158 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 6, NO. 1, MARCH 1998

Behavioral-Level Synthesis of Heterogeneous
BISR Reconfigurable ASIC’s

Lisa M. Guerra, Miodrag Potkonjakyember, IEEE,and Jan M. Rabaeellow, IEEE

Abstract—In this paper, behavioral-level synthesis techniques This paper introduces a novel concept of Heterogeneous

?rhe ffersle_nted for the |'de§:gnf of fetfilonﬁgw?me halde‘I/afe- BISR for ASIC designs. As opposed to traditional BISR, where
e techniques are applicable for synthesis of several classes : .
of designs, including 1) design for fault tolerance against a failed module is replaced by a spare of the same type,

permanent faults, 2) design for improved manufacturability, We propose Heterogeneous BISR (HBISR), which enables
and 3) design of application specific programmable processors replacement of a module with a spare of a different type.
(ASPP's)—processors designed to perform any computation Hg|SR leverages on a computatiotifexibility, or its ability to
from a specified set on a single implementation platform. be impl ted | b f titi 0]

This paper focuses on design techniques for efficient built-in e imp _er_nen €d In a number o Compe_l _'Ve ways, _0 Increase
self-repair (BISR), and thus directly addresses the former two productivity and fault tolerance. In addition, behavioral-level
applications. Previous BISR techniques have been based onsynthesis techniques for exploiting this flexibility in automated

replacing a failed module with a backup of the same type. We qegjgn are presented. One method is through assignment and
present new heterogeneous BISR methodologies which remove

this constraint and enable replacement of a module with a spare Scheduling, and the second utilizes transformations.
of a different type. The approach is based on the flexibility The paper is organized in the following way. After a

gf hbehaVi(I)ral-lf[eI’\l/el'S};ntl’l]‘]es'is to exp'gre tlhe %?Stiﬁlnf_spflce-tgwé)survey of previous works and discussion of several design
e e o 12 et el preliminaries, simple, ye realfe examples are used (0 in
transformations. Experimental results verify the effectiveness troduce the main ideas. Next, new behavioral-level synthesis
of the approaches. algorithms which minimize hardware overhead for HBISR

Index Terms—Behavioral-level synthesis, built-in-self-repair during.resource ‘T""ocation’ assignment, scheduling, and trans'
(BISR), fault tolerance, transformations. formations are discussed. The paper concludes by presenting

and analyzing experimental results on a variety of real-life
DSP examples and briefly outlining extensions.
I. INTRODUCTION
ITH the rising cost of semiconductor manufacturing Il. PREVIOUS WORK
and the increasing complexity of integrated circuits, The main target for BISR techniques are systems that are
improvement of manufacturing yields is crucial for achievingit-, byte-, or digit-sliced. By far the most important use of bit-
economic utilization of semiconductor manufacturing facilsliced BISR is in SRAM and DRAM circuits [2], [3]. AImost
ities. Fault tolerance techniques such as the built-in seffi current day memory designs use BISR techniques [4], as
repair (BISR) sparing methodology will play an importanthey significantly increase memory production profitability.
role in achieving yield improvements. BISR is a hybridProgrammable logic arrays are another class of bit-sliced
redundancy technique in which a set of spare modules &vices for which BISR has been well addressed [5], [6]. It
provided in addition to the core operational modules [1]. Has also been successfully applied for arithmetic-logic unit
an implementation is found to have defective core modulgsyte slices [1]. Other areas in which BISR techniques are
these modules can be replaced by functional spare ones befssig used include secondary storage systems [7], wafer scale
packaging. integration [8], and systolic array designs [9].

BISR methods can be applied not only for yield im- While all previous BISR techniques have been based on
provement but also for improvement of design reliabilityreplacing a failed module with a backup of the same type, we
Designs can be made fault tolerant to failures occurring duripgesent new heterogeneous BISR methodologies. Additionally,
operation by automatic replacement of failed modules witQe present synthesis techniques for their design. Behavioral-
spare ones, so that the overall system can continue to functievel synthesis provides the flexibility of design space explo-
correctly. This is especially important in military systems anghtion so that a variety of design goals can be addressed.
space exploration missions [1] where it is critical that theran overview and extensive bibliography of behavioral-level
are no system failures, or where manual replacement of faileghthesis algorithms can be found in [10] and [11]. Most
modules is either impossible or prohibitively expensive. of these works, target the optimization of area and speed

_ _ , (throughput). Recently, other important goals, such as power,

Manuscript received January 15, 1996; revised July 9, 1997. S L)

L. M. Guerra and J. M. Rabaey are with the Department of ElectricgﬁEStab'“ty’ and rel'ab'“ty and fault tolerance have been ad
Engineering and Computer Science, University of California at Berkelegressed. Little work has been reported on behavioral-level

Berkeley, CA 94720 USA. , ___ synthesis techniques for reliable and fault tolerant design.
M. P(_)tkonjak is with the Computer Science Department, University cﬁa havendra and Lursinsa [12] concentrated on desians

California at Los Angeles, Los Angeles, CA 90095 USA. ¢ g p) | - g
Publisher Item Identifier S 1063-8210(98)01315-8. with self-recovery from transient faults using micro roll-

1063-8210/98%$10.001 1998 IEEE

GUERRA et al. HETEROGENEOUS BISR RECONFIGURABLE ASIC'S SYNTHESIS 159

back and checkpoint insertion. Karri and Orailoglu presentedUpon diagnosis of a fault, the controller is reconfigured.
scheduling and assignment and transformation-based meth8dseral alternatives for efficient low overhead controller im-
for minimizing hardware overhead while achieving a certaiplementation include programmable, off-chip, or composed
level of fault tolerance in micro roll-back [13]. While previouscontrollers. A programmable controller [17] often brings a
behavioral-level synthesis methods for enhancing fault tolesemewhat large implementation area and a small degradation
ance have addressed intermittent and transient faults [1], tligerformance, but it provides flexibility not only for HBISR,
work concentrates on permanent faults where fault toleranioet also for relatively minor alterations in the chip functional-
is used for reliability, yield, and productivity enhancement. ity as is often required in modern day designs. An off-chip
controller can be replaced as necessary since it is located
on a separate chip. A number of high performance datapath

Given a behavioral description of the algorithm, an undeintensive chips have used this option (e.g., [18]). The same
lying hardware model, and a throughput constraint, the ga#dawbacks and advantage as with the programmable controller
is to synthesize a minimum area design that can tolerateh@ld. The composed controller is located on-chip, and is the
number of faulty hardware resources. This section descriligsmposition of all possible control configurations that may be
our targeted application and computation and hardware maged. Its effectiveness depends on how well several different
els, as well as several implementation issues in the design(iefit often similar) controllers can be merged.
reconfigurable datapaths for HBISR design. In all cases we assume that the controller itself is fault-free.

Targeted applications include real-time DSP, video, multFhis assumption can be easily replaced by a fault-tolerance
media, and other numerically intensive algorithms. Applicanechanism which provides resiliency of the controller. Since
tions are represented as hierarchical data-control flowgraptts controller usually occupies a very small fraction of chip
with nodes representing the flowgraph operations, and edgesa in datapath-intensive ASIC designs [14], simple replica-
the data and control dependencies between them [14]. Tifih is often an adequate solution.
underlying model of computation is the homogeneous syn-
chronous data flow model of [15]. V. ASSIGNMENT AND SCHEDULING FOR HBISR DESIGN

The ASIC hardware model being considered is the dedicated
register model, where all registers are clustered in register fiI@S, K
connected only to the inputs of the corresponding executionProbably the most straightforward approach to BISR is to
units [14]. We also assume that there is no bus mergimgovide a spare for each hardware instance, resulting in full
so there exists a dedicated bus connecting any two uniisplication of the hardware. With the detection of a faulty unit,
between which there are data transfers. Note that the HBI&Etonfiguration takes place to initiate use of its spare. This
methodology itself is not limited to this hardware modelkeconfiguration is conceptually a switch that passes control
generalizations are discussed in Section VII. from the failed to the backup unit.

At the gate level, a single stuck-at model [16] is assumed Fortunately, the BISR overhead need not be so high. If the
for faults, and at the register transfer level, we assume thah@mber of faulty unitsk, is one, for example, the behavioral-
unit is faulty if it has one or more gate level faults. Faults cajgvel synthesis assignment step provides us with the flexibility
occur in either an execution unit, register file, or bus. Undgnder which it is clear that only one spare for each hardware
the targeted hardware model_ and these assumptions, aII_fagjg&S is necessary, as opposed to one spare per hardware
can be classified as execution unit faults. A faulty regist@isiance. The operations from the failed unit will be transferred
file prevents its corresponding execution unit from receving o spare of the same type.

data, and thus has the same effect as a fault in the execut|0|51he flexibility gained through assignment clearly reduces

unit. Sl_mllarly, a faulty b_u_s can be treated asa failure in t e amount of hardware redundancy needed. Considering the
execution unit at its receiving end. Note again that the HBISR, .. . P .
ditional flexibility brought by scheduling, however, we can

methodology itself is general, and can be easily extendedd o . . ;
often use even fewer spares. This is possible since assignment

other fault models. heduli ble th | f dule b
A number of testing approaches are available to detect thty! scheduling enable the replacement of a module by a

fault exists, and to diagnose its location [16]. If BISR is used fPare of a different type. When a failed unit is detected,
improve manufacturability, any off-line testing and diagnosigstéad of reassigning only those operations of the failed
scheme can be used [i.e., partial-scan sequential automatic {4 We completely reassign and reschedule all operations
pattern generation (ATPG), full-scan and combinational ATP@f the flowgraph. The specific goal addressed can now be
built-in self-test (BIST), and insertion-point based-schemegpstated as followsfind the minimum area solution which
Note that any scheme which does not have strong diagnogieets the throughput constraint, for which the algorithm can
capabilities (e.g., IDDQ-based testing), cannot be used. be reassigned and scheduled, even when as mady asits

If the BISR methodology supports in-field reconfiguratiomre faulty.
after failure of particular hardware part(s), a BIST scheme The main ideas are illustrated with the following example
is required. In this case, testing capabilities are “built-in(Fig. 1, Table I), where the goal is a low-overhead HBISR
(resulting in test-hardware overhead) to the chip itself. Thmplementation that can tolerate up to one faulty unit. The ex-
BIST scheme can be either on-line or off-line [16]. In thample includes the imaginary part of a complex number mul-
off-line BIST scheme, periodic interruption of the functionatiplication with a constant and with a variable (multiplication
mode is required. with a constant is such that it can be done using a single shift).

Il. 1SSUES INHBISR RECONFIGURABLE DATAPATH DESIGN

ey ldeas and Motivational Example

160 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 6, NO. 1, MARCH 1998

c d e f The basic idea of the allocation mechanism is to start at an
initial allocation, add hardware until a feasible allocation is
D E found, then remove all unnecessary redundant hardware. Note

that for any proposed allocation solution, it is necessary to
assure that scheduling can succeed witit combination ofi(
failed units. The basic framework for the allocation algorithm
has been set up and implemented f6r= 1. The pseudo-

(®) code for the global flow is presented below, followed by an

Fig. 1. Scheduling and assignment for HBISR: Imaginary part of conexplanation of the algorithm’s key components.
plex multiplication: (a) with constant multiplications and (b) with variable .]
multiplications. GetlnitialAllocation();

while (ISuccess}

TABLE | ; .
SCHEDULES FOR THEEXAMPLE OF FiG. 1, TO BE USED SortlnDgcreasungOrderOfStress(OrdeﬂelW),
WHEN AN ADDER, SHIFTER, OR MULTIPLIER FAILS foreachj € OrderedHW {
Success = Assign and ScheduleWithFailed
Adder Failure Shifter Failure Multiplier Failure e
Control Step Unlt(J)
>> . > * > - + if(ISuccess)
1 A,B | DE A D,E A B D break;
2 c B F E C
3 F c F UpdateStress();
if(!Success)
AddHardware();

Assume that each operation takes one control cycle and the
available time is three control cycles. The minimum hardware b

required for non-BISR implementation consists of two shifters, })
one multiplier, and one adder. If scheduling flexibility is not RedundancyRemoval();

gxploned_, the minimum BISR hardwa_lre will require an addi- A sharp minimum boundjZ;, on the necessary amount of
tional unit of each type. However, using both assignment apdygware of each clagsis used as the initial allocatior;
scheduling, only two shifters, two multipliers, and two adderg gefined asM, = m; + K, wherem, is a minimum bound
are needed. If the adder fails, operations A and B are done g§) the amount of hardwarg necessary for any non fault-
the two shifters in step 1, D and E on the two multipliers alsg|erant implementation and is the number of faults. For
in step 1, and C and F on the single remaining adder in stepg£.h hardware clasg, relaxed based scheduling techniques
and 3. Table | shows the schedules for all three cases of faip@] are used to derive an estimate of. The equation for
units. An important point to note is that no additional shiﬂeer can be understood by observing tiaty implementation
are_n_e_eded. In the event of a shifter ffiﬂgre,_ the sc_hedullﬂgquires at least; units, and since up td units of type;
flexibility brought by the redundant multiplier is exploited. ¢an pe bad, at leagtn; + K) units are needed.

If the initial allocation fails, the allocation expansion phase
is entered, where new hardware units are added (AddHard-

The global strategy of the Hyper behavioral-level synthesjgare routine) one by one until the allocation succeeds. Good
system [19] is well suited for use as the starting point fafelection heuristics have a crucial impact on the speed of
developing new algorithms targeting HBISR. In this systenthe algorithm and the quality of the solution. Firstly, we
allocation first proposes a hardware solution, then assignmeyaint to reach the solution as quickly as possible, avoiding
and scheduling are performed to check its feasibility. To takke addition of unnecessary units along the way. Secondly,
into account BISR requirements, it was necessary to develoy@a want to avoid a greedy steepest descent type algorithm
new allocation scheme. A generic assignment and scheduliggich could lead to many suboptimal solutions. Two modes
module can easily be modified for use within this frameworlpf addition, stress-based addition and last gasp addition, have
We have used the Hyper scheduler and assigner, with smaen constructed. Stress-based addition uses a measure called
modifications. the global stresof a hardware resource class to decide which

Before explaining the details of the new allocation algdhardware type to add next. This measure is described below
rithm, several definitions are presented. An allocatidnis a and is composed of several heuristic measures of the difficulty
proposed set of hardware units for the HBISR realization of &f assignment and scheduling of each hardware class. The
application algorithm. For a giveR, there are many possiblelarger the stress, the more likely it is that type of unit is the
combinations ofK units which can fail. Let represent one cause for the failure of the assignment and scheduling. For
such failure event. The child allocatiof(i), A(¢) C A is the additional robustness, we have also added a last gasp addition
effective allocation of hardware (allocation of good units) fophase, similar in concept, but not technique, to the Last Gasp
the failure eveni. Note that the number of elemeni$— A(¢)| routine of Espresso [21]. This phase is entered if it is found that
is equal toK . A feasible allocationA, is thus one for which the stress measure has ceased to give useful feedback. During
successful reassignment and scheduling can be accomplislastigasp addition, units are added one by one in random order
for all of its child allocationsA(z). till a feasible allocation is reached. In practice, this phase is

B. Allocation, Assignment, and Scheduling Algorithm

GUERRA et al. HETEROGENEOUS BISR RECONFIGURABLE ASIC'S SYNTHESIS 161

rarely entered, but assures a solution will be found if one of allowable faulty units. The minimum bounds stress

exists. for hardware typej is

At the completion of the expansion phase, there is no R—-X X
guarantee that the feasible allocation is minimal. It is possible MB; =1- R R (1)
that a subset of the allocatiorl’ C A is also a solution. To The absolute minimum bound indicates the number of

assure that a local minimum has been reached, it is necessary ynjts needed assuming that the flowgraph structure has

to assure that if any units are removed from the current engugh parallelism to achieve 100% hardware utiliza-
solution, success cannot be achieved. In general, the units with tion The relaxed scheduling bounds, on the other hand

minimum stress are tried for removal first.

It is also imperative, however, to incorporate a remember-
and-look-ahead technique, so that time is not wasted at-
tempting allocations that will definitely fail. The idea of the
technique is to remember all allocations and child allocations
that failed, and to use this information whenever considering
an allocationA’. Before attemptingd’, a look-ahead to its
child allocations will determine if there is any overlap between
the children of4’ and any known allocations that have failed. -)
More formally, let us defineF to be the set of failed child 2) €-critical network stress, C: If a high percentage of the
allocations. Let@ be the set ofd’ and all children ofA’. If nodes of a particular hardware typéie in the e-critical
GNF # ¢, then A’ need not be considered as a possible network, this type of operation is likely a bottleneck for

take the graph structure and some data precedences into
account giving a more accurate bound. Neither of the
bounds take into account constraints such as conflicts
in writing to register files, and neither fully honors
data precedences. The closer these two bounds are, the
smaller the hardware slack available to satisfy these
constraints, and thus the better the particular unit is as
a candidate for addition.

allocation. scheduling, and its hardware is thus a good candidate for

Suppose, for example, that the proposed solutica {three addition. Thes-critical network consists of all operations
adders, two subtracters, two multipli¢rdailed because a on paths which have lengths within a smafpercentage
reassignment and scheduling could not be found for its child ~ of the critical path length. The-critical network stress
allocation A(adder) = {two adders, two subtracters, two for hardware typej is

multipliers}. A subtracter was added, and the new allocation NumNodes — eNetNumNodeg 5
A’ = {three adders, three subtracters, two multipliensas NumNodes) (2)

successful. At this point, the removal phase is entered. AtThese first two measures take into account various elements
first glance, knowing thatd = {three adders, two sub-of the algorithm specification. Both deal with aspects of the
tracters, two multipliers failed, and thatd’ = {three adders, overall structure of the flowgraph, and the minimum bounds
three subtracters, two multipligrssucceeded, it is not clearstress also accounts for the user-specified available time. Since
what will happen withA” = {two adders, three subtractersthey capture information about the specification and the initial
two multipliers;. With remember-and-look-ahead, howevestarting allocation, they are most valuable in the beginning of
we can immediately dismissi” from consideration since the allocation addition phase. We therefore heavily weight their
F = {A(adder}, G = {A”, A”(subtracter), A”(adder), effect to be greatest in the beginning and to quickly diminish
A”(multiplier)}, givesG N F # ¢ since A”(subtracter== as hardware is added.
A(adder). 3) Scheduling stress, S: Unlike the previous two, this
For a successful allocation, a feasible schedule for each measure changes dynamically with the allocation. It
child allocation must be found. We thus order the schedules is calculated during the assignment and scheduling.
in decreasing order of difficulty, so that we can exit as fast as The scheduling difficulty, SB¥), is calculated for each
possible in the event that there is an insufficient allocation. The operation,k, and is inversely proportional to the slack
ordering is a function of the global stress, so that schedules time between the As Late As Possible (ALAP) sched-

Cj=1-

for the failure of highly stressed units are tried first. uling time and a relaxed As Soon As Possible (ASAP)
The ordering mechanism as well as several other portions of ~ Scheduling time [19]. This value is summed over all
the allocation algorithm rely heavily on the ideastfessof a nodes of typej, to give the unnormalized stress
hardware gnlt. In the re_r_nalnder pf _thls section three |ntum_ve stress = Z SD(k). 3)
and experimentally verified heuristics for the stress function reNodes;)
< y

are described.

1) Minimum bounds stress, MB: By experimental obser-
vation, operations of typg whose relaxed scheduling
minimum hardware boundH) is close to its absolute
minimum hardware boundY), are difficult to schedule.

Since we are interested in the minimum area solution,
we normalize the stress value by the hardware cost of the
unit, giving the scheduling stress for hardware types

a function of the scheduling difficulty and the hardware
cost

The absolute minimum bound [20] for hardware type 2
is: X = (NumNodes-duratiory)/(AvailableTime + K,

where NumNodes is the number of nodes that are Z SD(k)
executed on hardware of typge duratiory is the clock S, = f(stress, ¢;) = stres$ _ LreNodes;)

cycle duration of the hardwarédvailableTimeis the ! T ¢y ¢y

sample period in clock cycles, anll is the number 4)

162 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 6, NO. 1, MARCH 1998

(a+b)-(c+d) (a-c)+®b-4d

(@) (b)

@ (®) Fig. 3. Associativity for HBISR: (a) before and (b) after application of
Fig. 2. Transformations for HBISR: using associativity and the inversgssociativity.
element law.

the first example is two control cycles. The identity shown in
where ¢; is the hardware cost (area) of an executiohig. 2 is used to transform (a) into (b). It is easy to verify
units of hardware type. that both algorithms calculate the same output for the same
Finally, we define the global stress, G, for hardware typeSet Of inputs. All operations lie on the critical path, so it is
not possible to reduce BISR overhead using the technigues
1/ of Section IV. In this case, however, transformations can help
G, = f(MB;, C;, §;) =S; - (MB; - C;) (®) to reduce the overhead. If we consider only implementation
Fig. 2(a), and assume that any unit can fail, then three adders
wherez is the number of additional units added, afids an and two subtracters are needed, since two adders and one
empirical parameter determined through testing to be equalstabtracter were needed for the non-BISR implementation.
three. The global stress is a functionally weighted function éfowever, if we consider both implementations, only two
the heuristics, and was constructed through the use of testdigeach type of unit are needed. If the subtracter fails, we
and statistical validation. As mentioned above, since MB amén use implementation Fig. 2(a) which needs two adders
C capture information about the starting allocation, they haveaad one subtracter, and when the adder fails we can use
large impact on the global stress function in the early stagesiwfplementation Fig. 2(b) which needs two subtracters and
the allocation addition phase. The scheduling stress, S, quicklye adder.

gains dominance as units are added. In general, there exists a large variety of transformations,
each of which reduces a computation in different ways. The
V. TRANSFORMATIONS FORHBISR DESIGN transformations to reduce HBISR overhead can be grouped

into two classes: 1) transformations to increase the resource

Transformations are alterations in the computational StrUGiiization (and therefore need) of the units of the same
ture such that the behavior (the relationship between OURUEe as the failed execution unit and 2) transformations to
and input data) is maintained. Transformations are used ext uce the number of operations that use the type of unit

sively in several comput_er scien'ce, computer engingering, aﬁ?st failed. While the former strategy is the same as that
CAD areas, most often.m Comp"ers [22] and behaworal-llevE ed during scheduling, the latter is specific to transforma-
synthesis [23], [24]. This section shows how transformatlon['?0

. tically tailored optimization techni fions. Transformations in the former group include retim-
using speciiically laiored optimization techniques, can si ng, functional pipelining, associativity, and loop permutation,
nificantly reduce the area overhead for designs with BI

. ile those in the latter group include strength reduction
requirements. (substitution of multiplication with a constant by shifts and
additions), constant propagation, dead code elimination and
common subexpression elimination. Some transformations can

The basic idea behind using transformations in behavioragven be used for both strategies simultaneously (e.g., in-
level synthesis for HBISR is to transform the computatiomerse element law, distributivity, loop fusion, and loop block-
according to the needs imposed by the available hardware, ifug).
each possible scenario of failed units. The simple example inThe remainder of this section illustrates how two powerful
Fig. 2 will be used to illustrate this idea. In all the exampleansformations, associativity and pipelining/retiming, can be
in this section, assume that each operation takes one contredd for transformation-based HBISR. Although it is not
cycle, and that transformations are done in such a way thadplicitly stated, it is implied that transformations in the
important numerical properties (e.g., numerical stability arekplanatory examples and in the software application are
overflow control) are maintained in the transformed designaupported by the commutativity transformation.

The validity of the assumptions about the numerical propertiesFig. 3 shows the application of associativity for HBISR. For
of the transformed designs can be verified using fixed-poithiis example, the available time is three and assignment and
simulation tools (e.g., [14]). The assumed available time fecheduling flexibility does not help to reduce overhead. Notice

A. Key Ideas and Motivational Examples

GUERRA et al. HETEROGENEOUS BISR RECONFIGURABLE ASIC'S SYNTHESIS 163

AR

(@) (b)

Fig. 4. Retiming for HBISR: rearranging ASAP and ALAP times [23] so that operations which require the faulty units are more uniformly distributed
over the available time.

TABLE I B. Optimization Algorithm
FEASIBLE SCHEDULES FOR THEEXAMPLE OF FIG. 3. TWO SHIFTERS Two
MULTIPLIERS, AND TWO ADDERS ARE SUFFICIENT FORHBISR IMPLEMENTATION The transformation-based HBISR optimization algorlthm IS
given by the following pseudo-code:
Shifter Failure Mutltiplier Failure Adder Failure
Conteol Step >> * + >> * + >> * + Whlle(' ponel .
" R el T A for (i = 1..hw_types){resolved(i) = NO}
5 — o~ s o6 5 o6 for (count = 1..hwztyp§s{
; o =T - - k= 'SellectM.ostCrltlca.IResource(); ' _
OptimizeUsingProbalisticSamplingWithFailed
Unit(k);
if (estimate() indicates feasibility)resolved(k)
that shift A on Fig. 3(a) and multiplication B on Fig. 3(b) =YES;
are the only operations which are not on the critical path. telse{OptimizeUsingPipeliningWithFailedUnit(k);
It can be determined that the minimum non-BISR hardware if (estimate() indicates feasibility)
configuration, for the computation of Fig. 3(a) requires two {resolved(K) = YES;
adders, two multipliers, and one shifter. Using associativity, telse {break;}

only one additional adder and one additional shifter are needed.
Table 1l shows the feasible schedules when three adders, two if (there is an unresolved resourcépddHardware();
multipliers, and two shifters are available for various scenarios }elseif (scheduling() != feasible)AddHardware();
of unit failures. When a shifter fails, the implementation telse{ Done = TRUE}
from Fig. 3(a) is used, when a multiplier or adder fail the }
implementation of Fig. 3(b) is used [actually, either (a) or (b) The initial hardware allocation is given by the HBISR allo-
can be used when an adder fails]. cation algorithm. New resources are added until a transformed
Next, Fig. 4 shows how retiming (and similarly pipelining)and feasibly scheduled version of the computation is found for
can be used for HBISR. The available time in this exampkach fault unit scenario. In the initial phases of the exploration
is two control cycles. The rectangles in the figure denoprocess, estimation routines based on relaxed scheduling [20]
pipeline delays (states). The operation following the delare used in place of scheduling. Only when estimates indicate
uses data produced in the previous iteration by the operatitiat a complete solution is potentially found, is the scheduling
preceding the delay. Therefore, operations which have direah. The AddHardware and SelectMostCriticalResource rou-
dependencies only with respect to the states, can be schedtilees add resources using the stress functions of Section IV-B,
in the first control step. Notice, once again that all thm determining which hardware to add and the order in which
operations reside on the critical path, so there is no flexibilitp try the fault scenarios.
during scheduling. For the core optimization, two approaches are employed: a
Although retiming cannot, in this case, change the slacksobabilistic sampling algorithm and a pipelining-based algo-
on various operations, it can reshuffle the operation overlapishm [24]. This probabilistic sampling algorithm applies two
This redistribution is done such that operations competing ftypes of basic moves: retiming and generalized associativity,
a faulty unit are no longer bound to happen in the samhere the later is a transformation that combines associativity,
control step. Analysis of the various schedules shows thaterse element law, and commutativity moves. The algorithm
three subtracters, two adders, and two shifters are sufficibilals two phases. The first phase is a global search using
for HBISR implementation. This results once again in a lowgrobabilistic sampling, where the design space is probabilisti-
overhead than that achievable using only assignment arally evaluated to detect thie most promising starting points
scheduling. (k is a small integer number which is a function of the

164 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 6, NO. 1, MARCH 1998

TABLE 11l
RESULTS FOR ASSIGNMENT AND SCHEDULING-BASED HBISR
Example]I:IOSHR I;SE: # Ié’;‘;gs‘:re Blg;) erea H::%R Perz:;age
#Units (mm*) (mm*) Overhead

Jaumann 5 8 4 439 7.07 61.0
WFFT8 6 8 3 1.79 249 39.0
5 WDF 6 9 4 143 1.73 210
8 IIR DFa 7 10 4 8.06 10.86 347
8 IIR GMa 8 9 4 4.84 495 23
WConv 8 8 9 3 1.91 238 24.6
71IRa 9 11 4 18.18 23.76 30.7

8 IIR GMb 9 12 4 6.66 6.88 33
8IIRP 9 12 4 223 2.55 14.4
S8HRC 9 12 4 4.24 4.69 10.6
DCT 10 12 3 1.40 1.77 264
SHR 11 14 4 455 5.56 222

7 IIRb 17 19 4 4.47 4.92 31

8 IIR DFb 23 26 4 19.81 21.20 7.0
3StateLinCn 29 32 4 8.22 9.39 14.0
Wavelet 30 32 4 22.05 26.19 18.8
Nonlin 6 10 12 3 1.90 2.06 8.4
Sort 9 11 13 3 321 4.05 26.2
Sort 6 6 8 3 132 151 153

number of nodes in the computation). Note that starting pointsBoth the probabilistic sampling and pipelining algorithms
with varying numbers of operations of various types (e.gun in O(n?) time. Since the number of required hardware
subtraction versus addition) are generated using generaliresources is bounded by the number of nodes in the compu-
associativity moves, which include the inverse element lagation, the worst-case running time 3(n?). Experimental
The second, local optimization phase, uses the basic steepégties indicate that the actual run-time is quadratic and was
descent approach to locally maximize these starting pointgss than 10 min for all examples on a Sun SPARCstation-5.
After each move, the objective function is evaluated, to get anNotice that both classes of transformations for HBISR are
estimate of the final area (execution units, interconnect, autilized: 1) transformations to increase the chance for high
registers) expected from the system. This objective functistilization (and therefore reduced need) of the units of the
is composed of three key parts, all of which are stronggame type as the failed execution unit and 2) transformations
correlated to the final area: the critical path, the number ¥ reduce the number of operations of a failed type by trading
delays, and a measure of the expected resource utilizatRRerations of that type for other operations.
of each hardware type (the overlap component). During the
local phase, the overlap components of the objective function VI. EXPERIMENTAL RESULTS
are normalized by the available number of resources of eachrthe HBISR methodology, techniques and proposed algo-
hardware type. When a unit is in short supply due to failuréithms were validated on the set of DSP, video, control,
the overlap component for the resource is large, and thus 8i®l communication examples shown in Table lll and de-
algorithm will transform the graph in such a way that thecribed in [25]. Supporting tools from the Hyper behavioral-
need for this unit is alleviated. level synthesis system [14], were used for other synthesis
When the probabilistic sampling does not succeed in trantasks. The table shows all relevant data for the standard
forming the graph for successful implementation under tlend the HBISR synthesis procedures. During the selection
given fault scenario, a pipelining-based optimization [24] isf benchmark examples, special attention was devoted to
used, in which varying number of pipeline states are tried. include examples with a variety of computational structures.

GUERRA et al. HETEROGENEOUS BISR RECONFIGURABLE ASIC'S SYNTHESIS 165

TABLE IV
RESULTS FOR TRANSFORMATION-BASED HBISR
Non- Non- HBISR | Percentage
HBISR | # Hardware BISR 8
Example BISR #Units Classes Area Area Area
#Units 5 (mm?) Overhead
(mm®)
11 FIR 8 9 4 5.45 6.5 193
7IR 7 9 4 927 9.92 7.0
35 FIR 7 8 4 12.31 13.34 84
55 FIR 14 16 4 20.77 23.44 12.9
8 IIR 16 18 4 24.85 27.04 8.8
Lin3 18 19 3 33.06 34.52 4.4
Lin4 21 23 3 36.00 38.49 6.9
Echo 8 17 19 5 12.27 12.81 44
Adapt 6 23 26 5 14.78 15.84 72

For example, note that although the different forms of thmemory design, they have been regularly and successfully
eighth-order low-pass IIR Avenhaus filters provide the samused in both BISR for custom [27] and programmable [17]
functionality, they have drastically different structures andatapath analysis.
sizes. The average and median HBISR design area overheadsble V shows the yield and productivity data for the
were 18.8 and 19.4%, respectively. Note also that althougkamples designed using transformation-based HBISR. A 10%
the initial implementations of all examples had on averageitial yield is assumed for designs without redundant HBISR
3.7 different types of hardware units, an average of only 2¢rcuitry. This or similar values were also assumed in [17],
additional units were needed for the HBISR designs. [26], and [27]. The relative productivity is the relative yield
Table IV shows results for several examples designed ugcrease divided by the relative area increase. The data are
ing the transformation-based methods of HBISR design. TRalculated for various values of the variability parameter
average and median area increases are only 8.8 and 7.2%4s parameter gives an indication of the assumed probability
respectively. The examples had an average of four differe¥tclustered defects, the most common sources of chip mal-
types of execution units, but an average of only 1.8 additionfainctions. Large values of. correspond to smaller levels of
hardware units were needed. clustering, and therefore lower processing variability. For all
While the HBISR techniques increase the yield per waféxamples, including those of Table Ill whose yield and pro-
(percentage of functional die), the area overhead reduces @tivity data are not shown here, a significant improvement
number of wafer per die. Productivity (number of functiond Productivity is apparent for all values g
dies per wafer) takes both of these effects into account. i
Productivity improvement can thus be used to measure the
effectiveness of the HBISR techniques. A. Arbitrary Hardware Models
For these calculations, we used Stapper’'s yield formula
[26], which calculates the probability that exactly out of n
modules operate correctly for a given value of the variabili
parameter, and single module yield;

. GENERALIZING THE HBISR METHODOLOGY

In this section we describe how the HBISR methodology
can be used when an arbitrary hardware model is adopted.
Xl that is necessary, actually, is to first propose the HBISR
implementation, and then check whether the computation can
v —(™\y met T pe correctly implement_ed__on all subse_ts of t_he imp_lementa-
mn 1y piY tion where hardware primitives (execution units, register and
=0 interconnects) of the model are removed (assumed faulty and

— e nom-l p+iY1/(1=Y) not used) one by one.
x(1=-Y1) H Y, + iy, | Note that even in relatively small designs, the total number
=0 M LTI of execution units, interconnect, and registers is usually high.
A slight modification is made to the formula to take intorherefore, while an arbitrary model offers potential for further
account units of largely different areas. hardware reduction and an attractive conceptual generaliza-

This model is based on the combination of the binomial anibn, the number of required schedules and assignments may
beta distributions for faults. The high accuracy of this modebmbinatorially explode.
has been demonstrated on a variety of real-life productionClearly, there is a tradeoff between potential overhead
designs. Although Stapper’s procedures primarily target BISRduction and tractability of the synthesis algorithms. A more

166 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 6, NO. 1, MARCH 1998

TABLE V
YIELD AND PRODUCTIVITY FOR TRANSFORMATION-BASED HBISR DESIGNS FOR VARIOUS
VALUES OF THE VARIABILITY PARAMETER ft. THE INITIAL YIELD IS ASSUMED TO BE 10%

Percentage Yield Relative Productivity

Example
u=0.5 p=1 u=5 =00 u=0.5 p=1 n=5s p=00
11 FIR 16.62 18.42 23.52 30.02 1.393 1.544 1.971 2.531
7IIR 15.30 16.60 19.89 23.34 1.430 1.551 1.859 2.181
35 FIR 16.82 18.69 2378 29.63 1.552 1.719 2.199 2.733
55 FIR 15.18 16.48 20.46 27.82 1.345 1.460 1.812 2.464
8 IIR 15.11 16.38 20.32 28.42 1.389 1.506 1.868 2.612
LIN 3 15.49 16.89 21.37 31.62 1.484 1.618 2.047 3.029
LIN 4 14.92 16.13 19.93 29.49 1.396 1.509 1.864 2.759
Echo 8 15.07 16.32 20.24 28.65 1.443 1.563 1.939 2.744
Adapt 6 14.54 15.62 18.98 27.69 1.356 1.457 1.771 2.583

practical HBISR scheme can be achieved by grouping selé- = 2, if we add two instances of each type of execution
eral hardware components together and assuming that wiit with the corresponding register files and interconnect as
of them are either simultaneously faulty or simultaneoushequired for the assignment only-based BISR, we have a design
functional. This is actually a generalization of the proposeshich is fault tolerant against as many as four faulty units.
hardware model, where an execution unit, its register files aAdother possibility is that we divide all execution types in two
corresponding interconnects are considered as simultaneowssigsets. The first subset of execution types is treated using

susceptible to a fault. the assignment-only BISR scheme, while the second subset
. is addressed using the full-fledged behavioral-level synthesis
B. Varying Levels of Fault Tolerance approach. In this scenario, it is apparently advantageous to

Until now we have restricted our attention to the case wheelect more expensive units for the second subset.
the number of failed moduleds, is equal to one. In general as o -
K is increased, the improvement in the productivity can givie: APPlication-Specific Programmable
diminishing returns, and can even produce lower productivifyfocessor (ASPP) Designs
[26]. An interesting issue for HBISR design is the actual The HBISR approach, as demonstrated, can be used for
selection of the value oK which gives the optimal effective ASIC yield improvement or low-hardware overhead fault-
yield, as a tradeoff between resilience to failure and hardwarderance against permanent faults. The technique is directly
overhead. built on the flexibility provided by behavioral-level synthesis

The required number of schedules and assignments gradusing design space exploration. The identification and the
quickly with K. Suppose that we have targeted an ASIC desigechniques for exploiting this flexibility, however, are in them-
with n different types of operations and that we want aselves important. Intelligent strategies to use the flexibility of
implementation that can tolerate up &6 nonfunctional units. solutions can also be used in the reconfigurable datapath design
The number of different schedules and assignments neededfiapplication specific programmable processors (ASPP’s). An
equal to the number of combinations Af elements fromn ASSP design provides an efficient implementation for a set of
[28]: (Z) Even if all necessary assignments and scheduldiéferent applications. This is in contrast to traditional ASIC
are produced in a reasonable amount of time, importasgsigns which implement a single application. Minimal hard-
implementation details (e.g., the exponentially growing siagare ASPP implementation is achieved most often by identify-
of the controller or the number of different programs whicing a set of implementations for individual applications which
have to be generated and stored) become the limiting factare not necessarily minimum hardware implementations, but

While direct application of the proposed methodology doeshich are similar in terms of the required hardware resources.
not appear feasible for large values &f, a hybrid ap- Consider, for example, the design of an ASPP to implement
proach can provide a good tradeoff between complexity attte two different computationd andB. Let A; and B; repre-
efficiency. The approach employs an iterative deepening tedent particular implementation solutions for the computations
nique, in which proposed allocations are tested for iteratively and B, where|:| and |j| are the total number of possible
increasing values of fault tolerance unfil is reached. The implementations ofA and B, respectively. As the ASPP
main idea is to combine the scheme when only assignmeémiplementation must be able to implement both computations,
flexibility is used with the one when both scheduling ands hardware is the union of the hardwar; U B;, for any
assignment flexibility are explored. Several such schemes gaand j. The goal is not to find the Mi{H;) U Min(B;)
be envisioned. For example, after generating the solution famplementation, but to find the M{gi; U B;) solution, which

GUERRA et al. HETEROGENEOUS BISR RECONFIGURABLE ASIC'S SYNTHESIS 167

in many instances is one for which; and B; have similar Design,vol. 13, pp. 669-683, June 1994,

i ; ; ; ;] R. Brayton, G. Hachtel, C. McMullen, and A. Sangiovanni-Vincentelli,
hardware implementations. The techniques introduced in thfs Logic Minimization Algorithms for VLSI SynthesisNew York: Kluwer

paper have a high potential to facilitate the synthesis of ASPP academic, 1984.
datapaths, due to their ability to produce a great variety {#] C.N. Fischer and R. J. LeBlanc, JCtafting a Compiler. Menlo Park,
competitive solutions CA: The Benjamin/Cummings, 1988.
p : [23] R. A. Walker and D. E. Thomas, “Behavioral transformations for
algorithmic level IC design,1EEE Trans. Computer-Aided Desigvol
VIIl. CONCLUSIONS 8. pp. 1115-1127, Oct. 1989.

New techniques have been presented to compose a [l M. Potkonjak and J. Rabaey, “Optimizing resource utilization using

: : Prest o formations,” inProc. IEEE Int. Conf, -Aided Desi
configurable BISR implementation with a minimum amount Ygo7 o %g2s) ™1 . Conf. Computer-Alded Design.

of area overhead. BISR is an efficient yield, productivityj2s] L. Guerra, M. Potkonjak, and J. Rabaey, “Behavioral-level synthesis
and reliability fault-tolerance improvement technique, which of heterogeneous BISR reconfigurable ASIC's,” UCLA Comput. Sci.

. . L . - - Dep., Tech. Rep. 960005, 1996.
will continue to gain importance especially with the INCre€asBe; . 'H. Stapper, “A new statistical approach for fault-tolerant VLSI

in commercial significance of massive parallelism. We have * systems,” inProc. Int. Symp. Fault-Tolerant ComputinBoston, MA,
presented novel synthesis techniques based on assignment,1992, pp. 356-365.

; ; ; 7] 1. Koren and M. Breuer, “On area and yield considerations for fault-
scheduling, and transformations, which support a new hetet® tolerant VLS| processor arrays|EEE Trans. Computyol. C-33, pp.

geneous BISR methodology for ASIC designs. These methods 21_57, jan. 1984.

are based on the flexibility of the design solution space and t128] M. Hall, Combinatorial Theory. New York: Wiley, 1986.
exploration potential of behavioral-level synthesis processes to

find designs where resources of several different types can be

backed up with the same unit.))])
Lisa M. Guerra received the B.S. degree in electri-
cal engineering from Stanford University, Stanford,
CA, in 1990 and the Ph.D. degree in electrical en-
gineering and computer science from the University
of California, Berkeley, in 1996.

She is currently working in the Advanced VLSI
Architecture group at Rockwell Semiconductor Sys-
tems in Newport Beach, CA. Her current research
interests include design methodologies, HW/SW
coverification, and HW/SW codesign for embedded
systems.

REFERENCES

[1] D. P. Siewiorek and R. S. SwartReliable Computer Systems: Design
and Evaluation2nd ed. Burlington, MA: Digital Press, 1992.

[2] W. R. Moore, “A review of fault-tolerant techniques for the enhance
ment of integrated circuit yield,'Proc. IEEE, vol. 74, pp. 684-698,
1986.

[3] S. E. Schuster, “Multiple word/bit line redundancy for semiconducta
memories,” |[EEE J. Solid-State Circuitsyol. 13, pp. 698-703, Oct.
1978.

[4] A. Tanabeet al.,“A 30-ns 64-Mb DRAM with built-in-self-test and self-
repair functions,”|EEE J. Solid-State Circuitsol. 27, pp. 1525-1533,
Nov. 1992.

[5] J. W. Greene and A. E. Gamal, “Configuration of VLSI arrays in the

presence of defects,J. ACM,vol. 31, no. 4, pp. 694-717, 1984. Miodrag Potkonjak (S'90-M'91) received the Ph.D. degree in electrical

[6] N. Hassan and C. L. Liu, "Fault covers in reconfigurable PLA's,” inen ineering and computer science from the University of California, Berkele!
Proc. Int. Conf. Fault-Tolerant Computind990, pp. 166-173. b posabls P y ’ Y,

: . 9
[7] D. A. Patterson, G. Gibson, and R. H. Katz, “A case for redundant arrays, . September 1991, he joined C&C Research Laboratories, NEC USA,

8] Ef ggép;ﬂ;lngdgléstéﬁﬁrIEgérggao% I_Sslf;m%?:clygtgeﬁmﬂg ellgsgrlllzlGMbPrinceton, NJ. Since 1995, he has been an Assistant Professor in the Computer
RAM'S six é‘4kb SRAM's and an 18k gate array,” Rroc. 1ISSCCSan Science Department at the University of California, Los Angeles. His research
' 9 Y ' interests include intellectual property protection, system core-based design,

Francisco, CA, 1992, pp. 52-53. - . . ' - =
[9] T. Leighton and C. E. Leiserson, “Wafer-scale integration of systoliEollaboratlve design, integration of computations and communications, and

arrays,”|EEE Trans. Computyol. 34, pp. 448-461, May 1985. experimental algorithmics.

[10] M. C. McFarland, A. C. Parker, and R. Camposano, “The high-level
synthesis of digital systemsProc. |IEEE,vol. 78, no. 2, pp. 301-317,
1990.

[11] G. De Micheli, Synthesis and Optimization of Digital CircuitsNew
York: McGraw Hill, 1994.

[12] V. Raghavendra and C. Lursinsap, “Automated micro-roll-back s
recovery synthesis,” inProc. ACM/IEEE Design Automation Conf.,
1991, pp. 385-390.

[13] R. Karri and A. Orailoglu, “Transformation-based high-level synthes
of fault-tolerant ASIC's,” inProc. ACM/IEEE Design Automation Conf.,
1992, pp. 662—665.

14] J.R I.,“F i f hi i hi 3

[14]]]EEgblggg%r?T‘est?/ztl pémg;y%]_gsi gitr;aepf;gllntenswe architectures, pioneered the development of the CATHEDRALII

[15] E. A. Lee and D. G. Messerschmitt, “Static scheduling of synchrono synthesis system for digital signal processing.

dataflow programs for digital signal processintEEE Trans. Comput., o In 1987, he joined the Faculty of the Electrical
vol. C-36, pp. 24-36, Jan. 1987. Engineering and Computer Science Department of the University of

[16] M. Abramovici, M. A. Breuer, and A. D. Friedmamigital Systems California, Berkeley, where he is now a Professor. He authored or co-authored
Testing and Testable DesignsNew York: Computer Science, 1990. more than 100 papers in the area of signal processing and design automation.

[17] D. A. Patterson and J. L. Henessypmputer Architecture: A Quantita- His current research interests include the exploration of architectures and
tive Approach. San Mateo, CA: Morgan Kaufmann, 1989. algorithms for digital signal processing systems and their interaction. He is

[18] A. Yeung and J. Rabaey, “A data-driven architecture for rapid protdurthermore active in various aspects of portable, distributed communication
typing of high throughput DSP algorithms,” IProc. IEEE VLSI Signal and computation systems, including low-power design, networking, and
Processing Workshop1,992, pp. 225-234. design applications.

[19] M. Potkonjak and J. Rabaey, “A scheduling and resource allocationDr. Rabaey received numerous scientific awards and has been on the
algorithm for hierarchical signal flow graphs,” iRroc. ACM/IEEE Technical Program Committees of conferences, such as ISSCC, ICCAD, and
Design Automation Conf1989, pp. 7-12. EDAC. He is currently serving on the Executive Committee of the DAC

[20] J. Rabaey and M. Potkonjak, “Estimating implementation bounds f@onference. He has served as Associate Editor of the IERENAL OF
real-time application specific circuits[EEE Trans. Computer-Aided SoLiD-StaTE CIRCUITS.

Jan M. Rabaey (S’80-M'83-SM’'92-F'95) re-
ceived the E.E. and Ph.D. degrees in applied
sciences from the Katholieke Universiteit Leuven,
Belgium, respectively, in 1978 and 1983.

From 1983 to 1985, he was connected to the
University of California, Berkeley, as a Visiting
Research Engineer. From 1985 to 1987, he was a
Research Manager at IMEC, Belgium, where he

