

current mirror. Registers  and the NOR gate are optional, and their function is explained later.

Each synapse receives two input signals  and , has two global control signals RESET and ,

stores the value of , and generates two output currents:

• the first goes to the input of current mirrorCMAj and is .

Tj zi j I i

Tj

ρ I I zJ∩

TJ ρ I I z J∩>

 Fig. 3: Hardware Block Diagram for the modified VLSI-friendly ART1 algorithm
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• the second goes to the input of current mirrorCMBj and is .

All synapses in the same rowj ( ) share the two nodes (  and ) into which the currents

they generate are injected. Therefore, the input of current mirrorCMAj receives the current

(12)

while the input of current mirrorCMBj receives the current

(13)

Current , which is replicated 18 times by current mirrorCMM has an arbitrary value as long as it assures

that the terms  are positive.

Each element of the array ofcontrolled current sources  has one input signal  and generates the

current . All elements  share their output node, so that the total current they generate is . This

current reaches the input of the adjustable gain  current mirror, and is later replicated 18 times by current

mirror CMC.

Each of the 18 current comparatorsCCj receives the current  and compares it against

zero. If this current is positive, the output of the current comparator falls, but if the current is negative the

output rises. Each current comparatorCCj output controls input  of the WTA. If  is high the current sunk

by the WTA input  (which is ) will not compete for the winning node. On the contrary, if  is low, input

current  will enter the WTA competition. The outputs of the WTA  are all high, except for that which

receives the largest : such output, denominated , will fall.

Now we can describe the operation of the circuit in Fig. 3. All synaptic memory values  are initially set

to ‘1’ by the RESET signal. Once the input vectorI  is activated, the 18 rows of synapses generate the currents

 and , and the row of controlled current sources  generates the

current . Each current comparatorCCj will prevent current  from

competing in the WTA if . Therefore, the effective WTA inputs are , from which the

WTA chooses the maximum, making the corresponding output  fall. Once  falls, and assuming the

synaptic control signal  is low, all  values will change from ‘1’ to ‘ ’.

Note that initially (when all ),

(14)

This means that the winner will be chosen among 18 equal competing inputs, basing the election on

mismatches due to random process parameter variations of the transistors. Even after some categories are

learned, there will be a number of uncommitted rows ( ) that generate the same

competing current of eq. (14). The operation of a WTA circuit in which there are more than 1 equal and

winning inputs becomes more difficult and in the best case, renders slower operation. To avoid these problems

18 D-registers, , might be added. Initially these registers are set to ‘1’ so that the WTA inputs

LAzi j I i

Sj1 Sj2 … Sj 100,, , , Nj Nj'

Tj LA zi j I i
i 1=
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∑ LB zi j
i 1=

100
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LM

Tj

Ci I i

LAI i Ci LA I

ρ

LA I z j∩ LAρ I–

cj cj

i j Tj cj

Tj yj

cjTj yJ

zi j

LA I z j∩ LB zj– LA I z j∩ C1 … C100, ,
LA I Tj LA I z j∩ LB zj– LM+=

ρ I I z j∩> cjTj{ }
yJ yJ

LEARN ziJ I i

zi j 1=

cjTj LA I LBN– LM+= N=100( ) j∀

z1 j … z100 j, 1= = =

R1 … R18, ,



November 22, 1995 4:31 pm 11

 are high. Inputs  have the same effect as inputs : if  is high  does not

compete for the winner, but if  is low  enters the WTA competition. Therefore, initially only

competes for the winner. As soon as  rises once, the input of register R1 (which is ‘0’) is transmitted to its

output making . Now both  and  will compete for the winner. As soon as  wins once, the

input of register R2 is transmitted to its output making . Now , , and  will compete, and

so on. If all available F2 nodes ( ) have won once, the “FULL” signal rises, advising that all F2

nodes are storing a category. The WTA control signal “ER” enables operation of the registers.

A. Synaptic Circuit and Controlled Current Sources:

The details of a synapse  are shown in Fig. 4(a). It consists of three current sources (two of value

and one of value ), a two-inverter loop (acting as a Flip-Flop), and nine MOS transistors working as

switches. As can be seen in Fig. 4(a) each synapse generates the currents  and . The

RESET control signal sets  to ‘1’. Learning is performed by making  change from ‘1’ to ‘0’ whenever

, , and .

Fig. 4(b) shows the details of each controlled current switch . If  no current is generated, while if

, the current  is provided.

B. Winner-Take-All (WTA) Circuit:

Fig. 5 shows the details of the WTA circuit. It is based on Lazzaro’s WTA [30], which consists of the

array of transistors MA and MB, and the current source . Transistor MC has been added to introduce a

cascode effect and increase the gain of each cell. Transistors MX, MY, and MZ transform the output current

into a voltage, which is then inverted to generate . Transistor MT disables the cell if  is high, so that the

input current  will not compete for the winner. Transistors MS and ME have the same effect as transistor

MT: if signals ER and  are high,  will not compete.
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C. Current Comparators:

The circuit used for the current comparators is shown in Fig. 6(a). Such a comparator forces an input

voltage approximately equal to the inverters trip voltage, has extremely high resolution (less than 1pA), and

can be extremely fast (in the order of 10-20ns for input around 10µA) [31].

D. Current Mirrors:

Current Mirrors , and the ρ-gain mirror have

been laid out using common centroid layout techniques to minimize matching errors and keep the 6-bit

precision of the overall system. For current mirrors  and  a special

topology has been used, shown in Fig. 6(b) [32]. This topology forces a constant voltage  at its input node,

thus producing a virtual ground in the output nodes of all synapses, which reduces channel length modulation

distortion improving matching between the currents generated by all synapses. In addition, the topology of

Fig. 6(b) presents a very wide current range with small matching errors [32].

The adjustable gain ρ current mirror also uses this topology, as shown in Fig. 6(c). Transistor M0 has a

geometry factor ( ) 10 times larger than transistors . Transistors  act as

switches (controlled by signals ), so that the gain of the current mirror can be adjusted between
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 Fig. 5: Circuit Schematic of Winner-Take-All (WTA) Circuit
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 to  in steps of 0.1, while maintaining . By making  higher than 0 Volts, ρ can be

fine tuned.

E. Synaptic Current Sources:

The current sources  and  inside each synapse  and controlled current sources  have to match

within approximately 1% to keep the system 6-bit precision. There is a total of

 current sources and  current sources spread over a die area of 1cm2 which have to

match within 1%. For such distances, number of current sources, and reasonable current values, a spread of

10% in the currents would be an optimistic estimate. However, a single current mirror, with a reduced number

of outputs (like 10), a reasonable transistor size (like ), a moderate current (around 10µA), and

using common centroid layout techniques can be expected to have a mismatch error standard deviation  of

less than 1% [33]. By cascading several of these current mirrors in a tree-like fashion as is shown in Fig. 7 (for

current sources ), a high number of current sources (copied from a single common reference) can be

generated with a mismatch equal to

(15)

Each current mirror stage introduces an error . This error can be reduced by increasing the transistor areas

of the current mirrors. Since the last stage q has a higher number of current mirrors, it is important to keep

ρ 0.0= ρ 1.0= r0 0= r0

cjIin

 Fig. 6: (a) Circuit Schematic of Current Comparator. (b) Circuit Schematic of Active-Input
Regulated-Cascode Current Mirror. (c) Circuit Schematic for Adjustable Gainρ Current Mirror
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their area low. For previous stages the transistors can be made larger to contribute with a smaller , because

they are less in number and will not contribute significantly to the total transistor area. For current sources ,

a circuit similar to that shown in Fig. 7 is used. Current  in Fig. 7 (and similarly current ) is injected

externally into the chip so that parameter  can be controlled.

F. Weights Read Out:

The switches  to  of Fig. 7 were added to enable reading out the internally learned synaptic

weights , and test the progress of the learning algorithm. These switches are all ON during normal

operation of the system. However, for weights read-out, all except one will be OFF. The switch that is ON is

selected by a decoder inside the chip, so that only column i of the synaptic array of Fig. 3 injects the current

 to nodes . All nodes  can be isolated from current mirrors , and connected to output pads to

sense the currents , thus measuring the values of .

G. Modular System Expansibility:

The circuit of Fig. 3 can be expanded both horizontally, increasing the number of input patterns from 100

to , and vertically increasing the number of possible categories from 18 to . Fig. 8 shows

schematically the interconnectivity between chips in the case of a  array.

Vertical expansion of the system is possible by making several chips share the input vector terminals

, and node  of the WTA (see Fig. 5). Thus, the only requirement is that  be

externally accessible. Horizontal expansion is directly possible by making all chips in the same row share

their , , and  nodes, and isolating all except one of them, from the current mirrors

, , and the adjustable gain ρ-mirror. Also, all synapse inputs  must

be shared.

Both vertical and horizontal expansion degrades the system performance. Vertical expansion causes

degradation because the WTA becomes distributed among several chips. For the WTA of Fig. 5, all MA and

MB transistors must match well, which is very unlikely if they are in different chips. A solution for this
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problem is to use a WTA topology based on current processing and replication, insensitive to inter-chip

transistor mismatches [34], [35].

Horizontal expansion degrades the performance because current levels have to be changed:

• Either currents  and  are maintained the same, which makes the current mirrors , ,

, , , the current comparators , and the WTA to handle higher currents. This may

cause malfunctioning due to eventual saturation in some of the blocks.

• Or currents  and  are scaled down so that the current mirrors , , , , ,

the current comparators , and the WTA handle the same current level. However, this produces an

increase in mismatch between the current sources  and .

  IV. Experimental Results

A prototype chip that contains the previous circuit description of a real-time clustering engine has been

fabricated in a standard double-poly double-metal 1.6µm CMOS digital process (Eurochip ES2). The die area

is 1cm2 and it has been mounted in a 120-pin PGA package. This chip implements an ART1 system with 100

nodes in the F1 layer and 18 nodes in the F2 layer. Most of the pins are intended for test and characterization

purposes. All the subcircuits in the chip can be isolated from the rest and conveniently characterized. The F1

input vector I , which has 100 components, has to be loaded serially through one of the pins into a shift

register. The time delay measurements reported in this paper do not include the time for loading the shift

register.

The experimental measurements provided in this Section have been divided into four parts. The first

describes DC characterization results of the elements that contribute critically to the overall system precision.

These elements are the WTA circuit and the synaptic current sources. The second describes time delay

measurements that contribute to the global throughput time of the system. The third presents system level

experimental behaviors obtained with digital test equipment (HP82000). Finally, the fourth focuses on yield

and fault tolerance characterizations.

A. System Precision Characterizations:

The ART1 chip was intended to achieve an equivalent 6-bit (~1.5% error) precision. The part of the

system that is responsible for the overall precision is formed by the components that perform analog

computations. These components are (see Fig. 3) all current sources  and , all current mirrors ,

, , , and the ρ-mirror, the current comparators , and the WTA circuit. The most critical

of these components (in precision) is the WTA circuit. Current sources and current mirrors can be made to

have mismatch errors below 0.2% [33], [36]-[38], at the expense of increasing transistors area and current,

decreasing distances between matched devices, and using common centroid layout techniques [39]. This is

feasible for current mirrors , , , , and the ρ-mirror, which appear in small numbers.

However, the area and current level is limited for the synaptic current sources  and , since there are

many of them. Therefore, WTA and current sources  and  are the elements that limit the precision of the

overall system, and their characterization results will be described next.

LA LB CMAj CMBj

CMM 1:ρ CMC CCj

LA LB CMAj CMBj CMM 1:ρ CMC
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LA LB

LA LB CMAj
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A.1 : WTA Precision Measurements:

 and  will have current values of 10µA or less. The maximum current a WTA input branch can

receive is (see eq. (12)),

(16)

which corresponds to the case where all  and  values are equal to ‘1’ (remember that ). In our

circuit the WTA was designed to handle input currents of up to 1.5mA for each input branch. In order to

measure the precision of the WTA, all input currents except two were set to zero. Of these two inputs one was

set to  and the other was swept between  and . This will cause their corresponding output

voltages  to indicate an interchange of winners. The transitions do not occur exactly at . Moreover,

the transitions change with the input branches. The standard deviation of these transitions was measured as

σ=0.86µA (or 0.86%). Table 1 shows the standard deviation (in %) measured when the constant current is set

to 10µA, 100µA, and 1mA.

A.2 : Synaptic Current Sources Precision Measurements:

The second critical precision error source of the system is the mismatch between synaptic current sources.

In our chip each of the 3700  current sources and each of the 1800  current sources could be isolated and

independently characterized. Fig. 9 shows the measured mismatch error (in %) for 18 arbitrary  current

sources when sweeping  between 0.1µA and 10µA. As can be seen in Fig. 9, for currents higher than 5µA

10µA 100µA 1mA

1.73% 0.86% 0.99%

Table 1. Precision of the WTA
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∑
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 Fig. 9: Measured Mismatch error (in %) between 18 arbitraryLA current sources
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the standard deviation of the mismatch error is close to 1%. The same result is obtained for the  current

sources.

B. Throughput Time Measurements:

For a real-time clustering device the throughput time is defined as the time needed for each input pattern

to be processed. During this time the input pattern has to be classified into one of the pre-existing categories or

assigned to a new one, and the pre-existing knowledge of the system has to be updated to incorporate the new

information the input pattern carries. From a circuit point of view, this translates into the measurement of two

delay times:

• The time needed by the WTA to select the maximum among all { }.

• The time needed by the synaptic cells to change  from its old value to .

B.1 : WTA Delay Measurements:

The delay introduced by the WTA depends on the current level present in the competing input branches.

This current level will depend on the values chosen for , , and , as well as on the input pattern  and

all internal weights . To keep the presentation simple, delay times will be given as a function of  values

directly. Table 2 shows the measured delay times when  changes from  to , and  to  have the

values given in the table.  is the time needed by category  to win when  switches from  to , and

 is the time spent by category  in winning when  decreases from  to . As can be seen, this delay

is always below .

For the cases when the vigilance criterion is not directly satisfied and hence comparators  cut some of

the  currents, an additional delay is observed. This extra delay has been measured to be less than  for

the worst cases. Therefore, the time needed until the WTA selects the maximum among all { } is less than

.

B.2 : Learning Time:

After a delay of  (so that the WTA can settle), the learn signal  (see Fig. 3) is enabled

during a time . To measure the minimum  time required, this time was set to a specific value

during a training/learning trial, and it was checked that the weights had been updated properly. By

0 550ns 570ns

1mA 0 210ns 460ns

660ns 470ns

440ns 400ns

1.50mA 1.00mA 230ns 320ns

0

0

0

Table 2. Delay times of the WTA
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progressively decreasing  until some of the weights did not update correctly, it was found that the

minimum  time for proper operation was 190ns. By setting  to 200ns and allowing the WTA a

delay of , the total throughput time of the ART1 chip is established as .

B.3 : Comparison with Digital Neural Processors:

A digital chip with a feedforward speed of a connections per second, a learning speed of b connection

updates per second, and a WTA section with a delay of c seconds must satisfy the following equation to

achieve a throughput time of  when emulating the ART1 algorithm of Fig. 2(c):

(17)

Note that there are 100 synapse weights  to update for each pattern presentation, and 3700 feed-forward

connections: 1800 connections to generate all , 1800 connections to generate

, and 100 connections to generate .

Assuming , and , eq. (17) results in a processing speed of

connections/s and connection-updates/s. A digital neural processor would require such figures of merit to

equal the processing time of the analog ART1 chip presented in this paper. Therefore, this “approximate

reasoning” makes us conclude that our chip has an equivalent computing power of

connections/s plus connection-updates/s.

C. System Level Performance:

Although the internal processing of the chip is analog in nature, its input ( ) and output ( ) are binary

valued. Therefore, the system level behavior of the chip can be tested using conventional digital test

equipment. In our case we used the HP82000 IC Evaluation System.

An arbitrary set of 100-bit input patterns { } was chosen, shown in Fig. 10. A typical clustering

sequence is shown in Fig. 11, for  and . The first column indicates the input

pattern  that is fed to the F1 layer. The other 18 squares (  pixels) in each row represent each of the

internal  vectors after learning is finished. The vertical bars to the right of some  squares indicate that

these categories won the WTA competition while satisfying the vigilance criterion. Therefore, such categories

correspond to , and these are the only ones that are updated for that input pattern  presentation. The figure

shows only two iterations of input patterns presentation, because no change in weights were observed after

these. The last row of weights  indicates the resulting categorization of the input patterns. The numbers

below each category indicate the input patterns that have been clustered into this category. In the following

figures we will show only this last row of learned patterns together with the pattern numbers that have been

clustered into each category.

Fig. 12 shows the categorizations that result when tuning the vigilance parameter ρ to different values

while the currents were set to , , and  ( ). Note

tLEARN
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 Fig. 11: Clustering Sequence forρ=0.7 andα=LA/LB=1.05
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that below some categories there is no number. This is a known ART1 behavior: during the clustering process

some categories might be created that will not represent any of the training patterns. In Fig. 13 the vigilance

parameter is maintained constant at , while  changes from 1.07 to 50. For a more detailed explanation

on how and why the clustering behavior depends on ρ and α see references [2] and [3], or other ART1

theoretical papers [1], [40].

D. Yield and Fault Tolerance:

A total of 30 chips (numbered 1 through 30 in Table 3 and Fig. 14) were fabricated. For each chip every

subcircuit was independently tested and its proper operation verified; 14 different faults were identified. Table

3 indicates the faults detected for each of the 30 chips. The faults have been denoted from F1 to F14, and are

separated into two groups:

• Catastrophic Faults (digital sense) are those clearly originated by a short or open circuit failure. These

faults are F1, ... F8. This kind of faults would produce a failure in a digital circuit.

ρ 0= α

Catastrophic Faults (digital sense) Non-Catastrophic Faults (digital sense)

chip # F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14
1 x x

Table 3. Fault Characterizations of the 30 ART1 Chip Samples. Dark Shades: Sample with
Catastrophic Fault; Light Shade: Sample with no Catastrophic Fault but with non

Catastrophic Fault; no Shade: Sample with no Fault.

2 x x x x x x
3 x x x x
4 x x x x
5 x x x
6 x x x x x
7 x x
8 x
9 x x x x
10 x x x x
11 x
12 x x
13 x x x x x
14 x x
15 x x x x
16 x x
17 x x x
18 x x x
19 x
20 x x x x x x
21 x x
22 x x
23 x x
24 x x
25
26 x
27 x x x x
28
29 x
30 x x x
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• Non-Catastrophic Faults (digital sense) are those that produce a large deviation from the nominal

behavior, too large to be explained by random process parameter variations. These faults are F9, ... F14.

This kind of faults would probably not produce a catastrophic failure in a digital circuit, but be responsible

for significant delay times degradations.

Table 4 describes the subcircuits where the faults of Table 3 were found. Note that the most frequent faults are

F2/F9 and F3/F10, which are failures in some current sources  or , and these current sources occupy a

significant percentage of the total die area. Fault F1 is a fault in the shift register that loads the input vector .

Fault F2 is a fault in the WTA circuit. Therefore, chips with an F1 or F2 fault could not be tested for system

level operation. Faults F3 and F9 are faults detected in the same subcircuits of the chip, with F3 being

catastrophic and F9 non-catastrophic. The same is valid for F4 and F10, F5 and F11, and so on until F8 and

F14.

Note that only 2 of the 30 chips (6.7%) are completely fault-free. According to the simplified expression

for the yield performance as a function of die area  and process defects density  [41],
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(18)

this requires a process defect density7 of . On the other hand, ignoring the non-catastrophic

faults yields 9 out of 30 chips (30%). According to eq. (18) such a yield would be predicted if the process

defect density is .

Even though the yield is quite low, many of the faulty samples were still operative. This is due to the fault

tolerant nature of the neural algorithms in general [42]-[45], and the ART1 algorithm in particular. Looking at

Table 3 we can see that there are 16 chips that have an operative shift register and WTA circuit. We performed

system level operation tests on these chips to verify if they would be able to form clusters of the input data,

and verified that 12 of these 16 chips were able to do so. Moreover, 6 (among which were the two completely

fault-free chips) behaved exactly identically. The resulting clustering behavior of these 12 chips is depicted in

Fig. 14 for  and .

  V. Further Enhancements

The chip described in this paper is the first prototype designed by the authors for real-time clustering. As

such, the design focused on testability and full characterization possibilities, instead of maximizing speed and

yield, for example.

7.  The effective die area is  to account for a  width pad ring.

F1 non-operative shift register for loading

F2 non-operative WTA circuit

F3/F9 fault in a current source

F4/F10 fault in a current source

F5/F11 fault in vigilance parameter ρ current mirror

F6/F12 fault in current mirror

F7/F13 fault in current mirrors  or

F8/F14 fault in current mirror

Table 4. Description of Faults
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To make this chip an industry ready prototype, several trivial modifications should be introduced:

• First, substitute the serially loaded shift register that holds the input pattern , with some kind of parallel

loading mechanism (using either electrical or optical data acquisition techniques).

• Use some simple yield enhancement technique. Looking at Table 3 and Table 4 we can see that most of the

failures are due to faults in the synaptic current sources. A simple yield enhancement technique would be

to add a number of spare columns of synapses, some of which would substitute faulty columns of synapses.

• Add a handshaking mechanism that would allow the chip to communicate with the outside circuitry. Thus,

when the WTA produces a fast response (which, by the way, is most of the time), the outside circuitry need

not wait for the worst case WTA delay.

Other, less trivial, enhancements that should be addressed relate to the high area and current consumption of

the synaptic current sources  and . One possibility would be to use UV-activated floating-gate-calibrated

[46]-[49] current sources, instead of the tree-like structure of Fig. 7. In principle, it should be possible to use

one single calibrated MOS transistor per synaptic current source. This transistor, which can be close to

minimum size, does not have to drive a large current either. Calibration errors of 0.2% have been reported for

currents of 200nA [49]. Using a scheme like this significantly reduces the current and silicon area

consumption per synapse, allowing a much higher number of synapses per chip and thus boosting the

performance of the chip significantly.

Other considerations relate to the question of how this chip would scale up with size. What would be the

practical limitations? Usually a strong limitation when scaling up analog neural hardware is how systematic

offsets accumulate. A common circuit technique for analog neural VLSI is the use of transconductors [22],

[50]. Connecting many of them in parallel results in addition of their systematic offset components. If the size

of the system is sufficiently large, this total offset can drive the system out of working range8. For our circuit

the accumulation of systematic offsets of the synaptic current sources is not a problem. Note that the total

currents  (which certainly include a common systematic offset) will compete in a WTA circuit, and the

maximum among all { } is the same regardless of the presence or not of a common offset component.

A real scaling limitation for the circuit technique used in our chip is the following. The smallest current

per synaptic current source is limited by the precision we want to achieve (even when using UV-activated

floating-gate calibration techniques). Therefore, the maximum number of synapses that can be put into the

same chip will be limited by the maximum power dissipation allowed by the package for a given precision.

This implies a trade-off between precision and size.

Another problem that might arise when the number of nodes in the F2 layer (maximum number of

categories) becomes significantly large, is that the WTA circuit might not be able to detect the maximum

among a large number of close-to-maximum inputs. At that point, one might reconsider if it is necessary to

have an F2 layer that provides one (and only one) winner, instead of an F2 layer that provides a “bubble” of

winners [51], [52].

A different way of system growth is to assemble different ART1 subsystems to perform supervised

clustering tasks [53], or to combine ART cells hierarchically for higher level knowledge processing [54], [55].

8.  In this case a global offset calibration technique can be used to overcome this problem.
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  VI. Conclusions

This paper presented the algorithm, circuit implementation, and experimental test results of an analog

(digital-compatible) current-mode VLSI clustering engine. The algorithm is mainly based on the popular

ART1 architecture, although slight modifications have been introduced to produce more efficient hardware.

The presented prototype chip realizes an architecture with 100 F1 nodes and 18 F2 nodes, and is thus able to

cluster 100-bit input patterns into up to 18 different categories. Modular expansibility is possible by directly

assembling a matrix array of chips, without any extra interfacing circuitry. It has been shown that a digital

neurocomputer able to provide the same throughput speed should have a processing speed of

connections per second and connections updates per second. Extensive chip characterization results have been

given including system precision measurements, system speed measurements, system level clustering

behavior, fault characterizations, and system level clustering behavior of faulty chip samples.

Finally, some improvement possibilities have been highlighted to enhance the efficiency and performance

of the overall system for industrial production of commercial prototypes.
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