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On-Line Fault Detection for Bus-Based
Field Programmable Gate Arrays

Nathan R. Shnidman, William H. Mangione-Smith,Member, IEEE,and Miodrag Potkonjak

Abstract—We introduce a technique for on-line built-in self-
testing (BIST) of bus-based field programmable gate arrays
(FPGA’s). This system detects deviations from the intended func-
tionality of an FPGA without using special-purpose hardware,
hardware external to the device, and without interrupting system
operation. Such a system would be useful for mission-critical
applications with resource constraints. The system solves these
problems through an on-line fault scanning methodology. A de-
vice’s internal resources are configured to test for faults. Testing
scans across an FPGA, checking a section at a time. Simulation
on a model FPGA supports the viability and effectiveness of such
a system.

Index Terms—Digital system fault tolerance, field program-
mable gate arryas, self-testing.

I. INTRODUCTION

T HE most common type of programmable logic device
available today is the field programmable gate array

(FPGA), which are arrays of programmable gates and routing
resources. The use of FPGA’s in consumer applications, in
addition to their more traditional use in logic emulation sys-
tems, prototyping, and low-volume applications, has increased
due to recent advances in technology. Unfortunately, many
of the trends that make newer FPGA’s more appealing and
affordable also make them less reliable. For example, high-
density programmable devices are made more susceptible to
gamma particle radiation by smaller feature sizes, and the
corresponding lower threshold voltages. Also, larger die sizes
make interference from such radiation much more likely [1].
Extensive terrestrial efforts to accurately model the rate of such
soft faults indicate high variance (several orders of magnitude)
depending on factors such seasonal solar activity, altitude,
latitude, device technology, and device materials. Even for the
same chip from the same manufacturer, variations by a factor
higher than 200 are not uncommon [1]. Experiments indicate
that in FPGA-like devices at an altitude of 20 km, error rates
significantly higher than once per 1000 h are common [2].
A second class of faults is related to manufacturing imper-
fections. These defects are not large enough to impact initial
testing, but after a longer period of operation they become
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exposed. Imperfections of this sort can become manifest as
either stuck-at faults or as transient faults (which are not
addressed here). Design errors can also cause a device to stop
functioning in response to rare sequences of inputs (e.g., due
to a power-density surge in a small part of design).

Ironically, while hardware reuse is a primary reason for
utilizing an FPGA, external hardware for fault testing and
tolerance of FPGA’s often requires large amounts of addi-
tional system resources. Implementing these tasks external
to the FPGA requires that the functionality of the device
be interrupted in order to detect and address faults. This
approach not only results in system functionality being inter-
rupted periodically, but also in fault testing only occurring
periodically. Thus, the time between a fault occurring and
being detected could be significant. Most importantly, soft
faults in the volatile memory of an FPGA will not be detected
by such a system without adding a time consuming read-back
step.

Making use of resources internal to the FPGA to implement
a fault detection system, however, avoids these problems. A
portion of the device resources are set aside to perform the
fault handling, but fewer system resources are consumed than
with an external fault monitor. An internal fault monitor can
also run in the background on an FPGA that supports partial
reconfiguration. Such a fault monitor could run continuously,
while not impeding device functionality. Another advantage
to an internal fault monitor is that it conserves limited pin
resources and avoids the relatively slow process of transferring
information off-chip through the pins. This approach allows for
rapid detection of both hard and soft faults.

The resources needed to perform fault testing can be kept
to a minimum by using a fault scanning methodology. Only
a small section of the FPGA is tested at a time, but testing
can scan across the FPGA assuring that the entire FPGA will
be tested eventually. It is also necessary to take the resources
being tested off-line (but not the entire system) to perform
the fault detection tests. By testing only a small portion of
the FPGA at a time the approach allows fault testing to occur
without interrupting functionality.

A. FPGA Architectures

FPGA’s have cell-like structures. The cell is used to im-
plement the functionality of a number of gates, and it also
commonly contains a small amount of memory. The number
of gates per cell is dependent on the FPGA architecture, but
usually ranges from one to six gates. Part of the programma-
bility of the FPGA comes from the fact that the designer can
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change the actual type of gates implemented by each cell. In
addition, the user determines if the combinational logic section
of the cell or the memory section of the cell, or both, are used.

There are two basic models for the combinational logic
portion of cells. One is calledisland-based, the other is called
fine-grained[3]. The island-based FPGA uses one or more
look-up-tables (LUT’s) per cell to provide the functionality
of gates. These cells typically have four or more inputs. In
contrast, the cells of a fine-grained FPGA usually have only
two inputs. The small number of inputs often allows logic in
a fine-grained cell to be implemented with multiplexers [4].

There are also two types of programmable interconnect.
One type of interconnect involves point-to-point or segmented
buses. This model has wires of varying lengths placed hor-
izontally and vertically throughout the FPGA, with switches
connecting the pieces of interconnect. Programming such an
FPGA requires a routing step, where an attempt is made to
connect cells together using the least amount of interconnect.
Since interconnect needs are unknowna priori in such a
model, it is possible that designs exceed the amount of avail-
able interconnect. The Xilinx XC4000 family is an example
of a segmented bus architecture.

The other form of interconnect is termed bus-based. This
model involves long interconnect lines which span all (or a
significant portion) of the chip. Connections between cells are
made by writing to and reading from these buses. Bus-based
interconnect tends to be slower than point-to-point due to
increased wire capacitance. However, bus-based interconnect
has the advantage of predictable timing, because the time to
drive all signals is the same.

To illustrate a commercial FPGA design, consider the
Flex10K by Altera [5]. The Flex10K uses static memory-
based LUT’s, with a single flip-flop. In addition to the basic
cell structure, the Flex10K groups eight cells, or logic elements
(LE’s), into what is called a logic array block (LAB). These
LAB’s provide point-to-point interconnect on a small scale,
for fast local communication. The LAB’s are arrayed in a grid
pattern, and are connected by chip-length buses. The place-
and-route software for the Flex10K attempts to constrain
designs to units that fit within a LAB, and buses make routing
after placement trivial.

B. Motivational Example

An on-line internal fault detection system would be of
particular use in space-based applications [6]. Limited re-
sources such as volume, weight, and power make the use of
FPGA’s particularly appealing due to the opportunity to use
time-sharing among the circuits to increase functional density.
Furthermore, the use of additional hardware to perform fault
testing and fault tolerance is particularly unappealing because
of the resource constraints. Thus, traditional approaches such
as triple modular redundancy [1] are tolerated, but at a
great expense. Space-based systems are also subject to more
operational interference from radiation and charged particles
than terrestrial systems. As such, it is imperative that faults be
located and addressed quickly.

A fault scanning system would address most of these
concerns. By using resources internal to the FPGA the system

avoids an increase in system resources. The transparent nature
of the fault scanner also allows it to run continuously, thus
providing quick detection of faults. If the fault tolerance
mechanism discussed below is implemented, the fault scanner
could even allow the FPGA to tolerate some faults and
continue to function.

This paper presents multiple possible internal on-line fault
scanning monitors for FPGA’s, and simulations showing a
proof-of-concept implementation. We will discuss the avail-
able design options and the simulation in Section II. This
section will also address the specific FPGA used for the
simulation and how it compares to current FPGA’s. Section III
will discuss previous work in the area. The basic fault scanning
system is developed in Section IV. Alternative faults scanners
will be presented in Section V, along with a discussion of
the relative advantages of the various systems. Simulation
results demonstrating the functionality of the fault scanner are
considered in Section VI. Some concluding remarks are given
in Section VII.

II. PRELIMINARIES

Memory faults are usually categorized into the groups:
parametric and functional [7]. Parametric faults are related
to design errors and include too low or too high output
levels, insufficient fan-out driving capability, inadequate noise
margin, and too short data retention interval. This type of fault
is addressed by using proper design techniques.

There are three widely accepted RAM functional fault
models: stuck-at-faults, coupling faults, and pattern-sensitive
faults [7], [8]. Stuck-at faults correspond to situations where
a particular memory cell is stuck-at-1 or -0. Coupling faults
are related to manufacturing errors which cause one cell to
change its state as a consequence of a state change in another
cell. Pattern-sensitive faults are faults which alter the state of
a memory cell as a consequence of a certain pattern of zeros
and ones being stored or read from some other cells.

The initial manufacturing testing addresses the needs of
the last two types of functional faults. After the FPGA de-
sign is configured, the only relevant faults are the stuck-
at-faults which may occur as the consequence of particle
radiation. Therefore, our in-field testing focuses on stuck-
at-faults. Single-event upset (SEU) [9], [10] faults are also
captured by the approach.

Even though the majority of the FPGA area is taken up
by interconnect, it is reasonable to focus the fault detection
system on the LUT’s and flip-flops. These structures hold
the programmable components of the device, and are much
more likely to experience faults than metal interconnect wires.
Furthermore, the fault detection system can only be expected
to detect persistent faults, i.e., faults that will affect system
operation until they are addressed. These types of faults are
most likely to occur in the LUT’s and flip-flops due the fact
that both of these elements have state.

Another assumption is that configuration memory and flip-
flops are fault free when the original configuration is loaded
into the FPGA. Physical defects in the configuration elements,
or errors in configuration data are not addressed by this testing
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system. The ability to read-back the configuration data which
has been loaded into the FPGA would help to catch such
defects. A mechanism has been included, however, to help
detect faults in the configuration elements and datapaths.

Additionally, the FPGA cells must be modified as described
below. The global control signals must be maskable, so that
they can target specific cells. The FPGA must be partially
reconfigurable. That is, the FPGA must have the ability to
change the functionality of only some cells, while leaving
the remaining cells untouched. The ability to change the
functionality of only a section of the FPGA is at the heart
of this on-line fault system, and is absolutely necessary to
implement the system. However, it is not necessary that
the system present a partial configuration capability to the
designer.

III. RELATED WORK

A great deal of the related work falls into four general
categories: built-in self-test (BIST), built-in self-repair (BISR),
FPGA yield enhancement, and FPGA faults in space-based
systems.

BIST and BISR methods for detecting and handling faults
have been used extensively in memory designs [9], [11], [12],
as well as in FPGA’s in an off-line manner [13]–[19]. The
FPGA BIST techniques mainly focus on reconfiguring the
entire FPGA into set states in order to identify and then
locate faults. While these techniques work well and are well
suited for certain applications, they all require reconfiguration
of the entire FPGA, and therefore interrupt FPGA function.
BIST techniques can be combined with BISR and other fault
tolerance methods [20], [21] to increase the robustness of
FPGA’s.

BIST and even BISR methods have been used to detect and
handle fabrication faults in order to improve fabrication yields
[22]–[25]. There has also been work done dealing specifically
with the susceptibility of FPGA’s to faults in space-based
situations [26], [27].

None of the above work, however, deals with on-line fault
detection. Some of these systems provide fault detection,
using BIST, on FPGA’s. The major difference between our
fault scanner system and previous work is that with the new
approach the FPGA need not be taken off-line before fault
testing can occur, i.e., the functionality of the system is not
interrupted for testing purposes.

Shombert and Siewiorek have developed a roving technique
for fault-scanning of systolic arrays [28]. This approach in-
volves taking a part of the array off-line for testing, while
leaving the rest of the array on-line and functioning. While
their earlier work set some of the groundwork for fault
scanning, the research presented here develops the approach
in the context of low-level reconfigurable hardware devices.

IV. A PPROACH

We present a system overview, the basic algorithm, and a
discussion of the general FPGA architecture used in testing
in this section.

A. System Overview

The basis of the internal FPGA fault system is a scanning
methodology. The system allocates a portion of the FPGA
to fault testing. Testing is accomplished by sweeping the test
functions across the entire FPGA. If the functionality of a
small number of FPGA elements can be replicated on another
portion of the FPGA, then those components can be taken off-
line and tested for faults in a transparent manner (i.e., without
interrupting functionality). The fault scanning system can then
move on to another set of elements to copy and then test,
moving through the whole FPGA systematically testing for
faults.

B. Basic Algorithm

Built in fault testing for FPGA’s requires that some of the
resources of the FPGA be used for testing purposes. Allocating
too many resources reduces the functionality of the FPGA,
while allocating too few resources results in slow testing. The
basic unit of testing is the column. Focusing on a column at
a time allows for parallel testing of multiple cells, while not
excessively constraining the FPGA functionality.

Our basic on-line testing algorithm reserves two columns
of the FPGA for testing. These columns are completely
transparent to the computer-aided design (CAD) tools and,
thus, are not part of the visible device architecture. This
approach alleviates the need to consider the columns when
conducting place and route. One of these columns, the testing
column (TC), contains the testing state machine. This state
machine produces the control signals that implement testing.
At the moment, a second state machine, which keeps track of
the column being tested, is modeled as being off-chip and is
assumed to be fault-free. For designs of 20 cells per column
or larger, this second state machine could also be implemented
on-chip. The output of this state machine is used to mask the
global testing control signals such that they only affect a single
column. The other reserved column is the free column (FC),
which acts as buffer space during testing.

The on-line testing algorithm (Fig. 1) consists of three basic
steps: copy, test, and move. In the copy step, a functional
duplicate is made of the next column to be tested. Copying is
done by writing the data from the configuration memory and
the configuration flip-flop to the configuration data (CDATA)
bus (Fig. 2). Data on the CDATA bus is written to the FC,
thus, making a functional duplicate of the column to be tested.
The configuration memory and the FC’s LUT’s are sequenced
through all possible cell input vectors, for all cells in the FC in
parallel, by connecting their inputs to a counter. This approach
results in each column being in one of two states: functional or
testing. Each column is off-line, i.e., supporting testing, for the
time required to test the column and then copy configuration
state back into the column (Table I). Further, each column is
executing its programmed function while each of the other
columns is tested in sequence. Note that the testing time for
another column includes the time to copy a configuration out
of the column and into the FC, although during this time the
column itself is functional.
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Fig. 1. Basic algorithm: copy functionality of column to be (a) test to free column, (b) test the column, and (c) copy the functionality back.

After the configuration memory is copied to the FC, the
inputs and outputs of the FC are switched over to those of the
cells in the column to be tested. The bus-based architecture
of the FPGA makes this relatively simple. The FC cells tap
the input buses of the cells being duplicated and the switch
information in the configuration memory is used to set the
outputs to drive the appropriate buses.

Next, the values in the flip-flops in the column to be tested
are sent over the CDATA bus to the FC flip-flops. Write
operations to a flip-flop always win over the copy in order to
avoid stale data. If a write to a flip-flop of a cell in the column
to be tested occurs during the copying process, the same value
is also written into the flip-flop of the corresponding cell in
the FC (because both flip-flops have the same inputs). Once
the column to be tested has been copied, the FC outputs are
turned on. Both columns are active with the same state, inputs,
outputs, and functionality for a clock cycle in order to avoid
glitches on the outputs. The outputs from the column to be
tested are then tri-stated.

The next step is to perform the actual testing (Table II). The
inputs to the column under test are connected to the output
of the counter that is driving the configuration memory. The
LUT and configuration memory are sequenced in parallel. Any
difference between the output of the LUT and memory of any
cell being tested indicates a fault. The outputs of the flip-flops

Fig. 2. Cell design for the fault scanning FPGA.

and configuration flip-flops are then compared. Any difference
between those also indicates a fault. These procedures test
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Fig. 3. FPGA cell array with interconnect.

for both SSF and SEU faults. It is necessary to have two
copies of the correct cell functionality (i.e., the LUT and
configuration memory and the two flip-flops) in order to detect
SEU faults.

The next phase of testing is to write the inverse of the values
in the configuration memories and configuration flip-flops to
the LUT’s and flip-flops. This allows the system to check
for SSF faults. The outputs of the LUT are then compared
to the inverted output of the configuration memory to test
for differences. Any discrepancy between the two outputs
indicates a fault. The outputs of the flip-flops are compared in
a similar fashion to the inverted outputs of the configuration
memories. Note that, while testing a cell for faults, it is
possible to write to the cell’s flip-flop independently of writing
to the configuration flip-flop, although the converse is not true.

Using this approach, the LUT and flip-flops will be exhaus-
tively tested for any SSF or SEU faults.

The final phase (move) involves transferring the original
functionality back into the column that was just tested. This
phase begins by writing the noninverted values in the con-
figuration memories back into the LUT’s. The inputs to the
LUT’s are then switched back to the correct buses. Next, the
values stored in the FC flip-flops are written back to both
the original flip-flops and configuration flip-flops. Writes take
priority over copies, as with the previous copying to the FC
flip-flops.

Finally, the outputs of the column that was just tested are
turned on, and after waiting an extra clock cycle to avoid
glitches, and the FC outputs are tri-stated. The algorithm

is then applied to the column to the right of the column
that was just tested. If there is no column to the right,
testing begins at the leftmost column. This algorithm can be
applied to both the TC and FC themselves, thus testing the
entire FPGA.

C. System Architecture

The basic cell configuration can be seen in Fig. 2. The main
functionality of the cell consists of a four-input one-output
memory-based LUT and a single flip-flop. The LUT is a static
memory with the four address bits used as addresses. The
values in the LUT are stored during configuration of the FPGA.
The cell has multiple possible modes that utilize the main
cell elements differently: LUT alone, flip-flop alone, flip-flop
controlled by LUT inputs, and LUT and flip-flop together. The
simulated FGPA was loosely based upon the Altera Flex10K
part. The main similarities consisted of the use of chip-wide
buses as interconnect, and the use of four-input, one-output
LUT’s in the cells. The simulated FPGA, however, does not
make use of grouped cells (LAB’s) and dedicated memory
blocks as does the Flex10K.

In addition to being functionality similar to a typical FPGA
cell, the cell in Fig. 2 has extra elements that support fault
testing. The major changes to the design are the addition of
the configuration memory and the configuration flip-flop. In
order to copy a cell, the LUT must be sequenced through
all inputs, and the results written to the corresponding FC
cell. The flip-flop data must also be copied. These elements
allow the configuration data of a specific cell to be accessed
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without affecting the operation of that cell. The configuration
elements are also used in fault detection by comparing their
output with the LUT and flip-flop outputs. During normal
operation all writes to a flip-flop also write the same data
to the configuration flip-flop, avoiding stale data.

The cells are arrayed in a grid pattern in the FPGA and are
connected by device-length buses (Fig. 3). Horizontal buses
carry the cell inputs, which are 4-bit wide, and the vertical
buses carry the cell outputs, which are 1-bit wide. There are
as many horizontal buses associated with each row of cells as
there are cells in a row, and as many vertical buses as there
are cells in a column.

Switches connect each vertical bus to every horizontal bus
in the FPGA. For example, if the output of cell (1, 1) is
to be used as the LSB and MSB inputs into cell (2, 3) the
switches connecting the vertical output bus of cell (1, 1)
to the first and fourth bits of the input bus to cell (2, 3)
would be turned on. The state of these switches is set by
the configuration data loaded into the FPGA. A copy of the
state loaded into all of the switches at a juncture is also stored
in the configuration memory at that juncture. So the state of
all switches at the juncture of row three and column two are
stored in the configuration memory of cell (2, 3). The switches
have the ability to write their state value to the CDATA bus.
This means that during the testing phase the state of each
switch at a juncture can be compared with its intended value,
which is stored in the configuration memory. Additionally,
this capability allows switch settings to be copied to the FC
during the copy phase.

In addition to the cell-to-cell connections, there are also
global connections within the FPGA. Many of the global
connections carry control signals to the cells. Global signals
can be masked to affect only specific cells, or columns of
cells, in addition to all cells.

Most of the global connections not used for control sig-
nals are used to carry configuration data, that is, data that
specifies the values to be stored in the LUT and flip-flops.
Of particular interest is the CDATA bus. There is a CDATA
bus for each row in the FPGA. The bus is used to access
the configuration data of a cell so that a copy of that cell
can be made. This capability is necessary for on-line fault
testing to occur.

The other configuration data global connections are used
whenever a new configuration is input into the FPGA. It
should be noted, however, that it is possible to eliminate these
connections by simply tying them to the CDATA bus. This
would provide the same functionality, but would theoretically
slow down the reconfiguration process, as there is only one
CDATA bus per row. However, since input-output (I/O) pins
on an FPGA are usually limited, configuring all cells in parallel
is generally not possible, thus making the elimination of the
extra connections preferable.

The only other type of global connection is the fault bus
(FB). Each row has an FB, which stretches the entire length
of the FPGA. Each cell in a row is connected to the FB, but
the fault output of each these cells is tri-stated if that cell is not
currently being tested. The FB is used to indicate the presence
of a testing failure.

Fig. 4. Column testing frequency for multiple scanning clock frequencies.

D. Testing Issues

An important aspect of the fault scanner is the latency
between scans of a specific column

where is the scanning clock period, is the number of
input bits to each LUT, is the number of columns in the
FPGA, and the constants 7 and 5 represent the number of steps
of each length in the testing algorithm. The longer step size
(i.e., ) represents steps in which the functionality of
a LUT must be sequenced through. It should be noted that
the scanning clock period may be a multiple of the system
clock. Fig. 4 shows the number of scans per second for an
FPGA with four-input LUT’s as the period and number
of columns varies, and the numbers represented in the figure
are shown in Table I.

E. Fault Identification

An I/O pin is used to indicate that a fault has occurred. The
input to this pin is the logic OR of the data on all of the FB’s.
If a fault is detected, the entire FPGA is reconfigured to some
default state. If the fault was a SEU, then this will fix the fault
and operation continues. If a fault in the same cell persists,
then it is most likely a SSF. The only way to fix such a fault,
without replacing the FPGA, is to avoid using that cell.

The first step in avoiding the use of the faulty cell is to
identify which cell contains the fault. When a fault occurs
FPGA functionality is stopped. Most FPGA’s have a read-
back function for debugging purposes. Read-back allows the
internal state of the FPGA to be viewed externally when the
FPGA is inactive. Using read-back, it can be determined which
FB indicated a fault, and thus which row. The column of the
fault is stored in the state machine that keeps track of the
current column being tested. Once the row and column of the
faulty cell have been determined the fault has been identified.
The fault can then be handled by a number of fault tolerance
schemes. A possible fault tolerance scheme is discussed in a
later section.
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TABLE I
COLUMN OPERATING MODES

V. ALTERNATE IMPLEMENTATIONS

In addition to the testing scheme described above, there
are multiple variations on this scheme which could be imple-
mented.

A. Multiple Column Testing

It is possible to speed up the time it takes to scan the entire
FPGA by having multiple FC’s. This would allow scanning
of multiple sections of the chip in parallel. The FPGA could
be partitioned into sections with an equal number of columns
in each section. Each section would have its own FC, and
the CDATA and FB for each section would be independent.
The CDATA buses must be segmented so that all sections can
transfer cell data to their respective FC concurrently. The FB
must be segmented so that faults can be detected independently
in each section, and so that there is no contention on the buses.
Since the control signals from the TC are distributed on a
masked version of the global control signals, it is possible to
implement this scheme using only a single TC.

This scheme has the obvious disadvantage of requiring that
more of the FPGA resources to be dedicated to testing pur-
poses. However, it will increase the speed of testing for faults
by approximately the number of sections. The percentage
overhead for varying number of TC’s on multiple sizes of
FPGA’s can be seen in Table II.

B. Moving Free Column

One alternate implementation of fault scanning would be to
have a moving FC that scanned across the FPGA following the
column to be tested. This would require copying the function
of each column to be tested no further than an adjacent column.
After each column is tested it becomes the new FC. This
change avoids the two steps in the testing scheme which write
the original configuration back into the column which was
being tested, and then the one extra step of having a hand-
off to bring the tested column back on-line (Table III). This
modification decreases the time to scan a chip to

Another advantage of such a scheme is that all columns are
functionally identical. In the original scheme the FC needed
extra capability at its input and output to allow it to connect
to the inputs and outputs of any other column. In this scheme,
a single cell and interconnect model can be used across the
entire chip.

This approach results in a variation in time between testing
of each column. The original scheme simply swept from
one side of the FPGA to the other, and then restarted at
the beginning. Thus, the time between testing passes of any
column is always the same. This modified scheme has to scan

TABLE II
TESTING PHASES

TABLE III
NUMBER OF SCANS OF AN FPGA IN A SECOND

Fig. 5. Scanning routes for moving FC and TC.

back and forth across the chip, so the time between passes of a
given column alternates depending on the scanning direction
(Fig. 5).

This approach provides the advantage of identical columns,
but at the expense of increased resources. Instead of expanding
the input and output capabilities of a single column, the FC,
as in the current scheme, the input and output capabilities
of every column would have to be expanded to allow each
column to function as its neighbor.

C. Moving Testing and Free Columns

Another option is to have both the FC and the TC move
together. This approach removes the problem of having the
control signals traveling across the chip. Using a moving
TC means that local interconnect could be used to distribute
control signals. There are other issues that arise, however.
First, cell-to-cell interconnections must be increased by one
column more than in the scheme where only the FC moved,
so that signals can be passed to columns across the TC and
FC. Second, the extra algorithm steps saved in switching to a
moving FC are replaced by steps to move the TC. It is still
not necessary to reimplement a column’s function after it has
been tested, but the column that was just tested now becomes
host for the TC.

D. Multiple Testing Columns

Another possible implementation variation is to have mul-
tiple TC’s with the above scheme (Table IV). That is, to have
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TABLE IV
RESOURCEOVERHEAD FOR SCANNING SYSTEM VERSUSNUMBER

OF TESTING COLUMNS USED FOR CONCURRENT SCANNING

a similar scenario as describe in the multiple column testing
case, but with a dedicated TC for each section. This would
decrease the amount of time between scans for each column,
as in the multiple column testing case, but would require an
increase of two times the number of sections in resource usage
for testing purposes. A major advantage of this approach over
that of the multiple-column-testing case is that the control
signal interconnect can be partitioned for each section. This
would allow control signals to arrive slightly more quickly.
This case has the disadvantages, however, of requiring an extra
column for each new TC, and of requiring the segmentation
of the control signal interconnecta priori in order to take
advantage of the multiple TC’s.

E. Point-To-Point Interconnect

Many FPGA’s utilize point-to-point (or segmented) inter-
connect for routing (e.g., Xilinx XC4000). It may be possible
to implement fault scanning on such FPGA’s, but with signif-
icant modifications. Segmented interconnect consists of wires
which make specific point-to-point connections. Each cell has
multiple wires available each of which connects that cell to a
specific other cell.

In the XC4000 parts these wires have specified lengths.
There are wires to connect to cells one, two, four, and 16
cells away. Thus a connection can be made to a cell which
is five cells away by routing it through an intermediate cell
using the four-cell wire and then making use of the nearest-
neighbor connection of that intermediate cell to route to the
desired destination cell.

In order to implement fault scanning on an FPGA using
segmented interconnects the ability to forward information to
and from a column would be necessary. This would allow
a FC to share the same input and output connections as the
column it is mimicking. Any inputs or outputs to the column
being tested would be routed the extra distance to the copy of
that column. This forwarding of data would need to be taken
into account during the place-and-route and simulation steps,
as it means that the delay associated with a given connection
can change over time.

Another necessary modification would be to the FC and
TC. Instead of having a stationary FC and TC, the FC and
TC would migrate across the FPGA. Having the FC and TC
localized to the column being tested minimizes the amount of
interconnect necessary. Minimizing interconnect is necessary
because interconnect takes up the majority of the area in the
FPGA and can, thus, be a limiting factor in FPGA design.
Longer interconnect also increases the amount of time for
testing and can limit the scanning speed of the FPGA. A

Fig. 6. Simulation cell functionality.

migrating FC and TC scheme could make use of two-cell
distance wires to forward information to and from the new
copy of the column being tested, and the nearest-neighbor, or
one-cell distance, wires to perform testing.

As a consequence of these issues, it seems unlikely that the
fault-scanning approach could be implemented efficiently on
a device without bus-based interconnect.

F. Fault Tolerance

It is possible to increase the capability of the fault scanning
system to include some degree of fault tolerance as follows.
If a fault is found in a cell, the cell’s configuration is loaded
into the FC cell on the same row as the faulty cell. If the
fault is determined to be an SSF fault, then the FC cell
can be switched to the inputs and outputs of the faulty cell
and the faulty cell itself can simply be taken off-line. This
method of fault tolerance can only accommodate a single
fault in each row for each FC. An approach similar to
this one is used during manufacturing test for the Altera
Flex10K, though resources are switched through OTP fuses in
manufacturing. This approach has the benefit of not impacting
circuit performance, as signals are routed across the entire
bus length regardless of the final destination column. Column
replacement can only be used to avoid a single column for
each available FC. Wider scale faults must be addressed using
other techniques, such as those proposed by Lachet al. [29].

VI. EVALUATION

Simulation and testing was done using a Pentium Pro with
the V-System simulator by ModelTech.

The FPGA simulation has been implemented in VHDL. A
PERL script generates some of the VHDL files, allowing the
simulation to handle any size of FPGA. This script takes as
input the number of rows and columns in the FPGA to be
simulated, and generates VHDL for an FPGA of the specified
size.

In addition to the VHDL code, the simulation makes use of
six files that specify control signal and input data. These files
provide external input to the simulated FPGA.
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Fig. 7. Waveform of hand-off of functionality from column one to the free column (column two).

Fig. 8. A write taking place during a copy operation.

Fig. 9. A fault is detected in the LUT of cell (1, 3).

The FPGA simulated here has four rows and four columns.
A 4 4 array is large enough to implement nontrivial func-
tions in the two active columns and allow scanning to be
tested, but is small enough that creating configuration data
by hand is feasible.

The scanning clock rate for the simulated FPGA was 25
MHz, a reasonable rate for existing FPGA’s. The scanning
clock rate should be the highest possible multiple of the clock
rate of the FPGA. This will allow scanning to proceed as fast
as possible, while not requiring excessive amounts of resources
to implement multiple clocks or synchronization of scanning
with the operation of the rest of the FPGA.

Two different designs, each requiring four cells, were im-
plemented simultaneously on the FPGA (Fig. 6). One design
utilized only the combinational logic features of the cells
to implement two comparators. Each comparator took as
input two 3-bit words, A and B, and tested if A > B. Two
comparators were implemented so that twice as many input
vectors could be tested in a given period of time. Each
comparator used two cells, spaced out over two adjacent
columns.

The second design was a state machine that made use of
both flip-flops and LUT’s. The state machine itself was a
simple design requiring only the remaining four cells. Three of

the cells held state information, while the fourth implemented
logic based on the current state. The state machine took as its
inputs the system clock and a state machine reset signal. Unlike
the comparators, the state machine implemented functionality
across row boundaries in addition to column boundaries.

The simulation demonstrates that the on-line fault testing
system is feasible. Avoiding glitches during the hand-off
between the FC and column being tested, both when the
control is given to the FC and when it is returned to the column
being tested, is critical. Glitches are avoided by driving both
columns with the same inputs, and enabling both columns’
outputs to drive the same bus during the hand-off. Since the
columns are configured identically, this technique results in
the same output being driven onto the bus by both columns.
The column to be taken off-line can then be disabled, and the
other column takes over providing the function. This process
is shown in Fig. 7, which displays the output signal for row
one while control is being passed from the column being
tested, column one, to the FC, column one. The dashed line in
the figure represents tri-stating. Control is passed seamlessly,
without any glitches on the output. The output shown here is
from one of the comparator circuits.

A second critical system property is the assurance that writes
to the flip-flops always occur properly. It is vital that no writes
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be lost during the copying process. A mechanism of having
writes take priority over the copy ensures that flip-flop values
are copied as necessary, but that a stale value is never written.
Fig. 8 shows a flip-flop write taking place during the copy
operation, and shows that the correct value is written and
produced by the flip-flop. There is a delay between writes and
a change in the flip-flop output because the system is falling-
edge triggered, while the flip-flops are rising-edge triggered.

A last critical system element is that faults be properly
detected. Fig. 9 shows the discovery of an induced fault in
the flip-flip element of a tested cell. The system accurately
detects faults in both LUT’s and flip-flops.

VII. CONCLUSION

The ability of reconfigurable systems to self-diagnose on-
line is important to the viability of their use in many envi-
ronments. Techniques for on-line fault identification and fault
tolerance have been presented here. These techniques assume
a bus-based FPGA architecture and a small state-machine
that is assumed to be fault free. Such techniques provide
the assurance of proper device functionality in a continuous
manner with low hardware overhead. This capability allows
faults to be identified and handled as quickly as possible, in
the least intrusive manner possible. The multiple different fault
detection techniques allow a tailoring of the fault monitor used
for the system on which the monitor will be implemented.

A simulation has been created in order to prove the fea-
sibility of such techniques. The simulation shows that fault
detection can occur without affecting device functionality, and
at a high enough rate to ensure an appreciably small amount
of time between a fault’s occurrence and its detection.
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