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Abstract—In this paper, behavioral-level synthesis techniques
are presented for the design of reconfigurable hardware.
The techniques are applicable for synthesis of several classes
of designs, including 1) design for fault tolerance against
permanent faults, 2) design for improved manufacturability,
and 3) design of application specific programmable processors
(ASPP’s)—processors designed to perform any computation
from a specified set on a single implementation platform.
This paper focuses on design techniques for efficient built-in
self-repair (BISR), and thus directly addresses the former two
applications. Previous BISR techniques have been based on
replacing a failed module with a backup of the same type. We
present new heterogeneous BISR methodologies which remove
this constraint and enable replacement of a module with a spare
of a different type. The approach is based on the flexibility
of behavioral-level synthesis to explore the design space. Two
behavioral synthesis techniques are developed; the first method
is through assignment and scheduling, and the second utilizes
transformations. Experimental results verify the effectiveness
of the approaches.

Index Terms—Behavioral-level synthesis, built-in-self-repair
(BISR), fault tolerance, transformations.

I. INTRODUCTION

W ITH the rising cost of semiconductor manufacturing
and the increasing complexity of integrated circuits,

improvement of manufacturing yields is crucial for achieving
economic utilization of semiconductor manufacturing facil-
ities. Fault tolerance techniques such as the built-in self-
repair (BISR) sparing methodology will play an important
role in achieving yield improvements. BISR is a hybrid
redundancy technique in which a set of spare modules are
provided in addition to the core operational modules [1]. If
an implementation is found to have defective core modules,
these modules can be replaced by functional spare ones before
packaging.

BISR methods can be applied not only for yield im-
provement but also for improvement of design reliability.
Designs can be made fault tolerant to failures occurring during
operation by automatic replacement of failed modules with
spare ones, so that the overall system can continue to function
correctly. This is especially important in military systems and
space exploration missions [1] where it is critical that there
are no system failures, or where manual replacement of failed
modules is either impossible or prohibitively expensive.
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This paper introduces a novel concept of Heterogeneous
BISR for ASIC designs. As opposed to traditional BISR, where
a failed module is replaced by a spare of the same type,
we propose Heterogeneous BISR (HBISR), which enables
replacement of a module with a spare of a different type.
HBISR leverages on a computation’sflexibility, or its ability to
be implemented in a number of competitive ways, to increase
productivity and fault tolerance. In addition, behavioral-level
synthesis techniques for exploiting this flexibility in automated
design are presented. One method is through assignment and
scheduling, and the second utilizes transformations.

The paper is organized in the following way. After a
survey of previous works and discussion of several design
preliminaries, simple, yet real-life examples are used to in-
troduce the main ideas. Next, new behavioral-level synthesis
algorithms which minimize hardware overhead for HBISR
during resource allocation, assignment, scheduling, and trans-
formations are discussed. The paper concludes by presenting
and analyzing experimental results on a variety of real-life
DSP examples and briefly outlining extensions.

II. PREVIOUS WORK

The main target for BISR techniques are systems that are
bit- , byte- , or digit-sliced. By far the most important use of bit-
sliced BISR is in SRAM and DRAM circuits [2], [3]. Almost
all current day memory designs use BISR techniques [4], as
they significantly increase memory production profitability.
Programmable logic arrays are another class of bit-sliced
devices for which BISR has been well addressed [5], [6]. It
has also been successfully applied for arithmetic-logic unit
byte slices [1]. Other areas in which BISR techniques are
being used include secondary storage systems [7], wafer scale
integration [8], and systolic array designs [9].

While all previous BISR techniques have been based on
replacing a failed module with a backup of the same type, we
present new heterogeneous BISR methodologies. Additionally,
we present synthesis techniques for their design. Behavioral-
level synthesis provides the flexibility of design space explo-
ration so that a variety of design goals can be addressed.
An overview and extensive bibliography of behavioral-level
synthesis algorithms can be found in [10] and [11]. Most
of these works, target the optimization of area and speed
(throughput). Recently, other important goals, such as power,
testability, and reliability and fault tolerance have been ad-
dressed. Little work has been reported on behavioral-level
synthesis techniques for reliable and fault tolerant design.
Raghavendra and Lursinsap [12] concentrated on designs
with self-recovery from transient faults using micro roll-
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back and checkpoint insertion. Karri and Orailoglu presented
scheduling and assignment and transformation-based methods
for minimizing hardware overhead while achieving a certain
level of fault tolerance in micro roll-back [13]. While previous
behavioral-level synthesis methods for enhancing fault toler-
ance have addressed intermittent and transient faults [1], this
work concentrates on permanent faults where fault tolerance
is used for reliability, yield, and productivity enhancement.

III. I SSUES INHBISR RECONFIGURABLE DATAPATH DESIGN

Given a behavioral description of the algorithm, an under-
lying hardware model, and a throughput constraint, the goal
is to synthesize a minimum area design that can tolerate a
number of faulty hardware resources. This section describes
our targeted application and computation and hardware mod-
els, as well as several implementation issues in the design of
reconfigurable datapaths for HBISR design.

Targeted applications include real-time DSP, video, multi-
media, and other numerically intensive algorithms. Applica-
tions are represented as hierarchical data-control flowgraphs,
with nodes representing the flowgraph operations, and edges
the data and control dependencies between them [14]. The
underlying model of computation is the homogeneous syn-
chronous data flow model of [15].

The ASIC hardware model being considered is the dedicated
register model, where all registers are clustered in register files,
connected only to the inputs of the corresponding execution
units [14]. We also assume that there is no bus merging,
so there exists a dedicated bus connecting any two units
between which there are data transfers. Note that the HBISR
methodology itself is not limited to this hardware model;
generalizations are discussed in Section VII.

At the gate level, a single stuck-at model [16] is assumed
for faults, and at the register transfer level, we assume that a
unit is faulty if it has one or more gate level faults. Faults can
occur in either an execution unit, register file, or bus. Under
the targeted hardware model and these assumptions, all faults
can be classified as execution unit faults. A faulty register
file prevents its corresponding execution unit from receiving
data, and thus has the same effect as a fault in the execution
unit. Similarly, a faulty bus can be treated as a failure in the
execution unit at its receiving end. Note again that the HBISR
methodology itself is general, and can be easily extended to
other fault models.

A number of testing approaches are available to detect that a
fault exists, and to diagnose its location [16]. If BISR is used to
improve manufacturability, any off-line testing and diagnosis
scheme can be used [i.e., partial-scan sequential automatic test
pattern generation (ATPG), full-scan and combinational ATPG,
built-in self-test (BIST), and insertion-point based-schemes].
Note that any scheme which does not have strong diagnosis
capabilities (e.g., IDDQ-based testing), cannot be used.

If the BISR methodology supports in-field reconfiguration
after failure of particular hardware part(s), a BIST scheme
is required. In this case, testing capabilities are “built-in”
(resulting in test-hardware overhead) to the chip itself. The
BIST scheme can be either on-line or off-line [16]. In the
off-line BIST scheme, periodic interruption of the functional
mode is required.

Upon diagnosis of a fault, the controller is reconfigured.
Several alternatives for efficient low overhead controller im-
plementation include programmable, off-chip, or composed
controllers. A programmable controller [17] often brings a
somewhat large implementation area and a small degradation
in performance, but it provides flexibility not only for HBISR,
but also for relatively minor alterations in the chip functional-
ity as is often required in modern day designs. An off-chip
controller can be replaced as necessary since it is located
on a separate chip. A number of high performance datapath
intensive chips have used this option (e.g., [18]). The same
drawbacks and advantage as with the programmable controller
hold. The composed controller is located on-chip, and is the
composition of all possible control configurations that may be
used. Its effectiveness depends on how well several different
(but often similar) controllers can be merged.

In all cases we assume that the controller itself is fault-free.
This assumption can be easily replaced by a fault-tolerance
mechanism which provides resiliency of the controller. Since
the controller usually occupies a very small fraction of chip
area in datapath-intensive ASIC designs [14], simple replica-
tion is often an adequate solution.

IV. A SSIGNMENT AND SCHEDULING FOR HBISR DESIGN

A. Key Ideas and Motivational Example

Probably the most straightforward approach to BISR is to
provide a spare for each hardware instance, resulting in full
duplication of the hardware. With the detection of a faulty unit,
reconfiguration takes place to initiate use of its spare. This
reconfiguration is conceptually a switch that passes control
from the failed to the backup unit.

Fortunately, the BISR overhead need not be so high. If the
number of faulty units, , is one, for example, the behavioral-
level synthesis assignment step provides us with the flexibility
under which it is clear that only one spare for each hardware
class is necessary, as opposed to one spare per hardware
instance. The operations from the failed unit will be transferred
to a spare of the same type.

The flexibility gained through assignment clearly reduces
the amount of hardware redundancy needed. Considering the
additional flexibility brought by scheduling, however, we can
often use even fewer spares. This is possible since assignment
and scheduling enable the replacement of a module by a
spare of a different type. When a failed unit is detected,
instead of reassigning only those operations of the failed
unit, we completely reassign and reschedule all operations
of the flowgraph. The specific goal addressed can now be
restated as follows:find the minimum area solution which
meets the throughput constraint, for which the algorithm can
be reassigned and scheduled, even when as many asunits
are faulty.

The main ideas are illustrated with the following example
(Fig. 1, Table I), where the goal is a low-overhead HBISR
implementation that can tolerate up to one faulty unit. The ex-
ample includes the imaginary part of a complex number mul-
tiplication with a constant and with a variable (multiplication
with a constant is such that it can be done using a single shift).
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(a) (b)

Fig. 1. Scheduling and assignment for HBISR: Imaginary part of com-
plex multiplication: (a) with constant multiplications and (b) with variable
multiplications.

TABLE I
SCHEDULES FOR THEEXAMPLE OF FIG. 1, TO BE USED

WHEN AN ADDER, SHIFTER, OR MULTIPLIER FAILS

Assume that each operation takes one control cycle and the
available time is three control cycles. The minimum hardware
required for non-BISR implementation consists of two shifters,
one multiplier, and one adder. If scheduling flexibility is not
exploited, the minimum BISR hardware will require an addi-
tional unit of each type. However, using both assignment and
scheduling, only two shifters, two multipliers, and two adders
are needed. If the adder fails, operations A and B are done on
the two shifters in step 1, D and E on the two multipliers also
in step 1, and C and F on the single remaining adder in steps 2
and 3. Table I shows the schedules for all three cases of failed
units. An important point to note is that no additional shifters
are needed. In the event of a shifter failure, the scheduling
flexibility brought by the redundant multiplier is exploited.

B. Allocation, Assignment, and Scheduling Algorithm

The global strategy of the Hyper behavioral-level synthesis
system [19] is well suited for use as the starting point for
developing new algorithms targeting HBISR. In this system,
allocation first proposes a hardware solution, then assignment
and scheduling are performed to check its feasibility. To take
into account BISR requirements, it was necessary to develop a
new allocation scheme. A generic assignment and scheduling
module can easily be modified for use within this framework.
We have used the Hyper scheduler and assigner, with small
modifications.

Before explaining the details of the new allocation algo-
rithm, several definitions are presented. An allocation,, is a
proposed set of hardware units for the HBISR realization of an
application algorithm. For a given , there are many possible
combinations of units which can fail. Let represent one
such failure event. The child allocation , is the
effective allocation of hardware (allocation of good units) for
the failure event. Note that the number of elements
is equal to . A feasible allocation, , is thus one for which
successful reassignment and scheduling can be accomplished
for all of its child allocations .

The basic idea of the allocation mechanism is to start at an
initial allocation, add hardware until a feasible allocation is
found, then remove all unnecessary redundant hardware. Note
that for any proposed allocation solution, it is necessary to
assure that scheduling can succeed withany combination of
failed units. The basic framework for the allocation algorithm
has been set up and implemented for . The pseudo-
code for the global flow is presented below, followed by an
explanation of the algorithm’s key components.

GetInitialAllocation();
while (!Success)

SortInDecreasingOrderOfStress(OrderedHW);
foreach OrderedHW

Success = Assign and ScheduleWithFailed
Unit(j)
if(!Success)

break;

UpdateStress();
if(!Success)

AddHardware();

RedundancyRemoval();

A sharp minimum bound, , on the necessary amount of
hardware of each classis used as the initial allocation.
is defined as: , where is a minimum bound
on the amount of hardware necessary for any non fault-
tolerant implementation and is the number of faults. For
each hardware class,, relaxed based scheduling techniques
[20] are used to derive an estimate of . The equation for

can be understood by observing thatany implementation
requires at least units, and since up to units of type
can be bad, at least units are needed.

If the initial allocation fails, the allocation expansion phase
is entered, where new hardware units are added (AddHard-
ware routine) one by one until the allocation succeeds. Good
selection heuristics have a crucial impact on the speed of
the algorithm and the quality of the solution. Firstly, we
want to reach the solution as quickly as possible, avoiding
the addition of unnecessary units along the way. Secondly,
we want to avoid a greedy steepest descent type algorithm
which could lead to many suboptimal solutions. Two modes
of addition, stress-based addition and last gasp addition, have
been constructed. Stress-based addition uses a measure called
the global stressof a hardware resource class to decide which
hardware type to add next. This measure is described below
and is composed of several heuristic measures of the difficulty
of assignment and scheduling of each hardware class. The
larger the stress, the more likely it is that type of unit is the
cause for the failure of the assignment and scheduling. For
additional robustness, we have also added a last gasp addition
phase, similar in concept, but not technique, to the Last Gasp
routine of Espresso [21]. This phase is entered if it is found that
the stress measure has ceased to give useful feedback. During
last gasp addition, units are added one by one in random order
till a feasible allocation is reached. In practice, this phase is
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rarely entered, but assures a solution will be found if one
exists.

At the completion of the expansion phase, there is no
guarantee that the feasible allocation is minimal. It is possible
that a subset of the allocation, is also a solution. To
assure that a local minimum has been reached, it is necessary
to assure that if any units are removed from the current
solution, success cannot be achieved. In general, the units with
minimum stress are tried for removal first.

It is also imperative, however, to incorporate a remember-
and-look-ahead technique, so that time is not wasted at-
tempting allocations that will definitely fail. The idea of the
technique is to remember all allocations and child allocations
that failed, and to use this information whenever considering
an allocation . Before attempting , a look-ahead to its
child allocations will determine if there is any overlap between
the children of and any known allocations that have failed.
More formally, let us define to be the set of failed child
allocations. Let be the set of and all children of . If

, then need not be considered as a possible
allocation.

Suppose, for example, that the proposed solution three
adders, two subtracters, two multipliersfailed because a
reassignment and scheduling could not be found for its child
allocation (adder) two adders, two subtracters, two
multipliers . A subtracter was added, and the new allocation

three adders, three subtracters, two multiplierswas
successful. At this point, the removal phase is entered. At
first glance, knowing that three adders, two sub-
tracters, two multipliers failed, and that three adders,
three subtracters, two multiplierssucceeded, it is not clear
what will happen with two adders, three subtracters,
two multipliers . With remember-and-look-ahead, however,
we can immediately dismiss from consideration since

(adder) , (subtracter), (adder),
(multiplier) , gives since (subtracter)

(adder).
For a successful allocation, a feasible schedule for each

child allocation must be found. We thus order the schedules
in decreasing order of difficulty, so that we can exit as fast as
possible in the event that there is an insufficient allocation. The
ordering is a function of the global stress, so that schedules
for the failure of highly stressed units are tried first.

The ordering mechanism as well as several other portions of
the allocation algorithm rely heavily on the idea ofstressof a
hardware unit. In the remainder of this section three intuitive
and experimentally verified heuristics for the stress function
are described.

1) Minimum bounds stress, MB: By experimental obser-
vation, operations of type whose relaxed scheduling
minimum hardware bound () is close to its absolute
minimum hardware bound (), are difficult to schedule.
The absolute minimum bound [20] for hardware type
is: NumNodes duration AvailableTime ,
where NumNodes is the number of nodes that are
executed on hardware of type, duration is the clock
cycle duration of the hardware,AvailableTime is the
sample period in clock cycles, and is the number

of allowable faulty units. The minimum bounds stress
for hardware type is

MB (1)

The absolute minimum bound indicates the number of
units needed assuming that the flowgraph structure has
enough parallelism to achieve 100% hardware utiliza-
tion. The relaxed scheduling bounds, on the other hand,
take the graph structure and some data precedences into
account giving a more accurate bound. Neither of the
bounds take into account constraints such as conflicts
in writing to register files, and neither fully honors
data precedences. The closer these two bounds are, the
smaller the hardware slack available to satisfy these
constraints, and thus the better the particular unit is as
a candidate for addition.

2) -critical network stress, C: If a high percentage of the
nodes of a particular hardware typelie in the -critical
network, this type of operation is likely a bottleneck for
scheduling, and its hardware is thus a good candidate for
addition. The -critical network consists of all operations
on paths which have lengths within a smallpercentage
of the critical path length. The-critical network stress
for hardware type is

C
NumNodes NetNumNodes

NumNodes
(2)

These first two measures take into account various elements
of the algorithm specification. Both deal with aspects of the
overall structure of the flowgraph, and the minimum bounds
stress also accounts for the user-specified available time. Since
they capture information about the specification and the initial
starting allocation, they are most valuable in the beginning of
the allocation addition phase. We therefore heavily weight their
effect to be greatest in the beginning and to quickly diminish
as hardware is added.

3) Scheduling stress, S: Unlike the previous two, this
measure changes dynamically with the allocation. It
is calculated during the assignment and scheduling.
The scheduling difficulty, SD(), is calculated for each
operation, , and is inversely proportional to the slack
time between the As Late As Possible (ALAP) sched-
uling time and a relaxed As Soon As Possible (ASAP)
scheduling time [19]. This value is summed over all
nodes of type , to give the unnormalized stress

stress

Nodes

SD (3)

Since we are interested in the minimum area solution,
we normalize the stress value by the hardware cost of the
unit, giving the scheduling stress for hardware typeas
a function of the scheduling difficulty and the hardware
cost

S stress
stress Nodes

SD

(4)
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(a) (b)

Fig. 2. Transformations for HBISR: using associativity and the inverse
element law.

where is the hardware cost (area) of an execution
units of hardware type.

Finally, we define the global stress, G, for hardware type

G MB C S S MB C (5)

where is the number of additional units added, andis an
empirical parameter determined through testing to be equal to
three. The global stress is a functionally weighted function of
the heuristics, and was constructed through the use of testing
and statistical validation. As mentioned above, since MB and
C capture information about the starting allocation, they have a
large impact on the global stress function in the early stages of
the allocation addition phase. The scheduling stress, S, quickly
gains dominance as units are added.

V. TRANSFORMATIONS FORHBISR DESIGN

Transformations are alterations in the computational struc-
ture such that the behavior (the relationship between output
and input data) is maintained. Transformations are used exten-
sively in several computer science, computer engineering, and
CAD areas, most often in compilers [22] and behavioral-level
synthesis [23], [24]. This section shows how transformations,
using specifically tailored optimization techniques, can sig-
nificantly reduce the area overhead for designs with BISR
requirements.

A. Key Ideas and Motivational Examples

The basic idea behind using transformations in behavioral-
level synthesis for HBISR is to transform the computation
according to the needs imposed by the available hardware, for
each possible scenario of failed units. The simple example in
Fig. 2 will be used to illustrate this idea. In all the examples
in this section, assume that each operation takes one control
cycle, and that transformations are done in such a way that
important numerical properties (e.g., numerical stability and
overflow control) are maintained in the transformed designs.
The validity of the assumptions about the numerical properties
of the transformed designs can be verified using fixed-point
simulation tools (e.g., [14]). The assumed available time for

(a) (b)

Fig. 3. Associativity for HBISR: (a) before and (b) after application of
associativity.

the first example is two control cycles. The identity shown in
Fig. 2 is used to transform (a) into (b). It is easy to verify
that both algorithms calculate the same output for the same
set of inputs. All operations lie on the critical path, so it is
not possible to reduce BISR overhead using the techniques
of Section IV. In this case, however, transformations can help
to reduce the overhead. If we consider only implementation
Fig. 2(a), and assume that any unit can fail, then three adders
and two subtracters are needed, since two adders and one
subtracter were needed for the non-BISR implementation.
However, if we consider both implementations, only two
of each type of unit are needed. If the subtracter fails, we
can use implementation Fig. 2(a) which needs two adders
and one subtracter, and when the adder fails we can use
implementation Fig. 2(b) which needs two subtracters and
one adder.

In general, there exists a large variety of transformations,
each of which reduces a computation in different ways. The
transformations to reduce HBISR overhead can be grouped
into two classes: 1) transformations to increase the resource
utilization (and therefore need) of the units of the same
type as the failed execution unit and 2) transformations to
reduce the number of operations that use the type of unit
that failed. While the former strategy is the same as that
used during scheduling, the latter is specific to transforma-
tions. Transformations in the former group include retim-
ing, functional pipelining, associativity, and loop permutation,
while those in the latter group include strength reduction
(substitution of multiplication with a constant by shifts and
additions), constant propagation, dead code elimination and
common subexpression elimination. Some transformations can
even be used for both strategies simultaneously (e.g., in-
verse element law, distributivity, loop fusion, and loop block-
ing).

The remainder of this section illustrates how two powerful
transformations, associativity and pipelining/retiming, can be
used for transformation-based HBISR. Although it is not
explicitly stated, it is implied that transformations in the
explanatory examples and in the software application are
supported by the commutativity transformation.

Fig. 3 shows the application of associativity for HBISR. For
this example, the available time is three and assignment and
scheduling flexibility does not help to reduce overhead. Notice
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(a) (b)

Fig. 4. Retiming for HBISR: rearranging ASAP and ALAP times [23] so that operations which require the faulty units are more uniformly distributed
over the available time.

TABLE II
FEASIBLE SCHEDULES FOR THEEXAMPLE OF FIG. 3. TWO SHIFTERS, TWO

MULTIPLIERS, AND TWO ADDERS ARESUFFICIENT FOR HBISR IMPLEMENTATION

that shift A on Fig. 3(a) and multiplication B on Fig. 3(b)
are the only operations which are not on the critical path.
It can be determined that the minimum non-BISR hardware
configuration, for the computation of Fig. 3(a) requires two
adders, two multipliers, and one shifter. Using associativity,
only one additional adder and one additional shifter are needed.
Table II shows the feasible schedules when three adders, two
multipliers, and two shifters are available for various scenarios
of unit failures. When a shifter fails, the implementation
from Fig. 3(a) is used, when a multiplier or adder fail the
implementation of Fig. 3(b) is used [actually, either (a) or (b)
can be used when an adder fails].

Next, Fig. 4 shows how retiming (and similarly pipelining)
can be used for HBISR. The available time in this example
is two control cycles. The rectangles in the figure denote
pipeline delays (states). The operation following the delay
uses data produced in the previous iteration by the operation
preceding the delay. Therefore, operations which have direct
dependencies only with respect to the states, can be scheduled
in the first control step. Notice, once again that all the
operations reside on the critical path, so there is no flexibility
during scheduling.

Although retiming cannot, in this case, change the slacks
on various operations, it can reshuffle the operation overlaps.
This redistribution is done such that operations competing for
a faulty unit are no longer bound to happen in the same
control step. Analysis of the various schedules shows that
three subtracters, two adders, and two shifters are sufficient
for HBISR implementation. This results once again in a lower
overhead than that achievable using only assignment and
scheduling.

B. Optimization Algorithm

The transformation-based HBISR optimization algorithm is
given by the following pseudo-code:

While(!Done)
for (i = 1..hw types) resolved(i) = NO;
for (count = 1..hwtypes)

k = SelectMostCriticalResource();
OptimizeUsingProbalisticSamplingWithFailed
Unit(k);
if (estimate() indicates feasibility)resolved(k)
= YES;
else OptimizeUsingPipeliningWithFailedUnit(k);

if (estimate() indicates feasibility)
resolved(K) = YES;
else break;

if (there is an unresolved resource)AddHardware();
elseif (scheduling() != feasible)AddHardware();
else Done = TRUE;

The initial hardware allocation is given by the HBISR allo-
cation algorithm. New resources are added until a transformed
and feasibly scheduled version of the computation is found for
each fault unit scenario. In the initial phases of the exploration
process, estimation routines based on relaxed scheduling [20]
are used in place of scheduling. Only when estimates indicate
that a complete solution is potentially found, is the scheduling
run. The AddHardware and SelectMostCriticalResource rou-
tines add resources using the stress functions of Section IV-B,
in determining which hardware to add and the order in which
to try the fault scenarios.

For the core optimization, two approaches are employed: a
probabilistic sampling algorithm and a pipelining-based algo-
rithm [24]. This probabilistic sampling algorithm applies two
types of basic moves: retiming and generalized associativity,
where the later is a transformation that combines associativity,
inverse element law, and commutativity moves. The algorithm
has two phases. The first phase is a global search using
probabilistic sampling, where the design space is probabilisti-
cally evaluated to detect themost promising starting points
( is a small integer number which is a function of the
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TABLE III
RESULTS FOR ASSIGNMENT AND SCHEDULING-BASED HBISR

number of nodes in the computation). Note that starting points
with varying numbers of operations of various types (e.g.,
subtraction versus addition) are generated using generalized
associativity moves, which include the inverse element law.
The second, local optimization phase, uses the basic steepest
descent approach to locally maximize these starting points.
After each move, the objective function is evaluated, to get an
estimate of the final area (execution units, interconnect, and
registers) expected from the system. This objective function
is composed of three key parts, all of which are strongly
correlated to the final area: the critical path, the number of
delays, and a measure of the expected resource utilization
of each hardware type (the overlap component). During the
local phase, the overlap components of the objective function
are normalized by the available number of resources of each
hardware type. When a unit is in short supply due to failure,
the overlap component for the resource is large, and thus the
algorithm will transform the graph in such a way that the
need for this unit is alleviated.

When the probabilistic sampling does not succeed in trans-
forming the graph for successful implementation under the
given fault scenario, a pipelining-based optimization [24] is
used, in which varying number of pipeline states are tried.

Both the probabilistic sampling and pipelining algorithms
run in time. Since the number of required hardware
resources is bounded by the number of nodes in the compu-
tation, the worst-case running time is . Experimental
studies indicate that the actual run-time is quadratic and was
less than 10 min for all examples on a Sun SPARCstation-5.

Notice that both classes of transformations for HBISR are
utilized: 1) transformations to increase the chance for high
utilization (and therefore reduced need) of the units of the
same type as the failed execution unit and 2) transformations
to reduce the number of operations of a failed type by trading
operations of that type for other operations.

VI. EXPERIMENTAL RESULTS

The HBISR methodology, techniques and proposed algo-
rithms were validated on the set of DSP, video, control,
and communication examples shown in Table III and de-
scribed in [25]. Supporting tools from the Hyper behavioral-
level synthesis system [14], were used for other synthesis
tasks. The table shows all relevant data for the standard
and the HBISR synthesis procedures. During the selection
of benchmark examples, special attention was devoted to
include examples with a variety of computational structures.
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TABLE IV
RESULTS FOR TRANSFORMATION-BASED HBISR

For example, note that although the different forms of the
eighth-order low-pass IIR Avenhaus filters provide the same
functionality, they have drastically different structures and
sizes. The average and median HBISR design area overheads
were 18.8 and 19.4%, respectively. Note also that although
the initial implementations of all examples had on average
3.7 different types of hardware units, an average of only 2.4
additional units were needed for the HBISR designs.

Table IV shows results for several examples designed us-
ing the transformation-based methods of HBISR design. The
average and median area increases are only 8.8 and 7.2%,
respectively. The examples had an average of four different
types of execution units, but an average of only 1.8 additional
hardware units were needed.

While the HBISR techniques increase the yield per wafer
(percentage of functional die), the area overhead reduces the
number of wafer per die. Productivity (number of functional
dies per wafer) takes both of these effects into account.
Productivity improvement can thus be used to measure the
effectiveness of the HBISR techniques.

For these calculations, we used Stapper’s yield formula
[26], which calculates the probability that exactly out of
modules operate correctly for a given value of the variability
parameter and single module yield

A slight modification is made to the formula to take into
account units of largely different areas.

This model is based on the combination of the binomial and
beta distributions for faults. The high accuracy of this model
has been demonstrated on a variety of real-life production
designs. Although Stapper’s procedures primarily target BISR

memory design, they have been regularly and successfully
used in both BISR for custom [27] and programmable [17]
datapath analysis.

Table V shows the yield and productivity data for the
examples designed using transformation-based HBISR. A 10%
initial yield is assumed for designs without redundant HBISR
circuitry. This or similar values were also assumed in [17],
[26], and [27]. The relative productivity is the relative yield
increase divided by the relative area increase. The data are
calculated for various values of the variability parameter.
This parameter gives an indication of the assumed probability
of clustered defects, the most common sources of chip mal-
functions. Large values of correspond to smaller levels of
clustering, and therefore lower processing variability. For all
examples, including those of Table III whose yield and pro-
ductivity data are not shown here, a significant improvement
in productivity is apparent for all values of.

VII. GENERALIZING THE HBISR METHODOLOGY

A. Arbitrary Hardware Models

In this section we describe how the HBISR methodology
can be used when an arbitrary hardware model is adopted.
All that is necessary, actually, is to first propose the HBISR
implementation, and then check whether the computation can
be correctly implemented on all subsets of the implementa-
tion where hardware primitives (execution units, register and
interconnects) of the model are removed (assumed faulty and
not used) one by one.

Note that even in relatively small designs, the total number
of execution units, interconnect, and registers is usually high.
Therefore, while an arbitrary model offers potential for further
hardware reduction and an attractive conceptual generaliza-
tion, the number of required schedules and assignments may
combinatorially explode.

Clearly, there is a tradeoff between potential overhead
reduction and tractability of the synthesis algorithms. A more



166 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 6, NO. 1, MARCH 1998

TABLE V
YIELD AND PRODUCTIVITY FOR TRANSFORMATION-BASED HBISR DESIGNS, FOR VARIOUS

VALUES OF THE VARIABILITY PARAMETER �. THE INITIAL YIELD IS ASSUMED TO BE 10%

practical HBISR scheme can be achieved by grouping sev-
eral hardware components together and assuming that all
of them are either simultaneously faulty or simultaneously
functional. This is actually a generalization of the proposed
hardware model, where an execution unit, its register files and
corresponding interconnects are considered as simultaneously
susceptible to a fault.

B. Varying Levels of Fault Tolerance

Until now we have restricted our attention to the case when
the number of failed modules, , is equal to one. In general as

is increased, the improvement in the productivity can give
diminishing returns, and can even produce lower productivity
[26]. An interesting issue for HBISR design is the actual
selection of the value of which gives the optimal effective
yield, as a tradeoff between resilience to failure and hardware
overhead.

The required number of schedules and assignments grows
quickly with . Suppose that we have targeted an ASIC design
with different types of operations and that we want an
implementation that can tolerate up to nonfunctional units.
The number of different schedules and assignments needed is
equal to the number of combinations of elements from
[28]: . Even if all necessary assignments and schedules
are produced in a reasonable amount of time, important
implementation details (e.g., the exponentially growing size
of the controller or the number of different programs which
have to be generated and stored) become the limiting factor.

While direct application of the proposed methodology does
not appear feasible for large values of, a hybrid ap-
proach can provide a good tradeoff between complexity and
efficiency. The approach employs an iterative deepening tech-
nique, in which proposed allocations are tested for iteratively
increasing values of fault tolerance until is reached. The
main idea is to combine the scheme when only assignment
flexibility is used with the one when both scheduling and
assignment flexibility are explored. Several such schemes can
be envisioned. For example, after generating the solution for

, if we add two instances of each type of execution
unit with the corresponding register files and interconnect as
required for the assignment only-based BISR, we have a design
which is fault tolerant against as many as four faulty units.
Another possibility is that we divide all execution types in two
subsets. The first subset of execution types is treated using
the assignment-only BISR scheme, while the second subset
is addressed using the full-fledged behavioral-level synthesis
approach. In this scenario, it is apparently advantageous to
select more expensive units for the second subset.

C. Application-Specific Programmable
Processor (ASPP) Designs

The HBISR approach, as demonstrated, can be used for
ASIC yield improvement or low-hardware overhead fault-
tolerance against permanent faults. The technique is directly
built on the flexibility provided by behavioral-level synthesis
during design space exploration. The identification and the
techniques for exploiting this flexibility, however, are in them-
selves important. Intelligent strategies to use the flexibility of
solutions can also be used in the reconfigurable datapath design
of application specific programmable processors (ASPP’s). An
ASSP design provides an efficient implementation for a set of
different applications. This is in contrast to traditional ASIC
designs which implement a single application. Minimal hard-
ware ASPP implementation is achieved most often by identify-
ing a set of implementations for individual applications which
are not necessarily minimum hardware implementations, but
which are similar in terms of the required hardware resources.

Consider, for example, the design of an ASPP to implement
the two different computations and . Let and repre-
sent particular implementation solutions for the computations

and , where and are the total number of possible
implementations of and , respectively. As the ASPP
implementation must be able to implement both computations,
its hardware is the union of the hardware, , for any

and . The goal is not to find the Min Min
implementation, but to find the Min solution, which
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in many instances is one for which and have similar
hardware implementations. The techniques introduced in this
paper have a high potential to facilitate the synthesis of ASPP
datapaths, due to their ability to produce a great variety of
competitive solutions.

VIII. C ONCLUSIONS

New techniques have been presented to compose a re-
configurable BISR implementation with a minimum amount
of area overhead. BISR is an efficient yield, productivity,
and reliability fault-tolerance improvement technique, which
will continue to gain importance especially with the increase
in commercial significance of massive parallelism. We have
presented novel synthesis techniques based on assignment,
scheduling, and transformations, which support a new hetero-
geneous BISR methodology for ASIC designs. These methods
are based on the flexibility of the design solution space and the
exploration potential of behavioral-level synthesis processes to
find designs where resources of several different types can be
backed up with the same unit.
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