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The microprocessor industry has started viewing power, along with area and performance,
as a decisive design factor in today’s microprocessors. The increasing cost of packaging and
cooling systems poses stringent requirements on the maximum allowable power dissipation.
Most of the research in recent years has focused on the circuit, gate, and register-transfer (RT)
levels of the design. In this research, we focus on the software running on a microprocessor and
we view the program as a power consumer. Qur work concentrates on the role of the compiler
in the construction of “power-efficient” code, and especially its interaction with the hardware
so that unnecessary processor activity is saved. We propose techniques that use extra hardware
features and compiler-driven code transformations that specifically target activity reduction in
certain parts of the CPU which are known to be large power and energy consumers.

Design for low power/energy at this level of abstraction entails larger energy gains than in
the lower stages of the design hierarchy in which the design team has already made the most
important design commitments. The role of the compiler in generating code which exploits
the processor organization is also fundamental in energy minimization. Hence, we propose a
hardware/software co-design paradigm, and we show what code transformations are necessary
by the compiler so that “wasted” power in a modern microprocessor can be trimmed.

More specifically, we propose a technique that uses an additional mini cache located between
the instruction cache (I-Cache) and the CPU core; the mini cache buffers instructions that are
nested within loops and are continuously fetched from the I-Cache. This mechanism can create
very substantial energy savings, since the I-Cache unit is one of the main power consumers
in most of today’s high-performance microprocessors. Results are reported for the SPEC95

benchmarks in the R-4400 processor which implements the MIPS2 instruction set architecture.
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Chapter 1

INTRODUCTION

In recent years, power dissipation has become a major design concern for the microprocessor
industry. The shrinking device size, and the large number of devices packed in a chip die coupled
with the large operating frequencies, have led to unacceptably high levels of power dissipation.

The problem appears to be more acute in portable systems which operate under the energy
constraints of a battery. These systems need a small battery for portability, which should
provide enough energy to keep the system running for as long as possible. Hence, the energy
dissipation of the portable system should be low so that it does not drain the battery quickly.
On the other hand, desktop systems operate in an increasingly “hot” environent. The layout
compaction and the high operating frequencies entail high power densities and, thus, high
thermal stresses on the chip. If this trend is not controlled by low power techniques, the
chip will have reliability problems, such as electromigration, which is due to the high current
densities on the metal interconnects. Such low-power techniques also help in keeping the cost
of packaging low, thus reducing the cost of the final product.

Optimizing for power is a hard problem because in CMOS and BiCMOS technologies the
chip components draw power supply current only during a logic transition. Although this is
an attfactive characteristic of these circuits, it makes the power consumption dependent on
the switching activity inside them. In other words, the same circuit will dissipate a different
amount of power under different input vectors.

The power dissipation in a CMOS circuit is the sum of three components:

P= den + Pshort + Pleakage- (1'1)



Those components are the dynamic power, the short circuit power and the leakage power,
respectively. The first term dominates power consumption in CMOS circuit and has attracted
the vast majority of research in low-power systems in the last years.

The energy required to make a full transition from ‘0’ to ‘1’ and, then, from ‘1’ to ‘0’ at the
output node of a logic gate is the sum of the individual energies E;, and Ey;, and is provided
by the supply voltage

E = Ep+ Ep = CoutViy (1.2)

The dynamic power Py, consumed by a CMOS circuit (Fig. 1.1) in a clock cycle is given

by the formula

1

5CouVisf, (1.3)

Payrn =
where V4 is the supply voltage, f is the clocl; frequency, and Coy: is the physical capacitance
at the output of the circuit, and is the sum of two components: the capacitance between the
output node and the supply voltage Vy4, and the capacitance between the output node and the
ground.

Equation 1.3 assumes that the output of the circuit switches and charges the output capac-
itance in every clock cycle. This is not always the case, since a change at the input of a circuit

does not always propagate to the output.

Therefore, a more accurate formula is
1 2
den = _Q'Coutvddfp7 (1'4)

where p is the probability that the output of the circuit toggles during a clock cycle (termed
transition density in [1]). The term fp expresses the number of output toggles per unit time at
the output of the circuit. Therefore, the power consumed in a circuit depends on the toggling
of its output; or, more generally, the power consumed by a unit depends on the activity within
it. |

An even more general equation that considers glitches! is

A
"‘Coutvdzdf7 (1'5)

den= 9

1 Not zero-delay transitions.



where 4 is the average number of transitions in the output of the circuit in one clock cycle.
Since A can be larger than one, this formula captures the component of the power dissipation

due to glitches.

Vdd

out

] [ T Cout

H

Figure 1.1 CMOS NAND gate.

The short circuit power Pspop: is due to the finite slope of the input waveform. In this case,
the pull-up and pull-down transistors are simultaneously on, and a dc current path occurs be-
tween the Vyq and the ground (Fig. 1.2). The leakage power Plegrege is caused by subthreshold
currents and by the saturation current of the reverse biased pn junction in an MOSFET tran-
sistor. This component will become more important as technology scales down and threshold
voltage drops.

Larger and more active units in a microprocessor are expected to consume more power,
and should therefore be the target of power minimization. Most of the techniques that have
been investigated in the area of low-power design at the logic and the physical level try to
mjninﬁée the physical capacitance C,y,: and the probability p of switching. Different circuit
design techniques, logic and high-level synthesis techniques have been proposed that tackle the
problem from the lower levels of the design hierarchy.

An additional problem that designers have to cope with is that low power and high perfor-
mance are usually two conflicting goals at all levels of the design hierarchy. For example, one
common low-power technique for reducing power consumption is to lower the supply voltage.
This reduction in supply voltage, however, results in slower circuits and longer clock cycles.

Higher frequencies are desirable for high performance, but they increase power consumption.
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Figure 1.2 Short circuit power component.

Higher activity (and thus utilization) could result in a larger throughput, but also in higher
power. The excessive power consumption of today’s processors is, in part, the outcome of very
high utilization of their components.

The problem of the wasted power caused by unnecessary activity in various parts of the
CPU during code execution has traditionally been ignored in code optimization and archi-
tecture design. Processor architects and compiler writers are concerned with system perfor-
mance/throughput and they do little, if anything at all, to eliminate energy/power dissipation
at this level. Researchers in the CAD community have started tackling the problem of power
minimization through compiler transformations, yet this process is still in its infancy. On the
other hand, power dissipation is rapidly becoming the major bottleneck in today’s systems inte-
gration and reliability. Modern microprocessors are large power consumers: the UltraSPARC-II
from Sun consumes 58 W maximum power at 296 MHz, the Pentium Pro Processor consumes
35 W at 200 MHz, and the Alpha 21164PC chip from DEC consumes 32.5 W at 433 MHz.

Table 1.1 shows clearly the power increase for the faster versions of the same processor
families. Higher frequencies and larger transistor counts more than offset the lower voltages
and smaller devices, and they result in larger power consumption in the newest version in a
processor family. This has prompted many manufacturers to design low-power versions of their
flagship processors for use in the mobile and multimedia computing industry. Clearly, designing

a low-power, high-performance processor is considered an extremely hard problem, which can



Table 1.1 Power trends for current microprocessors.

DEC 21164 | DEC 21164 | Pentium | Pentium II Ultra Ultra
Higher freq. Pro SPARCI | SPARCII
SPECint95 13.3 18.0 8.20 11.9 7.7 121
SPEC{p95 18.3 27.0 6.21 8.82 114 15.5
Average 15.8 22.5 7.21 10.36 9.55 13.8
Freq. (MHz) 433 600 200 300 200 296
A (pm) 0.35 0.35 0.6 0.35 0.45 0.35
Voltage (V) 2.4 24 3.3 2.0 3.3 3.3
Power (W) 32.5 45 28.1 41.4 30 (max) | 58 (max)

only be solved if power or energy reduction is a concern from the beginning of the design process

and not only an afterthought.

3
b5
2
A 30 + Pentium Pro
x 3.3V, 200 MHz
25 T  Pentium
5V, 66 MHz
20 + )
Pentium
3.3V, 100 MHz Pentium
15 + '\\ /b 3.3V,200 MHz
i \/
10
5 —t—
{ %
0.8u 0.5u 0.35u Process

Figure 1.3 Voltage and process scaling do not solve the power problem. The area of each
square denotes the relative area of the chip.

Figure 1.3 shows that voltage and process scaling across different processor families can only
provide a temporary fix to the power problem [2]. The high-power dissipation is perhaps the
first of a number of impeding hurdles that, in the not-too-distant future, will impinge on the
rapid growth in uniprocessor performance.

Therefore, there is a demand for low-power design techniques in the whole hierarchy of the
design flow. To make these techniques attractive to processor designers, one should not try to

optimize for power and neglect the two other important dimensions of the design problem: area



and performance. Especially for high-performance microprocessors, the impact on performance
should be minimal if a low-power technique is to be deemed acceptable by the design team. It
should also be noted that optimizing with respect to only one dimension of the delay, area, and
power space usually results in very poorly optimized circuits in the other metrics.

Since both power and performance should be optimized in a processor design, various metrics
are needed to quantify the quality of the design. Power (measured in watts) is not a very good
metric because it is proportional to the clock frequency. Thus, it can be reduced if we reduce the
clock speed. This results in slower computation and not in effective savings. Energy (measured
in joules/instruction or SPEC/watts) is better since it is independent of frequency. However,
it is propotional to V3, and can be reduced by dropping the supply voltage, and making the
processor slower. If we use only this metric, we expect slower processors to be better.

The authors in [3] propose the energy-delay product (measured in joules/SPEC or its inverse
SPEC?/watts) as a better metric. To account for changes in the technology scaling factor A,
they improve even better by introducing the SPEC?/(Watts * A?) metric, i.e., they include
the different feature sizes when they compare between processors. This is because they expect
that the energy-delay product will scale according to A2, The authors report a somewhat
surprising finding: the emergy-delay product in a wide spectrum of processors is relatively
constant, although energy and delay varied by orders of magnitude. For example, the energy-
delay product of the low-power, low-performance R-4600 from MIPS was almost the same as
the energy-delay product of the powerful 21164 from DEC.

An increasing number of architecture features have been exposed to the compiler to enhance
performance. The advantage of this cooperation is that the compiler can generate code that
exploits the characteristics of the machine and avoids expensive stalls. We believe that such
schemes can also be applied for power/energy optimization by exposing the memory hierarchy
features in the compiler. Qur approach, presented in this research, aims at architectural level
support for energy reduction, coupled with compiler techniques which take advantage of the
new hardware feature.

We are targeting the activity caused by the I-Cache subsystem which is one of the main
power consumers in most of today’s microprocessors. The on-chip L1 and L2 caches of the 21164
DEC Alpha chip dissipate 25% of the total power of the processor [4]. The bipolar 300-MHz

processor in [5] dissipates 50% of its power in the primary caches. In [6], a power analysis of



the DLX processor shows that the I-Cache memory and the I-Cache controller are responsible
for almost 50% of the total power consumption for some programs. The StrongARM SA-
110 processor from DEC, which targets specifically low-power applications, dissipates about
27% power in the I-Cache. Finally, Intel’s Pentium Pro, which has a remarkably obscure
microarchitecture, dissipates 14% of its power in the Instruction Fetch Unit and the I-Cache.
The justification behind these numbers is that the execution rate of a processor depends
critically on the rate at which the instruction stream can be fetched from the I-Cache. The
I-Cache should therefore be able to provide the data path of the machine with a continuous
stream of instructions, and has therefore very high activity. In addition to that, it has to drive
large capacitance wires to the CPU core. What is more, today’s caches constitute an ever

increasing portion of the die area and the number of transistors of the processor.

1.1 Related Work

The area of power minimization in the architectural and software level is new. A model
that views power from the standpoint of the software that executes on a microprocessor and
the activity that it causes, rather than from the traditional hardware standpoint has been
proposed [7] and tested in different architectures [8], [9], [10]. This methodology attempts to
relate the power consumed by a microprocessor to the software that executes on it. This is
different from the often used “bottom-up” approach in which power models are built using a
layout, gate or RT-level model of each unit, and the power consumption of the whole chip is the
sum of the power consumed by each component unit. The authors characterize each instruction
of a given microprocessor in terms of the power it dissipates when it is executed. This is the
linking bridge between the low-level concept of power dissipation and the high-level concept of
software that runs on a microprocessor. It can also provide the means for power minimization
through software techniques or through the interaction between software and hardware which
has been unexploited thus far.

In [11] and [12] a brief review is presented of compiler techniques that are of interest in
the power minimization arena. As expected, standard compiler optimizations, such as loop
unrolling, software pipelining, etc., are also beneficial for the reduction of energy since they

reduce the running time of the code. The problem of register allocation, which is central in the



code generation phase of a compiler, is solved aiming at the minimization of switching activity
in [13] and [14]. In [14], the problem of optimizing the energy for the variable allocation in
registers and memory is solved using a minimum cost network flow.

In [15], a Gray coding technique for the program counter of a processor is presented which
causes less switching in the buses of the CPU. Also, a heuristic for the scheduling of instructions
in a dynamic scheduling machine is suggested so that the instruction which causes less switching
is selected by the scheduler. An instruction scheduling method that minimizes the number of
off-chip accesses for instruction fetch is proposed in [16].

In [17], a new metric for the energy effectiveness of a CPU is introduced: millions of in-
structions per joule (MIPJ). The authors try to maximize this metric by dynamically varying
the system clock through the operating system scheduler. They try to locate periods of idle-
ness of the CPU and reduce the clock frequency during these periods. By using various circuit
techniques, such as adiabatic logic or voltage scaling, they can drop the dissipated power when
the clock frequency is lower.

More recently, the impact of memory hierarchy in minimizing power consumption, and the
exploration of data-reuse so that the power required to read or write data in the memory is
reduced is addressed in [18] and [19]. The same authors propose a novel way to organize complex
data structures in the memory hierarchy, so that a cost function is minimized. The goal here
is to reduce power when complex data structures are manipulated in various ways [20]. Data
encoding is another popular technique to reduce the number of switches in large, capacitive
buses. In [21], the locality of memory references is exploited to transmit only the offset of a
reference with respect to the previous reference and thus reduce the amount of toggling in the
buses.

The filter cache [22] tackles the problem of large energy consumption of the L1 caches by
adding a small, and thus more energy-efficient cache between the CPU and the L1 caches.
Provided that the working set of the program is relatively small, and that the data reuse is
large, this “mini” cache can provide the data or instructions of the program and effectively shut
down the L1 caches for long periods during program execution. The penalty to be paid is the
increased miss rates and, hence, longer average memory access time. Although this might be
acceptable for embedded systems for multimedia or mobile applications, it is out of the question

for high performance processors. The filter cache delivers an impressive energy reduction of



58% for a 256-byte, direct mapped filter cache, while reducing performance by 21% for a set
of multimedia benchmarks [23]. Our approach has a very small performance degradation with
respect to the original scheme without the filter cache, and smaller, but still very large, energy
gains.

In [24] and [25], a mechanism is described which enables the by-pass of the I-Cache by storing
the most frequently accessed instructions in an extra buffer. The solution is limited only in DSP
programs, and makes the restrictive (and unrealistic) assumption that all the instructions of a
loop will be executed in the first iteration. In [26], the authors propose methods to eliminate the
tag comparisons in a cache access when the same cache block is accessed. In [27], the authors
demonstrate that some popular hardware techniques that have been proposed to improve the
hit rates of caches, such as the victim cache, have a beneficial impact on power as well.

The concept that an intelligent RAM (IRAM) organization [28] is inherently low power is
discussed in [29] and [30]. Memory latency improvements have not kept pace with the dramatic
performance increase of current microprocessors, and access times are increasingly limiting
performance. To attack this problem, researchers have proposed a scheme in which the DRAM
is migrated onto the processor itself. This in effect decouples the communication between the
CPU and the rest of the system and eliminates the need for time and energy-consuming off-chip
memory accesses. However, the power within the CPU increases.

Besides on-chip caches, register files represent a substantial portion of the energy consump-
tion in today’s high-performance processors [31]. This trend will probably deteriorate rapidly
in the future with wider issue processors and more physical registers. Energy savings can be
obtained by replacing a centralized register file with a set of decentralized ones [32]. Those
smaller register files have less read and write ports and fewer entries. Tha authors are looking
into inter-instruction communication patterns so that communication between instructions of
the same group are mostly local. In that case, the scheduler can dispatch every instruction to
the cluster where instructions producing its register source files are executed.

Several innovative design techniques that are utilized in ASIC and processor design at IBM
are described in [33]. Pseudo-microcode is a technique used for decoding instructions, in which
only the control signals that change between successive instructions are modified. The idea is
that, if a functional path is not required in a cycle, ensure that all control and data paths remain

at the previous cycles state to reduce switching. To further reduce the glitches, the authors



have designed transition-once multiplexers which retain their previous value when not selected
and prevent any glitching from propagating from the input to the output when selected.

The unacceptably high levels of power dissipation have prompted the design and manu-
facturing of a series of processors that target the low-power market. The StrongArm SA-110
processor from DEC dissipates less than 450 mW at a frequency of 160 MHz, with a supply
voltage of 1.65 V [34], [35]. The Amulet microprocessor [36] is a self-timed implementation
of the ARM architecture and uses specific power-saving features in the cache and the branch
prediction mechanism to reduce power. The M*CORE architecture [37] from Motorola has
also been designed with low energy consumption in mind and uses techniques like voltage and
process scaling, clock gating, and minimization of glitching to achieve this goal.

Almost all manufacturers of high-speed microprocessors use low-power techniques to control
excessive power dissipation, without waiving the basic requirement of high performance. Volt-
age and process scaling are the most successful low-power techniques used so far, contributing
about 75% of power reduction in the full chip for Intel’s processors [2]. A very useful technique
in the microarchitectural level is clock gating, which exploits the idleness caused by system un-
derutilization. Clock gating can eliminate the clock signal propagation and effectively “freeze”
a module which is not needed. Aggressive clock gating was extensively used in the StrongARM
processor even in the gate level to eliminate spurious signals from propagating in the logic.
Other processors, like DEC’s Alpha 21264, have a large power dissipation in the clock bus, and
they use more sophisticated clocking schemes like the H-tree global clocking scheme [38], along
with extra buffers and conditioned clocks. A mere 10-W savings is reported when this clocking
scheme is used in 21264.

Dynamic power management techniques at all levels of the design hierarchy are the focus
in [39]. Of particular interest is the OnNow initiative from Microsoft, which enables OS-directed
power management. The operating system (OS) is responsible for handling the global power
policy by sensing the status of the device drivers and setting the corresponding devices to
working or sleeping. For that purpose, Microsoft, Toshiba, and Intel have jointly developed
the Advanced Configuration and Power Management Interface (ACPI), an OS-independent
specification that enables the power management of device drivers and processors through the
0S. A monitoring system that is used to collect data from the system resources of a laptop

computer and that can be used to perform OS-directed power management is described in [40].
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1.2 ‘Thesis Outline and Contribution

In this work we propose and develop a new architecture for high performance processors that
targets low-energy execution of programs. We propose various schemes in which the hardware
and the compiler cooperate to reduce energy during program execution. This is reminiscent of
the methods that are used to enhance the performance of state-of-the-art processors by exposing
hardware characteristics to the compiler. Our focus is the memory hierarchy and especially the
on-chip caches.

Although there has been an extensive research effort lately to reduce power in the microar-
chitectural level, there is no work that exploits the flexibility of the compiler and its capacity to
produce energy efficient code with collaboration with the hardware. No such work exists in the
area of low-power design, even though it is a very mature methodology for high performance
design.

Chapter 2 motivates our approach and outlines the solution without going into many details.
The addition of an extra cache, dubbed L-Cache from now on, and its use when the thread of
control is caught within a loop is demonstrated in the context of a generic RISC architecture.

Chapter 3 details the compiler part of the project, and explains step-by-step the stages of the
program transformations done by the compiler. In the first stage, the compiler selects portions
of the code that will be stored in the L-Cache using profile data from previous runs. The
selection is “static” i.e., it is done during compilation and does not change when the program
executes. In later stages, the compiler restructures the program in order to reduce the conflicts
in the L-Cache. Finally, it maps the new version of the program in the global address space.

Chapter 4 complements the previous chapter and explains the hardware modifications that
are needed for the implementation of our scheme. It is shown that the extra hardware is
very simple and straightforward and that the compiler can readily communicate the program
reordering information to the hardware.

The energy estimation methodology of the cache is described in Chapter 5. A detailed,
transistor-level energy model is developed that considers all the components of an SRAM-
based, on-chip cache, and their contribution to the energy dissipation in the cache. T}ﬁs model

is used extensively in the experimental evaluation of our design.
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Chapter 6 presents the experimental results on energy and performance for a modern pro-
cessor. Those results also suggest that delay, along with energy, can be reduced if we pursue
those optimizations more aggressively.

In Chapter 7 a modified approach is advocated which is more effective for integer bench-
marks. It is based on the compiler technology as well, but is simpler than the method described
in Chapter 3. Experimental results are given for this method for both energy and performance.

All the previous work utilized compiler technology in conjunction with profile data to guide
the I-Cache. In Chapter 8 we investigate “dynamic” techniques in which the selection of the
code to be stored in the L-Cache is done at run time, i.e., during program execution. Those
techniques do not need compiler intervention, yet they demand extra hardware to keep various
statistics for the code execution. Those statistics are then used to guide the placement of the
code in the L-Cache. We propose various techniques that use the branch prediction hardware
of a processor coupled with confidence estimation mechanisms.

In Chapter 9 we describe possible extensions of our design, and conclude the thesis.

12



Chapter 2

MOTIVATION AND APPROACH

From the previous discussion, it follows that the I-Cache system of the processors should
be our main focus for drastic power cuts. In order for any such optimization to be attractive,
it should not have a large negative impact on performance.

For our discussion, we use the generic RISC model of a scalar processor (Fig. 2.1). The
pipeline consists of five stages: the instruction fetch (IF) stage in which the next instruction is
read from the I-Cache to the CPU, the instruction decode (ID) stage in which the instruction is
decoded and the operands are read from the register file, the execution stage (EX) in which the
instructions are executed, the memory stage (MEM) in which the load and store instructions
are executed, and finally the write-back stage (WB) in which the results are written to the
register file. In case of a miss in any of the caches, the main memory provides the data.

Modern microprocessors have a larger number of stages so that the amount of computation
in each stage is smaller. This allows a faster clock and a larger throughput. For example, the
R-4000 from MIPS has eight stages because a cache access requires two clock cycles [41]. The
high-end, superscalar, superpipelined, processors have typically tens of stages in their pipeline.

For illustration purposes, however, our model suffices.

IF D EX MEM WB
I-Cache D-Cache
Main Memory

Figure 2.1 Generic pipeline organization.
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During a loop execution, the I-Cache unit frequently repeats its previous tasks over and over
again: if the thread of control during program execution is caught in a loop, the I-Cache unit
fetches the same instructions to the CPU core, and the ID decodes the very same instructions.
The problem is that the IF unit does not operate in an efficient way with respect to power
consumption, but it only tries to satisfy the demand of the execution units for high throughput,
which is achieved through a fast first level (L1) instruction cache and high bandwidth buses
between the cache and the CPU core. This approach works for performance, but it unnecessarily
performs more work; thus, it dissipates more power than really needed.

To illustrate this point, and also to introduce our modification, let us refer to the following

code written in a MIPS-like format:

add rl1,r0,r0 # rl, r2, r3 are registers
addi r2,r0,#100 # r0 is always O
labell: addi r3,r0,#20
label2: 1w r4,0(r5) # load a word from memory
add rl,rl,r4
addi rb5,r5,#4
subi r3,r3,#1
bnez r3,label?2 # branch if r3 != 0
subi r2,r2,#1
bnez r2,labell

There are only ten different instructions in this program, but the IF unit fetches 100 * 20
54 100 * 3 + 2 = 10,302 instructions. Substantial power gains could be achieved if we could
reduce the amount of instructions that the IF unit fetches, and subsequently disable the I-Cache
system for all the time that it is not needed. The most usual method for disabling a unit is
clock gating, i.e., not allowing the clock ticks to propagate changes to the output of the unit
by ANDing them with a control signal. Since a CMOS circuit only consumes power when it
switches, clock-gating effectively shuts down the I-Cache.

This is the basic motivation of the architectural support that is proposed in this research.
All the instructions that belong to the inner loop can be fetched only the first time the thread

of control passes through them. Subsequently, they can be stored in a special internal cache
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(the L-Cache) which is placed between the I-Cache and the CPU core. Each time the IF unit
attempts to fetch an instruction from within the loop, the instruction that resides in this cache
can be used instead. In the ideal case, the I-Cache unit can be shut down for the duration of
the loop, as it does not need to operate, and its energy dissipation can be saved. Thus, this
method exploits the locality in the I-Cache. The new pipeline organization is shown in Fig. 2.2.

A straightforward method to implement this scheme is to place a small level-zero (L0)
cache between the CPU and the I-Cache and treat it just as an additional level in the memory
hierarchy. This solution deteriorates performance since the smaller extra cache suffers from

capacity misses. This is the scheme proposed in [22].

IF 1D EX MEM WB
I-Cache D-Cache
Main Memory

Figure 2.2 Modified pipeline organization.

The only difference between the new architecture and a conventional one is the source
that supplies the pipeline with instructions during loop execution, and the subsequent clock
gating of the I-Cache. The problem becomes twofold: How can the compiler exploit the new
memory hierarchy so that the best candidate loops are cached in the L-Cache? How should
the architecture be organized so that the energy savings are maximized. The extra cache also
dissipates energy and therefore needs to be much smaller, and more energy efficient than the
I-Cache.

The approach advocated in our scheme relies on profile data from previous runs to select the
best instructions to be cached. The unit of allocation is the basic block, i.e., an instruction is
placed in the L-Cache only if it belongs to a selected basic block.! After selection, the compiler
lays out the target program so that the selected blocks are placed contiguously before the non

placed ones. The main effort of the compiler focuses on placing the selected basic blocks in

* A basic block is a sequence of instructions with no transfers in and out except possibly at the beginning or
end.
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positions so that two blocks that need to be in the cache at the same time do not overlap in
the L-Cache.

The compiler maximizes the number of basic blocks that can be placed in the L-Cache by
determining their nesting and using their execution profile. The resulting hardware is very
simple since most of the task is carried out by the compiler. We eliminate the need for a large
L-Cache, thus greatly reducing the power requirements of the extra cache. The experimental
results show that the new scheme dissipates 33% of the energy of the original scheme in the

I-Cache memory hierarchy subsystem for some of the floating point SPEC95 benchmarks.

2.1 Summary

In this chapter, we explained the motivation behind our research as well as why the I-Cache
in modern processors is not used in an energy-efficient way. We proposed the insertion of an
extra, smaller cache, the L-Cache, which is managed by the compiler, and which can be used
to store frequently executed instructions during code execution. At the same time, the I-Cache
can be disabled. In Chapter 3, we describe the compiler techniques needed to exploit the new

memory hierarchy.
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Chapter 3

COMPILER MODIFICATIONS

In this chapter we explain the algorithm and the data structures involved in selecting and
laying out the basic blocks of a program. We should note that the selection of basic blocks to
be inserted in the L-Cache is done by the compiler “statically,” i.e., during compile time, and
not “dynamically” during run time [42]. In a later chapter we discuss “dynamic” schemes for
the selection of basic blocks. Those schemes do not need compiler support.

Code placement techniques to reduce cache misses are the subject of the paper by Tomiyama
and Yasuura in [43]. The authors use linear programming techniques to minimize the conflicts
between basic blocks in the I-Cache, and they give an optimal solution provided that the
compiler has no time contsraints to do the placement. Similar techniques for the organization
of data in the D-Cache are described in [44]. Both those techniques are only applicable to
embedded systems.

The optimization consists of two distinct phases:

e function inlining, in which the compiler tries to expose as many basic blocks as possible in
frequently executed routines. This step should be done judiciously since function inlining

can also create performance and locality problems in the I-Cache.

e block placement, the main stage of our method, in which the compiler selects, and then
places the selected basic blocks so that the number of blocks that are placed at the same
time in the extra cache is maximized. To that effect, it avoids placing two blocks that

have been selected to reside at the same time in the L-Cache in the same cache locations.

The reasoning behind our decision to choose a basic block as the basic unit of allocation and
not a whole loop can be readily justified by looking in the control flow graph (CFG) of a typical

loop (Fig. 3.1). In most cases, the loop contains basic blocks which are seldom executed during
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typical runs. These are blocks that take care of an exception condition or do error handling. If
the whole loop was to be allocated in the L-Cache, these basic blocks would occupy space, but
they would hardly ever used. They would also disqualify frequently executed blocks from being
cached. For example, the inclusion of basic block B3 in the L-Cache if the path Bl — B3 is

not executed at all during a typical run will waste allocation space.

Figure 3.1 CFG of a loop.

3.1 Function Inlining

The first technique we are using is function inlining. Inlining replaces the function call with
the body of the called function. It effectively removes the overhead of calling a function, i.e.,
the call and return instructions as well as the stack manipulation. This is particularly useful
for small, frequently called functions. It also enables the effectiveness of a larger set of tradi-
tional compiler optimizations like register allocation, copy propagation, common subexpression
elimination, constant propagation, etc., which would normally be hindered by function calls.

Function inlining has been studied extensively by researchers in the compiler community.
Most of the techniques that are proposed rely on profiling to select the best candidate functions
(or function calls) for inlining [45], [46], [47], [48]. Inline expansion can increase the spatial

locality and decrease the function call overhead, but it entails some undesirable effects for
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medium sized caches. The working set might increase with inlining so that it does not fit in
the cache anymore, thus reducing the hit rate. In addition, inlining can create register pressure
problems and cause the spill of useful variables into memory, if left uncontrolled.

The following code segment illustrates the importance of function inlining in our work:

function A(...)

do 100 i=1,n

B1; # basic block Bi
call C(); # function call
B2; # basic block B2

100 continue;

If the code within the loop is executed very frequently, we want to place it within the L-
Cache. This is difficult, however, if the linker maps the function C() in a position that overlaps
with A() in the L-Cache. This possibility is actually quite large since the L-Cache is small. In
that case, our method cannot place the code of function C() in the L-Cache. We will only place
B1 and B2 and lose the opportunity for further gains by excluding the body of C(). Actually,
our method does not allocate basic blocks in the L-Cache across functions. Hence, each function
assumes that, upon entry, the L-Cache is empty. If we inline C(), its body will be placed after
B1 and before B2 and the method can be applied.

The net result after inlining is that more frequently executed basic blocks will be exposed
within a function. This is important since code placement is only attempted within a function.
Code positioning will then become more profitable and the positioning of the functions from
the linker will be less important.

We use the weighted call graph to describe the representation of the program (Fig. 3.2). A
weighted call graph is a directed graph G = (N, E, init, F,,, F,) where N is a set of nodes, E
is a set of edges, init is a member of N, F), is a function F,, : N — [0,1], and F, is a function
Fe : E — [0,1]. Each node n; in N represents a function in the program, each arc e;; in E
represents a static function call from function n; to function n;, init is the first function in the
program, F;,(n;) is the percentage of clock cycles that is due to the execution of function n; and

all of its successors, and Fe(e;;) is the percentage of clock cycles that is due to the execution of
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Figure 3.2 Call graph.

n; and all of its successors when n; is called from n;. The following is always true for a node
n; @ Fp(ng) = Enj F,(ej;) for all nodes n; that are predecessors of n; in the call graph.

We used the SpeedShop performance tools [49] to obtain profiling data for the time that each
function and its descendants took to execute for each function call. The tool inserts additional
instrumentation code in the program to capture the execution profile for each function and the
call graph is annotated with these data after the run of the program. Using the annotated call
graph, our program chooses the appropriate function calls for function inlining and inserts the
inlining directives of the MIPSpro compiler in the source code. The compiler does the actual
inlining, optimization and code generation.

Our selection heuristic scans the nodes of the call graph and selects the nodes with an
execution frequency F, larger than a threshold 7,. In the example in Fig. 3.2, T, = 0.3. Node
n; needs to have F,(n;) >= 0.3 to absorb any of its callees. Additionally, the value F.(e;;)
should be larger than a threshold T} for n; to be absorbed by n;. The value of T} is also 0.3
in the example of Fig. 3.2 (i.e., Fi(e;;) >= 0.3). Finally, the edge e;; which connects these
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Table 3.1 Effect of inlining on execution time.

Benchmark Name | No inline | Inline
102.swim 1 1.19
110.applu 1 0.98
141.apsi 1 1.04
124.m88ksim 1 0.87
129.compress 1 0.83
147.vortex 1 1

two nodes, should have value F,(e;;) at least equal to a threshold 7, when weighed against all
the other edges that emanate from n;. The latter restriction aims at excluding function calls
that do not belong to the critical path of the function and are seldom executed. If inlined,
they might increase the register pressure and spill useful variables into memory, thus hurting
performance. The function calls that correspond to the bold edges in Fig. 3.2 are selected for
inlining.

Some experiments are shown in Table 3.1 for some of the SPEC95 benchmarks, in which
T, = 0.05,T, = 0.03, and T, = 0.1, with the additional constraint that only the leaf functions
are inlined.! The normalized execution time of the inlined code with respect to the original
code is shown in the results.

Function inlining is not required for the second part of the compiler optimizations, i.e.,
for block placement. In some cases, it can improve the effectiveness of block placement by
exposing frequently executed code in a function, yet it may create locality problems and hurt
performance in other cases.

Function inlining was only applied to the integer benchmarks in our experimenatl evaluation.
Those benchmarks have smaller functions which are called frequently, and they favor procedural
abstraction. On the other hand, FP benchmarks consist of large functions with a large number
of variables which can cause register pressure problems. Integer benchmarks, as opposed to FP

benchmarks, consistently performed better when inlining was applied.

!Functions that do not contain function calls.
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3.2 ‘Block Placement for Maximum L-Cache Utilization

The main step of our algorithm is to position the code in such a way as to maximize the
number of basic blocks that are cached in the extra cache. After inlining, the code is laid out so
that the most frequently executed basic blocks are placed in the L-Cache. In order to do that,
we need to place these blocks contiguously in memory so that they do not overlap. Consider

the following code:

do 100 i=1, n
B1; # basic block
if (error) then
error handling;
B2; # basic block

100 continue

When the code is compiled, the basic blocks B1 and B2 will be separated by the code for
the if-statement in the final layout. If the L-Cache size is smaller than the sum of the sizes of
B1, B2 and the if-statement, but larger than the sum of the sizes of B1 and B2 only, the blocks
B1 and B2 will overlap when stored in the L-Cache. Therefore, we need to place B1 and B2
one after the other and leave the if-statement at the end in the final code layout.

This is usually the case in loops. Blocks that are executed for every iteration are intermin-
gled with blocks that are seldom executed. We identify such cases and move the infrequently
executed code away so that the normal flow of control is in a straight-line sequence. This entails
the insertion of extra branch and jump instructions to retain the original semantics of the code.

Related optimizations have attracted the attention of the compiler community. In [50] and
[51] the authors use trace scheduling to position chains of frequently executed paths of the flow
graph contiguously in main memory. In addition, they lay out the procedures of the program
so that, if one procedure calls another frequently, the two are pbsitioned close to one another
in the final code layout. These techniques involve some kind of feedback to the linker which is
obtained through profiling.

Hashemi et al. in [52] presented a link-time procedure layout algorithm which uses coloring

of the cache blocks to reduce the miss rates in the I-Cache. McFarling [53] considers the
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structure of the code and avoids placing two procedures that have the same loop nesting in the

same cache location.

Nesting comput.

for each BB. W

LabelTree
construction @

BB selection
and placement @

Compress step (4

Global
placement. (8

Branch
insertion

@

Figure 3.3 Block placement overview.

()]

Our algorithm is outlined in Fig. 3.3. The object code and profile data for the original
program are used as input to our tool. The output produced is an equivalent object code in
which some of the basic blocks have been reordered and placed in specific memory locations.

The following subsections give a detailed description for each of the steps of the method.
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3.2.1 First step: Nesting computation

The control flow graph is built for each function of the original program in Step 1. Note that
the program can be either the original one or the one that has been created after inlining. A
node in the CFG can have none, one, or more than one predecessors, and at most two successors.
This is the case when there is a branch instruction at the end of the basic block. We introduce
a slight modification in our CFG: although we normally think of a procedure having only one
entry, we need to generalize in our case. If there is a function call within a loop of a procedure
we need to declare the return from this function call as a new entry to the procedure. The
reason for this modification is that we do not want to place basic blocks across procedures.
Each procedure, upon entry, will assume that nothing is in the L-Cache from its caller. In
other words, basic blocks within a loop which has a function call will not be eligible for caching.
This restriction aims at freeing the linker from a possible burden when it maps a function body
to the memory space. Some linkers try to map routines that call each other frequently onto
contiguous memory addresses to increase the locality of accesses. An inter-function basic block
allocation would pose additional constraints to the linker.

Next, in the same step, the tool finds the loops and the nesting for every basic block [54].
Basic blocks within loops that contain function calls are not considered for placement (Fig. 3.4).
A LabelSet(B) for every basic block B is the set of loops to which B belongs. If B is not nested,
LabelSet(B) = {}. If B is enclosed in loops Ly, Ly and L3, then LabelSet(B) = {L1, L2, L3}.
These are the same sets used in [53]. In Fig. 3.5, an example is given to describe the data
structures used and the information produced during the first step of the algorithm. A loop

nesting is shown in 3.5(a), the corresponding CFG in 3.5(b), and the LabelSets in 3.5(c).

3.2.2 Second step: LabelTree construction

In Step 2, we construct a directed acyclic graph (DAG) using the LabelSets as follows: the
nodes are the different LabelSets found in the previous step. There is an arc between two
such LabelSets < l1,l; > if [; is a proper subset of I (Fig. 3.6a). Our data structure, dubbed
LabelTree, is similar, yet it differs from what is used in [53]. First, the nodes refer to basic
blocks and not procedures. Second, as the name implies, LabelTree is a tree in our case rather

than a DAG (see Appendix A for a proof).
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Figure 3.4 Function call within a loop.

The LabelTree describes the nesting relationship between basic blocks. Basic blocks in the
same path in the LabeleTree belong to the same nesting, although in different depths. Basic
blocks that are near the leaves of the LabelTree are deeply nested, whereas basic blocks that

are near the root are not.

3.2.3 Third step: Basic block selection and placement

Step 3 takes over the main part of our allocation algorithm (Fig. 3.9). A well-known NP-
complete problem is that of placing objects with a given value and a weight into a knapsack so
that the total value of the placed objects is maximized under the constraint that their weight
does not exceed the capacity of the knapsack. We only expect to find a good heuristic which
will place the most frequently executed basic blocks in the L-cache provided that their size is
smaller than the size of the L-Cache.

The algorithm scans the basic blocks in descending order of execution frequency. Hence,
the most important blocks are the first to be considered and have a greater chance to be placed
in the L-Cache. For every node in the LabelTree we designate a size, which denotes the position
in the L-Cache where a basic block of the node should be placed in every step of the algorithm.
The size should always be less than or equal to the cache size; otherwise the current basic block
cannot be placed in the I-Cache.

The first step is to propagate the effect of the size of the basic block under consideration

towards the leaves of the tree rooted at node N (DOWN_TRAV()). Suppose, for example, that
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Figure 3.5 First step of block placement.

the current basic block is B3 in Fig. 3.6a. Both nodes By and B; have already been considered
and placed in the L-Cache. The size of Bs added to the maz(size(B1),size(B2)) should not
exceed the cache size C. If this is the case, Bs is placed in the L-Cache. In other words, Bs will
remain in the L-Cache while B; and Bs are executed, and it will not be replaced. This step
aims at placing Bz in a different cache position from both B; and B. If Bz overlapped with
them, it would have to be fetched from the I-Cache instead, since it would be replaced by B
after being executed. This technique maximizes the number of basic blocks that are placed in

the cache and avoids conflicts between them.
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Figure 3.6 LabelTree.

If maz(size(By), size(Bs)) + size(Bz) > C, the placement of Bz is not possible, and the
algorithm continues with the next basic block.

Subsequently, the algorithm calls UP_TRAV() which propagates the effect of the new place-
ment to the outer blocks. This, in effect, reduces the chance of the outer blocks to be placed in
the L-Cache, which is not bothering at all, since we are mostly interested for the inner, most
frequently executed blocks. In Fig. 3.6a , the annotated LabelTree for the example in Fig. 3.5 is
given with the final placement of the basic blocks in 3.6b. All the blocks except Bg are placed
in the L-Cache (the positions are in the parentheses and are with respect to the beginning of
the L-Cache).

The algorithm is greedy because it tries to accumulate as many important basic blocks as
possible in the L-Cache. In the case where the most frequently executed basic blocks are the
most deeply nested, the algorithm will succeed in putting all of them in the L-Cache provided
that the size of each one is smaller than the cache size.

In practice, we only consider a fraction of the basic blocks of the program, i.e., the ones with
a substantial contribution to the execution time. This will speed up the algorithm significantly.

We rule out any basic block with execution time less than a user-defined threshold. The
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complexity of the algorithm is O((number of BBs)«h), where h is the height of the LabelTree.
The maximum LabelTree height is 2¢, where d is the depth of the deepest nested loop (usually
a small integer). |

A basic block will not be selected for placement in algorithm Allocate()if any of the following

is true:

o It belongs to a library and not to a user function. We follow the convention that only user

functions are candidates for placement since they have the tightest and deepest loops.

e The algorithm finds that the basic block was too large to fit in the L-Cache. This can be
either because the size of the block is larger than the cache size, or because it cannot fit
at the same time with other, more important, basic blocks. The algorithm described in

this subsection is used to implement this criterion.
o Its execution frequency is smaller than a threshold, and is thus deemed unimportant.

e It is not nested in a loop. There is no point in placing such a basic block in the L-Cache

since it will be executed only once for each invocation of its function.

o Even if its execution is large, its ezecution density might be small. For example, a basic
block that is located in a function which is invoked many times might have a large execu-
tion frequency, but it might only be executed a few times for every function invocation.
We define the execution density of a basic block as the ratio of the number of times it is

executed to the number of times that the function in which it belongs is invoked.

e Finally, a very small basic block is not placed in the L-Cache even if it passes all the
other requirements. The extra branch instructions that might be needed to link it to its

successor basic blocks will be an important overhead in this case.

A basic block is placed in the L-Cache only if it is expected to stay there for a long period of
time without getting replaced. This in effect decouples the communication between the I-Cache

and the L-Cache and reduces the traffic between them.

3.2.3.1 Example

We refer to Fig. 3.6 to show how the algorithm works. We consider the basic block with

the largest contribution in the execution time first, in that case By, which belongs to LabelSet
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S4. Basic block By is the first to be considered and can be placed in the L-Cache without any
conflict. We set the variable size of S4 equal to the size of By, i.e., 0.3C. We also set the size
of all the LabelSets between S4 and the root to 0.3C.

We continue with By, which belongs to S;. Basic block B; can also be placed in the L-Cache
since no conflict arises. The size variable of S, S3 and Sy are set to 0.6C. Next, B, is placed
in the L-Cache, but the size of S5 and Ss do not change.

Basic block Bs is not in a leaf; therefore, we need to use the DOW N _TRAV () function to
propagate the effects of the inclusion of Bs on its descendants. Since size(S4) + size(Bs) =
0.4C < C, we can place Bs in the L-Cache. We also set size(.S5) = size(5) = 0.3C +0.1C =
0.4C. We continue in this manner, and we only select a basic block if it does not create a
conflict with a block that has already been selected. We notice that Bg cannot be placed in the
L-Cache because size(Bg) + size(Ss) > C.

3.2.4 Fourth step: Compression

In some cases algorithm Allocate() can be improved. In Fig. 3.7, the three basic blocks By,
B;, and Bs which correspond to the three labelsets Si, S2, and Ss, respectively, can all be
placed contiguously in the L-Cache without any conflict. These basic blocks belong to three
different loopé, and the sum of their sizes is smaller than C. Step 4 tries to reorder some of the
basic blocks in different memory locations so that they are placed more densely in the memory

address space. Of course, this reordering should not create conflicts between the basic blocks.

pos : 0 pos: 0 pos:0 pos: 0 pos : 0.2C pos: 0.5C

B1: 0.2C @ @ @ @
B2: 0.3C
B3: 0.3C

Figure 3.7 Compress step.

The algorithm considers the leaves of a LabelTree and seeks to reposition them so that the
space they occupy is minimized. It checks whether these basic blocks can be placed contiguously

in the memory address space without any conflict.
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3.2.5 Fifth step: Global placement

Step (5) in our methodology is the placement of the basic blocks in the global address space.
The algorithm takes as input the placement of the basic blocks with respect to the L-Cache
and tries to minimize the necessary space as much as possible.

To implement this algorithm, we assign a set, dubbed pos_set, for every line of the L-Cache
and we initialize it to the empty set. The set for line 7 will designate which positions are
not available for placement during the course of the algorithm. For example, assume that
pos_set(12) = {0,1,4}. That means that the positions 0,1 and 4 are not available for the L-
cache line 12. In other words, a new basic block cannot occupy any of the memory locations
12,124 C,12 4 4C, because another block already occupies this slot.

Since a basic block will typically occupy more than one cache lines we need to consider more
than one such set when we place a basic block. If basic block BB has a size of NV instructions
and is placed in position P of the L-Cache, we need to consider all the lines: P to P+ N — 1,
ie., pos_set(P)...pos_set(P + N — 1).

For example, assume that we want to place basic block BB in the memory space, given that
its position P in the L-Cache is P = 2 and that it has three instructions (N = 3). Assume also

that the L-Cache has six lines with the following position sets:

pos_set(0) = {0,1,2,3,4}
pos_set(l) = {0,1,2,4}
pos_set(2) = {0,4}
pos_set(3) = {0,4}
pos_set(4) = {4}
pos_set(5) = {}

The block will affect the sets pos_set(2), pos_set(3), and pos_set(4). We cannot place the
new block in positions 0 and 4; therefore, we need to find a position which is unnoccupied in
all the three lines. These positions are 1, 2, 5, 6, etc. In order to position the blocks as tightly
as possible, we select the smaller of each value each time. Therefore, we choose to place the

basic block in position 1, and we modify the position sets as follows: pos_set(2) = {0, 1,4},
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pos_set(2) = {0,1,4}, and pos_set(2) = {1,4}. The actual new position of the new basic block
ist 1xC 4+ 2.

The following algorithm implements the global placement heuristic that we described. The
input is the position P of every selected BB with respect to the beginning of the L-Cache, and
the L-Cache size C. The output is the position of each basic block BB in the address space.

/* Position P is an array with the positions with respect to the L-Cache for every BB */
void GLOBAL_PLACE (Position pos, CacheSize C) {
initialize the pos_set to {} for every line in the L-Cache;
/* place all the basic blocks of the L-Cache first */
for every basic block BB that is placed in the L-Cache {
Let P = pos(BB);
Let N = size(BB);
Consider all the cache lines from P to P+ N — 1 and compute:
X = min(nE4 (pos 3e()
X is the new position of BB
insert X to all pos_set(i) :pos_set(i) = pos_set(i)U{X},i=P...P4+ N -1
global position of BB is : X « C + P;
}

append the rest BB at the end;

3.2.6 Sixth step: Final layout and branch insertion

Finélly, in Step 6, the tool performs the actual layout of the code and restructures the CFG.
It starts by placing the basic blocks that were selected in Step 3. Those blocks are placed at the
beginning, in the memory locations assigned to them in Step 5. Then, all the other basic blocks
are placed contiguously. This arrangement greatly simplifies the hardware of the L-Cache, as
we will see in the next section. If needed, branches are placed at the end of the blocks to sustain
the functionality of the code. These branches introduce a performance overhead with respect to

the initial code. As we will see in the experimental evaluation section, the overhead is usually

very small.
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In Fig. 3.8, a complete example of the original and the restructured CFG is shown for the
code of Fig. 3.5. Blocks By and Bs will overlap in the L-Cache since By will be executed only
when the loop of B; exits. On the other hand, if B; overlapped with By or Bj, it would miss

in every execution of the By — B loop.

Threshold
Address

44C

@) )

Figure 3.8 CFG restructuring example.

3.3 Summary

In fhis chapter, we detailed the code transformations done by the compiler to better exploit
the L-Cache subsystem. The transformations are applied in three stages: the basic blocks that
are going to be stored in the L-Cache are selected using profile data from previous runs of
the code. The most frequently executed basic blocks that are nested in a loop are the best
candidates in this selection process. Then, our tool seperates the selected code from the non
selected one. In the third stage, the selected basic blocks are repositioned so that the conflicts
between them are minimized. To do that, we use their nesting relationship as well as profile

information. We also explained how function inlining can be used to enhance the effectiveness
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of the compiler in selecting a larger number of basic blocks. The output of our tool is an

equivalent and restructured code which, in cooperation with the hardware, can better exploit

the new scheme.

In Chapter 4 we describe the hardware modifications needed to implement the new memory

hierarchy scheme.

33



1. void Allocate(LabelTree T, CacheSize C) /* T root of the LabelTree, C size of L-Cache */
2 for every node N in T set size(N) = 0;

3 for every basic block BB in the program in descending order of number of times executed
4. let N be the node in T that BB corresponds to; /% N is unique */

5. if N is the root mext; /* we don’t place BB which are not nested */

6 old_size(N) = size(N);

7 fit = DOWN_TRAV(N, BB, C);

8 if (fit == FALSE) then continue; /% next basic block */

9. UP.TRAV(N) ;

10. put the basic block BB in the L-Cache in position old.size(N);

11. end for;

12. end Allocate;

13. boolean DOWN_TRAV(TreeNode N, BasicBlock BB, CacheSize C)

14. if (DOWN_TRAV_FIRST(N, BB, C) then
15. DOWN_TRAV_SEC(N) ;

i5. return trie;

16. else

17. return false;

18. end DOWN_TRAV;

19. flag = true;
20. boolean DOWN_TRAV_FIRST(TreeNode N, BasicBlock BB, CacheSize C)

21.  if (N != NULL and flag) then

22. if (size(N) + size(BB) > C) then

23. flag = FALSE;

24. else

25. temp_size(N) = size(N) + size(BB);
26. end if;

27. for all children of N do

28. DOWNTRAV_FIRST(N->child);

29. end if;

30. end DOWN_TRAV_FIRST,;
31. void DOWN_TRAV_SEC(TreeNode N)

32. if (N Y= NULL) then

33. size(N) = temp_size(N);

34. for all children of N do
35. DOWN_TRAV_SEC(N->child);
36. end if;

37. end DOWN_TRAV_SEC;

38. procedure UP_TRAV(TreeNode )

39. while (N->parent) do

40. N = N->parent;

41, size(N) = max(size(N->child)) among all children;
42. end while;

43. end UP_TRAV;

Figure 3.9 Placement algorithm.
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Chapter 4

HARDWARE ENHANCEMENTS

In addition to the compiler enhancement, our scheme needs extra hardware for the imple-
mentation of the L-Cache scheme. This is shown in Figs. 4.1 and 4.2. The organization and
the management of the L-Cache is much simpler than the organization of the I-Cache or the
D-Cache.

The organization of the L-Cache itself is depicted in Fig. 4.1. It only needs the data and the
tag part, an extra 32-bit comparator for the tag comparison, and a 32-bit multiplexer which
drives the data from the L-Cache or the I-Cache to the data path pipeline.

The PC'is presented to the L-Cache tag at the beginning of the clock cycle. The L-Cache
tag will only output its tag if the blocked.part signal is on. This signal is generated by the
instruction fetch unit (IFU), and its meaning is explained later. In that case, the comparator
checks for a match, and if it finds one, it instructs the multiplexer to drive the contents of the
L-Cache in the data path. At the same time, the data portion of the L-Cache asserts its output
and sends the new instruction to the data path. The I-Cache is disabled for this clock cycle,
since the signal blocked_part is on.

In the case of an L-Cache miss (LCache_Hit is off), the I-Cache controller activates the
I—Caché in the next clock cycle and gets the referenced instruction from there. At the same
time, this instruction is transfered to the L-Cache. Note that the L-Cache and I-Cache are
only accessed sequentially and never in parallel. If blocked.part = off, the I-Cache controller
activates the I-Cache without waiting for the LCache_Hit signal. In this way, the L-Cache can
be bypassed without a delay penalty.

Figure 4.2 presents the portion of the IFU in our implementation that generates the signal

blocked_part. Recall that the compiler has already laid out the code so that the basic blocks
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Figure 4.2 Extra hardware in the IFU.

that are destined for the L-Cache are placed before the others. A 32-bit register is used to hold
the address of the first non placed block in the main memory layout. If the PChas a value less
than that address, the 32-bit comparator will set blocked_part = on, else this signal will be set
to off. This way, the machine can figure out which portion of the code executes with only an

extra comparison. Moreover, the comparison is done at the end of the previous clock cycle, so

that it does not belong to the critical path of the L-Cache.

This simplification is only possible because of the way that the code has been restructured
in the compilation phase. Notice also that if blocked_part = on, the L-Cache can still miss:

this will happen, for example, when the basic block to be placed in the L-Cache has not been
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executed before, i.e., the first time the thread of control passes through it. Therefore, the tag
portion of the L-Cache is still needed.

Finally, we extend the instruction set architecture (ISA), and we add an instruction called
alloc which has a J-type MIPS format. It marks the boundary between the selected and
the non selected code. This extra instructions is used to store the address of the first non-
placed instruction in the 32-bit register, as described in the previous section, and it is the first
instruction to be executed upon entry in a procedure. The ID stage of the pipeline will decode
the instruction and place the address in the register. There is only one such instruction per
function, and its effect on performance is negligible.

In addition, the function call instructions (jal and jalr in MIPS) are modified to reset this
register. This is important since not all functions have basic blocks that are placed in the
L-Cache, and the register needs always to have valid contents. If the content of the register is
zero, the I-Cache will always be accessed and the L-Cache will be bypassed.

This design is a typical example of how hardware and software can cooperate to achieve
a more energy-efficient execution in a high-performance machine. The compiler lays out the
code as explained in Chapter 3, and communicates the threshold address to the hardware. The
hardware selects the I-Cache or the L-Cache depending on the output code that the compiler

generated.

4.1 Summary

In this chapter, we described the additional hardware that is needed to implement the
compiler-assisted placement of basic blocks in the L-Cache. The hardware is very simple, since
the compiler takes over most of the work in selecting and repositioning the basic blocks. Besides
the extra cache, our approach needs a register to store the address of the first non-selected basic
block. The PC can determine if the thread of control is in a basic block that has been selected for
placement in the L-Cache by comparing that address with the address of the current instruction.

The L-Cache and the I-Cache are only accessed serially and never in parallel. This creates
some performance problems, but it is beneficial for energy. In the next chapter we will present
the energy models for the SRAM-based caches that were used to estimate the energy dissipation

in the memory hierarchy subsystem.

37



Chapter 5

ENERGY ESTIMATION OF THE
CACHES

The most widespread technique for high-level power and energy estimation is library macro-
modelling, i.e., the characterization of library cells using an analytical expression that captures
the important features of the cells with respect to power. A separate model is supplied for
each module in the library: adders, multipliers, memories, controllers and so on. These models
reflect how the complexity of a particular module affects its power [55] [56].

Accurate energy models are deemed necessary as a prerequisite for design for low-energy
caches. Related work has been done in [57], [58], and [59], among others. Most of these proposed
techniques utilize models that consider the structure of the cache and use information about the
utilization statistics of the cache. Our model is more detailed, and it considers internal banking
of the cache so that both the access time and the energy are reduced. The model equations
are also very flexible since they allow the estimation of the energy of the cache under different-
parameters of cache complexity. Moreover, they allow the accurate estimation of energy in a
very small amount of time, since the time complexity of the models does not depend on the
number of input vectors or the number of accesses in the cache [60].

In this research, we present a detailed, transistor-level energy model of on-chip caches that
use SRAM technology. The energy estimation is based on the work by Wilson and Jouppi [61],
in which they propose a timing analysis model for SRAM-based caches. Our model uses run-
time information of the cache utilization (number of accesses, number of hits, misses, input
statistics, etc.) gathered during simulation, as well as complexity and internal cache organiza-

tion parameters (cache size, block size, associativity, banking, etc.). The utilization parameters
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Figure 5.1 Cache model.

are available from the simulation of the R-4400. The cache layout parameters, such as transistor
and interconnect physical capacitances, can be obtained from previous layouts, from libraries,

or from the final layout of the cache itself.

5.1 Internal Cache Organization

The internal cache organization is shown in Fig. 5.1 [61]. This is a general model of an
A-way set associative cache, with size of C bytes and a block size of B bytes. The operation of
the cache is now briefly described.

The cache is organized as a collection of § = ’B_%Z sets, so that one set contains A blocks,
or B X A bytes. The CPU issues an address to the cache consisting of three parts: the tag,
the index and the offset. The index part has length log,(5) bits and is used to index the set
from which the data will be retrieved. The offset part has length log,(B) bits and is used to
select the appropriate word within a block to return to the CPU. Finally, the tag part is used
to check whether there is a hit or a miss in the cache.

The cache consists of two arrays used to store the tag and the actual data. FEach array is
organized as a series of rows and columns so that there is one CMOS Static RAM cell at the

intersection of a row and column. In Fig. 5.1 we assume that one row in the data array stores
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a single set. The decoder first selects a row from the tag and data array using the index and
offset bits of the CPU address. Each bitline is first precharged high. When the decoder makes
the selection, each memory cell in that row pulls down one of its two bitlines, depending on the
value of the cell.

A set of sense amplifiers monitors small changes in the bitlines and transforms them into
legitimate voltage values. Usually, a sense amplifier is shared among several pairs of bitlines.
Extra column multiplexers are used in both arrays to implement this sharing.

The information read from the tag array is compared to the tag bits of the address issued
by the CPU. There are A such comparators for an A-associative cache. The result of the
comparison is used to drive the output bus with the data that have been read, in the meantime,
from the data array.

In most of today’s caches, the tag and data arrays are broken row-wise and column-wise so
that the time to access the data is reduced. Three new parameters are defined for that purpose
for each of the two arrays. The parameter Ny, shows how many times the data array is split
vertically resulting in more and shorter wordlines. The parameter Ng,; shows how many times
the data array is split horizontally resulting in more and shorter bitlines. Finally the parameter
Ngpq indicates how many sets are mapped into a single row. The tag array can be broken
independently according to the parameters Ny, Ny, and Nespq.

Using these organizational parameters, each data subarray has g%__f;l\fsm columns and

O . - .
BXAXN G XNopy TOWS- The total number of data subarrays is Ngp X Ngy. Similarly, each tag
AX(T+5t)x Nyspa

Ntwl

C
subarray has columns and g3 NorXNigs TOWS:

5.2 Energy Models for the Cache

Each of the components of the cache is now analyzed in detail with respect to energy
dissipation. The gate capacitance of a device or gate z is denoted as Cy, and its junction
capacitance as Cj .

5.2.1 Energy dissipation in the decoder

Figure 5.2 shows the decoder architecture. The address from the CPU is partitioned to sets

of three bits and is used to drive a set of 3-to-8 decoders. Each of these decoders asserts one out
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of eight outputs. The NOR gates have as many inputs as the number of 3-to-8 decoders. The
outputs of the NOR gates are used to drive the selected wordlines through a wordline buffer.

The 3-to-8 decoder can be implemented using eight, three-input NAND gates.

WORDLINE
DRIVER
R
> [ WORDLINES
N NOR INV1 INV2
3108 ———; [ [
DECODER NOR INV1 INV2

N; 08 NOR gates

e

NOR INV1 INV2

3108
DECODER

Figure 5.2 Address decoder.

In the actual implementation, the 3-to-8 decoders are actually shared among four subarrays
as shown on Fig. 5.3 and are collectively called predecoders. The energy dissipation in the input

of the predecoder is given by

1 Nyguwi N,
Epred_input = 5 X ded X N inp X 2 X [4 % l_—-d-’*’-fl-—‘iﬂ-l X Cgpred_inp +2 X B X AX Nap X Ngpg X

Neot Vs .
Cwordmetal] +% X Vd2d X Nd,z’np X2 [4 X [_rxz‘ll_t.bl." X Cg,pred_z'np +2xBx Ax Ntbl X Ntspd X Cwordmetal] .

The value Ny, is the total number of transitions in the input address (computed during
simulation). Note that there are []—Vﬂg‘m] predecoders in the data subarray, and each address
input bit or its complement is connected to all eight NAND gates.

For completion, we also give the energy dissipation due to the interconnect capacitance
of the metal wires that transfer the address bits to the predecoder inputs. The wire length
can be approximated by noting that the total edge length of the data array is approximately
8X B X AX Ngy X Ngpg. Using Fig. 5.3, we see that the length of the interconnect wire is about

one quarter of this length.
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Predecoder

Figure 5.3 Banking of the cache.

The second contribution in the energy dissipation of the decoder comes from the junction
capacitances of the NAND gates and the gate capacitances of the NOR gates (Fig. 5.2). It is
given by

1 2 NguiN, o
Erowdec = 5 X Vi X Nace X {2 x [F8424] X N3 45 8 data X [C5,NAND + SXBXAXNaz % Nogg X

C 1 1
Co.NOR + TxBxAxNmx Ny X Chitmetal]} + 3 X Vi X Nace X 2 X Cinor+ § X Vi X Naee X

NywiNevi . c C
{2 X[ 4 -] X N3 _to08,tag X [CLNAND + EXBXAXNypi X Nz spa X Cg,NOR + 2XB X AXNypl X Ngspa X

Chitmetal]} + 3 X V& X Nace X 2 X CNOR-

The value Ny, is the number of accesses in the cache, N3 ¢, 8 dote is the number of the 3-to-
8 decoders for each data subarray, and Chisimetas is the capacitance per bit of the interconnect

between the NAND and NOR gates.

C
NapiXNgpa?

used because each NAND gate in the predecoder drives that many NOR gates. Note that the

The factor grprax which is equal to (Number of rows in the subarray)/8, is
interconnect capacitance is also taken into consideration.

Each of the 3-to-8 decoders modifies only two of its outputs for every access. In addition,
only one NOR gate in each array evaluates its output to one, since only one wordline can be
selected for each cache access (the term that contains the C; yor takes care of that effect). We
also multiply by two since one wordline switches from one to zero and another from zero to one

in every cache access.
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5.2.2 Energy dissipation in the word lines

In every clock cycle, a wordline will be charged and another will be discharged (Fig. 5.4).

The energy dissipation in the word lines is given by

Ewordiine = Vi X Nace X Nawt X (Ciinvi + Coinve) + VE X Noee X (8 X BX A X Ngpg X 2 X
Cy,pass+Cjinva+8X B X AX Ngpg X Cuordmetal) + Vi X Nace X Nyt X (C1nv1 + Coinvz) +
ded X -Nacc X [(T + St) X Ntspd x2xC JLPASS + C',INVZ + (T + St) X Ntspd X Cwordmetal]-

WORDLINE 8*B*A*Nspd |
Vad DRIVER Nawl _ DIt

ﬁfl Efl T oA

INV1 INV2 PASS

Figure 5.4 Word line architecture.

The length of the tag is T bits, and there are also St bits for the status in each block. For
example, the valid and the dirty bit are status bits. Each data subarray has 2xX8 X B X AX Ngpqg

pass transistors, and each tag subarray has 2 x (T + St) pass transistors.

5.2.3 Energy dissipation in the bit lines

The energy dissipated in the bit lines is due to the precharge phase, as well as to the read or
write phase during which one of the two bitlines for every cell is discharged to a logic low value.
We assume that the logic swing of the bitline is %Vdd. Figures 5.5 and 5.6 show the precharge
and the cell circuit, respectively. The contribution of this component to the energy dissipation

is given by

1r1
Epittine = 5(5Vaa)? X (Navitpr X Cavitpr + Napitr X Cavitr + Navitw X Cavitw + Nepitor X

1
Ctbit,pr + Ntbit,'r X Ctbit,r + Ntbit,w X Ctbit,w) + 3 X (Np'rech_log X Nacc X Cprech)-

The following notations have been used:
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Figure 5.5 Bit line precharge circuit.

VDD

PASS PASS

-8 ‘WORD

BIT BITBAR

Figure 5.6 Memory cell.

Napitpr = Noee X 2X 8 X B X A X Nspg X —%— is the total number of precharges in all the
bitlines in the data array. We assume that half of them switch to a logic high during

precharge, since only that half has switced to logic low in the previous clock cycle.

Napity = Ngee X2X 8 X B X A X Ngpg X % is the total number of read transitions in the

bit lines.

Ndbit,w = Nwhz't X (St + Waverg,data_write) + % X Nrm’iss X (2 X8 X B xAX Nspd) is the
total number of write transitions in the bit lines. Nyps: is the total number of write hits

in the cache, and N,,,;ss the total number of read misses.

Nevit pr» Nivit,r, andNypii o are defined similarly for the tag array.
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® Nprech_log = 8 X B X A X Nspg X Nayy + A X (T 4 §t) X Nyspa X Nepy is the number of bitline

precharge circuits in the cache.

o Cavitpr = Cabityr = Cabitw = 'B'xAxNCd—”u_xNZ; X (3 X Cj,pass + Chitmetal) +2 X Cj,PRECH +
C;mux is the switched capacitance for each precharge (or read or write) transition. The
junction capacitance of the pass transistor is multiplied by two since it is shared between
two vertically adjacent cells. The C;pmux is the junction capacitance of the column

multiplexer at the other end of the bitline.

5.2.4 FEnergy dissipation in the comparators

Each one of the A comparators for an A-associative cache is designed using dynamic logic

(Fig. 5.7), and it has a width of T bits.

PRECHAR@Ld PRECH_P
COMP
&\\ OUT
a_Qv_I \1 I_ao a-L! "—31 a.n.l =
o e s E s T
PRECHARGEE&_l PRECH_N

Figure 5.7 Comparator.

The energy dissipation in the A comparators is given by

Ecomp = %‘ X ded X Nacc X A X (C',PRECH_P +C ,MUX_DRV) +% X ded X Nmisses x A X [T X
2 x Cjcomp +CiprEcH N +T X Cjcomp + Comux DRV]+ § X Vi X Nhigs X (A—1) x (T X
2 x Cjcomp +C;prECHN +T X Cicomp+ Comux_DRV)+ 3 X Vi X Niigs X [T x Cjcomp+

Tx2x Cj,COMP] + % X Vd2d X Nta,g,'inp XAx2xXTx C,.‘]:OOMP'

The value Nygg inp is the number of switches in the input of the evaluation transistors. We

assume that in case of a miss, half of the paths to the ground will be on and half will be off.
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When a path is on, we have to multiply the junction capacitance of a transistor by two to
approximate the capacitance switched. In case of a hit, only one out of the A comparators

evaluates to one.

5.2.5 Energy dissipation in the multiplexer drivers

Fig. 5.8 shows the context of the multiplexor drivers in the cache systems. Each multiplexor
is responsible for controlling the multiplexing of the 8 x B bits from each cache block onto the
data bus that reads out bg bits towards the CPU or the main memory. There is one such
multiplexer driver for each of the A comparators in an A-way set associative cache. The

implementation of a multiplexer is shown in Fig. 5.9

B0

From From
_______________ ! _____$_C_°_‘I‘P?€%‘°r ___________-__A-__-_£E‘3‘PP_3fa‘°r
§ MUX DRIVER MUX DRIVER
E 8B

8B ;

=
. <

____________________________________________________________

DATA BUS OUTPUT
Figure 5.8 Data bus output for multiplexer drivers.
The energy dissipation in the multiplexer drivers is given by
Emuz_driver = § X VE X Npigs X (%ﬁ X Co.NoR+Cianv)+ 3 X VE X Npits X (Cg,pRV_INV + |
C;,NOR)+ 5 X V3 X Npits X (bo X Cg 0uTDRV, +Cj, DRV INV +4 X BX AX Nspa X Nabi X Cordmetal )-
5.2.6 Energy dissipation in the output bus

The energy dissipation in the output busses towards the CPU and the main memory is given

by
1
Eoutp-u.t =3 X ded(NOut,a2m X Cout,a2m + Nout,dZm X Cout,dZm + Nout,ch X Cout,d2c)-

The following notation has been used:

46



From the vDD

offset part VDD
of the CPU

address

From DRV_INV

Comparatar
__I T~ NOR gates
MUX_DRV
{ OUT DRV
NOR DRV_INV

Figure 5.9 One of the A multiplexer drivers.

® Nouwtoom = % X (Nymiss + Nunit + Nwmiss ) X Waddr_bus, 1S approximately the total number
of zero-to-one transitions in the address bus from the cache to the next level of memory
(L2 cache or main memory). The address bus switches in case of a read miss, in case of a
write hit (to write the data to the main memory), and in case of a write miss (to get the

data from the main memory). The address bus has Wog4r_pus bits length.

o Noutdom = % X (Nwhit + Nwmiss) X Waate bus, 15 approximately the total number of zero-
to-one transitions in the data bus from the cache to the next level of memory. The data

bus switches each time that data needs to be written in the memory.

o Noutdoe = —;- X (Nreads X Wayg_read) is approximately the total number of zero-to-one
transitions in the data bus from the cache to the CPU. The factor Wyyg_reqad is the average

number of bits read from the cache.

o The capacitances for off-chip transfers are set equal to 20 pF, while the capacitances for

on-chip transfers are set equal to 0.5 pF [61].
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5.3 Energy Distribution in the Cache

The models presented in the previous section were used in conjunction with a simulator
of the MIPS2 architecture to obtain realistic estimation of the energy consumption in on-chip
caches. The gate and junction capacitances were obtained from [61] for a 0.8—pm process.

The number of accesses in the cache, number of hits, misses, as well as the switching activity
in the CPU address were computed by simulation of a set of SPEC95 benchmarks. The following
benchmarks were simulated: 101.tomcatv, 102.swim, 108.sulcor, 104.hydro2d, 129.compress,
180.1i, and 134.perl (described in Table 5.1). Figs. 5.10 and 5.11 show the distribution of energy

consumption on the various components of our cache model for two cases.

Table 5.1 Statistics for the 32-kbyte I-Cache utilization.

Benchmark | Accesses | Hit rate | Energy

in billions in joules
tomcatyv 4.79 | 99.95% 24.98
swim 0.39 | 99.99% 2.017
su2cor 10.13 | 99.97% 52.85
hydro2d 4.5 | 99.90% 23.50
compress 0.037 | 99.99% 0.20
Ii 0.21 | 99.99% 1.08
perl 2.56 | 98.76% 13.45

0.8

1 [mEm ex8~Cache

Pre-Decod Word Line Comp Cutput
Décoder BitLine Miwx_Drv

Figure 5.10 Distribution of energy dissipation in a direct mapped, 8-kbyte I-Cache with a
block size of 16 bytes.

The bit lines are by far the most energy consuming part of the cache. This is mainly due to

the very large capacitance of the precharge transistors, as well as to the length of the bitlines.
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Figure 5.11 Distribution of energy dissipation in a direct mapped, 32-kbyte I-Cache with a
block size of 32 bytes.

In every clock cycle, half of the bitlines will precharge, and then half will discharge to logic
Z€ero.

Several circuit techniques have been proposed and implemented to reduce the energy dis-
sipated in an SRAM-based cache, especially in the bitlines. Low swing bitlines and bitline
isolation are standard techniques that attempt to restrict the switching of the bitlines to a
small voltage range. With this arrangement, a small differential voltage on the bitlines is suffi-
cient to trigger the full transition on the sense amplifier outputs [62]. A voltage swing of a few
hundreds of millivolts is usually sufficient to trigger the sense amplifiers.

The energy dissipation of the internal cell, the column decoders and sense amplifiers was

negligible and it was not taken into consideration.

5.4 Summary

In fhjs chapter, we presented a detailed, transistor-level model for the estimation of energy
in SRAM-based caches. These models will be used in the next chapter to evaluate the energy
gains in our scheme. We presented a detailed model for each of the components of the caches:
the address decoder, wordline, bitline, comparators, multiplexer drivers, and output buses.
Energy consumption is a function of the cache complexity (size, blocks size, associativity), its
internal organization (banking), its utilization statistics (number of accesses, input statistics,

etc.), and the capacitance of the interconneccts and the transistors. Experimental evaluation
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showed that the bitline and the precharge circuit dominate the energy dissipation of the on-chip
caches.
In Chapter 6, we present extensive experimental evidence that proves the feasibility of the

L-Cache scheme in the context of a modern high-performance processor.
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Chapter 6

EXPERIMENTAL EVALUATION

In this section we describe the experimental results on energy savings and performance
effects of applying the proposed techniques to the SPEC95, and we compare our method with
the filter cache method (i.e., only a L0 cache without any compiler support) [63]. We first

outline the experimental setup.

6.1 Simulator Environment

We evaluated the effectiveness of our software/hardware enhancements by examining the
energy savings on a set of SPEC95 benchmarks (Table 6.1). We determined whether the
bechmark programs are amenable to these modifications and what is the potential for energy
savings in them. The benchmarks were compiled with the MIPSpro compiler using the -02
optimization flag. Hence, we enabled all the traditional optimizations but we disabled any
interprocedural analysis and inlining. That was necessary in order to test our own inlining
heuristic.

To gauge the effect of our L-Cache in the context of a realistic processor operation, we
simulated the MIPS2 ISA using the MINT [64] and the SpeedShop [49] tool suites. MINT is
a software package for instrumenting and simulating binaries on a MIPS machine. We built a
MIPS2 simulator on top of MINT which accurately reflects the execution profile of the R-4400
processor. Table 6.2 shows the latencies (in clock cycles) of the functional units of our simulator
based on [41], and Table 6.3 describes the memory subsystem configuration as (cache size /
block size / associativity / cycle time / latency to L2 cache in clock cycles / transfer bandwidth
in bytes per clock cycles from the L2 Cache). Both I-Cache and D-Cache are banked both

row-wise and column-wise to reduce the access time and the energy per access [61]. We use the
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Table 6.1 SPEC95 benchmarks description.

Benchmark Description

tomcatv Mesh generation program

swim Shallow water model with 1024 x 1024 grid

su2cor Computation of the masses of elementary particles in quantum physics
hydro2d Solution of hydrodynamical Navier-Stokes equations
mgrid Computation of a 3-D potential field in electromagnetics
applu Solution of five coupled parabolic/elliptic PDEs

turb3d Simulation of isotropic, homogeneous turbulence in a cube
apsi Computation of temperature variations

waveb Solution of Maxwell’s equation

go Computer game that uses artificial intelligence

m88ksim Simulator of the 88100 microprocessor

compress File compression using the Lempel-Ziv coding

I Lisp interpreter

perl Perl interpreter

vortex Object-oriented DB transaction program

tool cacti, described in [61], to estimate the access time of the on-chip caches, as well as the
optimal banking that minimizes the access time. The tool provides the optimal values for the
parameters Ny, Napi, and Ngpg for the data array, and for the corresponding parameters for
the tag array.

We considered a filter cache of 256 and 512 bytes, and block size that varied between 8 and
32 bytes. The L-Cache was also 256 and 512 bytes, and always had a block size of 4 bytes, i.e.
the size of a MIPS instruction. A larger block size does not significantly increase the hit rate
of the L-Cache, whereas it negatively affects the dissipated energy per access. The L2 unified
cache is off-chip and its energy dissipation is not modeled.

We also experimented with different scenarios for the user-given thresholds that guide the
basic block selection and placement in the L-Cache (Table 6.4). A more aggressive scenario
results in larger energy gains at the expense of larger performance degradation. A frequency
threshold of 0.01%, for example, will force the tool to mark for placement only basic blocks
that have an execution time of at least 0.01% of the total execution time of the program. A
size threshold of 10 instructions will force the tool to mark only the basic blocks that have at

least 10 instructions, and so on.
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Table 6.2 Functional units latency.

Resource Latency
Integer ALU 1
Integer MULT 12
Integer DIV 76
FP ADD/SUB 4
FP MULT (single) 7
FP MULT (double) 8
FP DIV (single) 23
FP DIV (double) 36
FP SQRT (single) 54
FP SQRT (double) 112
FP CONVERT 2-6

Table 6.3 Memory subsystem configuration in the base machine.

Parameter Configuration
L1 I-Cache | 32KB/32/1/1/4/8
L1 D-Cache | 32KB/32/2/1/4/8

Our experimental methodology was as follows. First, we ran the benchmarks to collect the
profile data. The data were used to drive the inline and the block placement heuristics. The tool,
along with the restructuring of the body of the program, selected various statistics regarding
the quality of the generated code. SpeedShop was used for profiling and the MIPSpro compiler
was used for compilation and code optimization. The actual simulation was done using MINT.
Function inlining was used only for the SPECint95 benchmarks. Through experimentation, we
found out that inlining is more beneficial when only leaf functions are absorbed; hence, we limit
our inlining procedure to consider only leaf functions.

The next section delineates the energy and delay results for the filter and the L-Cache under
the different scenaria described earlier. It also looks into potential performance gains using a
faster clock, equal to the access time of a smaller I-Cache. We show that using our method,
energy as well as delay can be simultaneously reduced when the compiler assumes the role of

statically allocating instructions to the L-Cache.
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Table 6.4 TUser-given thresholds in the L-Cache experiments.

Ezperiments Frequency Thres. | Size Thres. | Ezec. Density Thres.
¥P INT Fp | INT | FP INT

Aggressive (a) 0.01% | 0.01% 5 5 5 5

Less Aggressive (b) | 0.5% 0.5% 10 5 10 5

Moderate (c) 1% 1% 20 5 20 5

Table 6.5 Percentage of basic blocks placed in the L-Cache (only user-level code).

Benchmark L-Cache size

32 instr. | 64 instr. | 128 instr. | 256 instr. | 512 instr. | 1024 instr.
tomcatv 6.08% 9.94% 14.92% 15.47% 16.02% 16.02%
swim 1.03% 3.77% 5.48% 5.82% 5.82% 5.82%
su2cor 1.15% 2.43% 3.58% 3.83% 3.90% 3.90%
hydro2d 3.21% 6.76% 9.34% 10.02& 10.07% 10.07%
mgrid 4.61% 7.24% 9.43% 10.31% 10.31% 10.31%
applu 2.48% 4.20% 10.12% 12.42% 13.47% 13.47%
turb3d 0.27% 0.81% 1.44% 1.71% 1.98% 1.98%
apsi 0.48% 1.12% 1.79% 2.00% 2.10% 2.10%
waved 1.65% 2.97% 4.09% 4.38% 4.42% 4.42%
m88ksim 0.15% 0.15% 0.15% 0.15% 0.15% 0.15%
I 0.06% 0.06% 0.06% 0.06% 0.06% 0.06%
compress 1.11% 1.11% 1.11% 1.11% 1.11% 1.11%

6.2 Results

Using the configuration of Tables 6.2 and 6.3, we performed an analysis across different
organizations of the filter cache and the L-Cache. Table 6.5 shows the percentage of static
basic blocks that are selected to be cached in the L-Cache in the course of program execution.
On average, less than 7% of all the basic blocks in the user-level code are selected in the
SPEC{p95 bechmarks.

The percentage of dynamic instructions that cause the machine to access the L-Cache in
the course of program execution is shown in Table 6.6. This access may result in a hit or a
miss. For the FP benchmarks, most of the basic blocks have a negligible execution frequency
or are too large to fit in the cache (for smaller caches only). Integer benchmarks have a large

number of basic blocks with small execution frequency and, in addition, many blocks that are

54



Table 6.6 L-Cache utilization statistics: percentage of instructions that cause an access to
the L-Cache.

Benchmark L-Cache size

32 instr. | 64 instr. | 128 instr. | 256 instr. | 512 instr. | 1024 instr.
tomcatv 15.25% | 40.17% 90.05% 99.84% 99.94% 99.94%
swim 0.10% | 72.71% 91.68% 99.93% 99.93% 99.93%
su2cor 10.05% | 53.28% 66.92% 98.17% 99.22% 99.22%
hydro2d 22.61% | 39.36% 39.36% 94.48% 94.49% 94.49%
mgrid 5.39% 7.31% 97.79% 99.38% 99.38% 99.38%
applu 12.62% | 43.12% 66.87% 73.01% 73.35% 84.28%
turb3d 3.89% | 50.90% 74.44% 74.87% 77.90% 77.90%
apsi 10.50% | 34.83% 79.65% 83.84% 86.76% 86.76%
waved 25.30% | 44.54% 70.35% 94.11% 96.16% 96.16%
m88ksim 46.16% | 46.16% 46.16% 46.16% 46.16% 46.16%
compress 15.49% | 15.49% 15.49% 15.49% 15.49% 15.49%
I 0.01% 0.01% 0.01% 0.01% 0.01% 0.01%

not nested in a loop. Blocks with small execution density are also a problem for some integer
benchmarks.

This percentage is high for all the SPECf{p95 benchmarks, reflecting the efficacy of our
approach for these programs. As expected, a larger L-Cache is more succesful in storing basic
blocks and therefore in disabling the I-Cache for a larger period of time. In some cases, even
a small L-Cache is capable of effectively shutting-down the I-Cache for the duration of the
program execution. The law of diminishing returns applies here as well, since a very large L-
Cache (1024 instructions) is usually as succesful as smaller ones. In most cases, a 256 instruction
L-Cache approximates the performance of an infinite size L-Cache.

On the other hand, most integer benchmarks do not have a large number of basic blocks
that cz;n be cached in the L-Cache. They are also insensitive to the cache size variation, which
is to be expected since the basic blocks of integer programs are generally small. Most of the
basic blocks of the SPECint95 benchmarks are not nested, or they are nested within a loop that
contains a function call; hence, they cannot be included in the L-Cache. Integer programs with
complex control flow graphs, such as interpreters, compilers and so on, have a large number

of different paths in the CFG. These benchmarks have the worst behavior. Benchmarks with
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a more tegular structure (compression programs, simulators, etc.) are better suited to our
algorithm.

Tables 6.7 and 6.8 show the energy gains in the I-Cache subsystem for the three different
L-Cache and filter cache configurations. The numbers are normalized with respect to the energy
dissipation of the original scheme. The energy in the modified configurations is due to both
the I-Cache and L-Cache (or filter cache for the three last columns). A result less than one is
desirable since it denotes an improvement in energy or delay with respect to the original scheme.
Even a small delay penalty can be acceptable as long as the energy reduction is substantial.

The clock period was set equal to the access time of the D-Cache, which is the critical path
in many high performance processors. A 32-kbyte, two-way set associative D-Cache, with a
32-byte block size has an access time of 11.4 ns using a 0.8 um feature size (as found using

cacti).

Table 6.7 Normalized energy relative to the base machine for 256-byte extra cache.

256 bytes extra cache

Benchmark L-Cache Filter Cache

(a) (b) (©) 8B 16B | 32B
tomeatv 0.565 | 0.622 | 0.622 | 0.16 | 0.154 | 0.193
swim 0.312 | 0.318 | 0.347 | 0.131 { 0.135 | 0.189
su2cor 0.498 | 0.511 | 0.511 | 0.192 | 0.169 | 0.205
hydro2d 0.418 | 0.438 | 0.493 | 0.122 | 0.134 | 0.187
go 0.952 | 0.974 | 0.986 | 0.466 | 0.324 | 0.300
compress95 | 0.873 | 0.875 | 0.875 | 0.448 | 0.328 | 0.307
i 1 1 1 0.409 | 0.315 | 0.321
perl 0.934  0.94 | 0.949| 0.474 | 0.355 | 0.335

For the SPECfp95 benchmarks, a 0.5-kbyte L-Cache is almost as successful as the filter
cache in reducing the energy of the I-Cache subsystem, especially when an aggressive scenario
is followed. Filter caches with a 32 bytes clock size have large energy consumption per memory
access, and they need a 32-byte large bus to connect them with the I-Cache. The filter caches
capture all the instructions, no matter what their nesting is or how often they execute.

The performance overhead of these cache configurations with respect to the original ex-
ecution time is given in Tables 6.9 and 6.10. This is a full chip simulation that takes into
consideration the latency in the memory hierarchy, the structural hazards in the FPU, and the

data dependency hazards in both the integer unit and the FPU.



Table 6.8 Normalized energy relative to the base machine for 512-byte extra cache.

512 bytes extra cache

Benchmark L-Cache Filter Cache

(a) (b) (c) 8B 16B | 32B
tomcatv 0.141 | 0.198 | 0.198 | 0.084 | 0.104 | 0.156
swim 0.139 | 0.145 | 0.173 | 0.092 | 0.114 | 0.174
su2cor 0.373 | 0.389 | 0.389 | 0.110 | 0.124 | 0.173
hydro2d 0.260 | 0.261 | 0.261 | 0.088 | 0.112 | 0.172
go 0.951 | 0.974 | 0.986 | 0.428 | 0.302 | 0.287
compress95 | 0.873 | 0.875 | 0.875 | 0.310 | 0.248 | 0.271
i} 1 1 1 0.359 | 0.377 | 0.280
perl 0.934 | 0.94 | 0.949 | 0.421}{ 0.32 | 0.308

Table 6.9 Normalized delay relative to the base machine for 256-byte extra cache.

256 bytes extra cache

Benchmark L-Cache Filter Cache

(a) (b) (c) 8B 16B | 32B
tomcatv 1 1 1 1.05 | 1.032{ 1.023
swim 1 1 1 1.032 | 1.018 | 1.013
su2cor 1 1 1 1.181 | 1.155 | 1.141
hydro2d 1 1 1 1.020 | 1.013 | 1.009
go 1.012 { 1.012 | 1.012 | 1.204 | 1.114 | 1.070
compressd5 | 0.980 [ 0.979 | 0.979 | 1.220 | 1.117 | 1.06
i 1 1 1 1.207 | 1.172 | 1.094
perl 1 1 1 1.244 | 1.153 | 1.102

The most important advantage of the L-Cache with respect to the filter cache is the small
performance overhead, which is vital for high performance machines. The performance overhead
is due to the miss rates in the L-Caches and the extra jump instructions that are inserted by
the compiler as discussed previously. Filter cache configurations suffer from a much larger miss
rate.

An optimal L-Cache has a size of 128 instructions (i.e., 0.5-kbytes) for the FP benchmarks.
Small caches are not very succesful in disabling the I-Cache. Larger caches, on the other hand,
have larger energy dissipation per access, yet not a much better hit rate than average sized
caches. The energy dissipation drops as the size increases, but it goes up again for the larger
caches. On the average, the new scheme dissipates only 55% of the energy of the original scheme
for the FP benchmarks, when a 128-instruction L-Cache is included. Notice also that the new

scheme never dissipates more energy than the original one.
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Table 6.10 Normalized delay relative to the base machine for 512-byte extra cache.

512 bytes extra cache

Benchmark L-Cache Filter Cache

(a) (b) (c) 8B 16B | 32B
tomcatv 1 1 1 1.011 | 1.006 | 1.04
swim 1 1 1 1.011 | 1.006 | 1.004
su2cor 1 1 1 1.141 | 1.133 | 1.128
hydro2d 1 1 1 1.007 | 1.004 | 1.002
go 1.017 1 1.013 | 1.013 | 1.184 | 1.103 | 1.062
compress95 | 0.979 | 0.979 | 0.979 | 1.126 | 1.063 | 1.035
I 1 1 1 1.175 | 1.103 | 1.068
perl 1 1 1 1.211 | 1.131 | 1.084

6.3 Performance Improvements

The previous tables identify the opportunity for performance gains if the designer exploits
the smaller access time of the extra caches. By reducing the clock period, delay along with
energy can be simultaneously reduced. This concept is particularly attractive for our compiler-
driven scheme, since it can benefit from the very high hit rate in the L-Cache.

We set the clock period equal to the access time of the I-Cache and we modify the size of the
I-Cache so that it becomes the critical path in the CPU. We present results for a direct-mapped
I-Cache of 8-kbyte, with a block size of 16 bytes. The new clock period is 7.91 ns. In this case,
the access time for the D-Cache becomes two clock cycles. If the L-Cache can satisfy most of
the requests from the pipeline, then the smaller I-Cache will not severely affect the hit rate.
What is more, the smaller I-Cache consumes less energy. Therefore, the energy dissipation
of the CPU is smaller, although the energy of the system will probably increase because the
number of accesses outside the CPU will go up.

Agé,in, we denote the execution time of the original configuration that uses no extra caches
as unity, and we normalize everything else with respect to that. The extra cache size varies
again between 256 and 512 bytes. We should also note that other such ideas can be readily
applicable for enhancing performance by reducing the clock period. For example, the D-Cache,
as opposed to the I-Cache, can be made smaller. In this case, we need two clock cycles to access
the larger I-Cache.

By applying this framework to our simulator, we observed that energy as well as delay can

be reduced. Tables 6.11 and 6.12 show the normalized energy dissipation of the new scheme
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Table 6.11 Normalized energy relative to the base machine for a 256-byte extra cache, and a
direct-mapped, 8-kbyte I-Cache with block size of 16 bytes.

256 bytes extra cache

Benchmark L-Cache Filter Cache

(a) (b) (c) 8B 16B | 32B
tomcatv 0.146 | 0.155 | 0.155 | 0.094 | 0.117 | 0.177
swim 0.095 | 0.096 | 0.100 | 0.082 | 0.109 | 0.17
su2cor 0.125 | 0.125 | 0.107 { 0.096 | 0.117 | 0.174
hydro2d 0.143 | 0.149 | 0.150 | 0.081 | 0.108 | 0.169
go 0.195 | 0.200 | 0.198 | 0.153 | 0.149 | 0.193
compress95 | 0.182 | 0.182 | 0.182 | 0.148 | 0.149 | 0.195
li 0.181 | 0.182 | 0.190 | 0.141 | 0.147 | 0.198
perl 0.191 | 0.192 | 0.193 | 0.155 | 0.155 | 0.210

Table 6.12 Normalized energy relative to the base machine for a 512-byte extra cache, and a
direct-mapped, 8-kbyte I-Cache with block size of 16 bytes.

512 bytes extra cache

Benchmark L-Cache Filter Cache

(a) (b) (¢) 8B 16B | 32B
tomcatv 0.078 | 0.086 | 0.086 { 0.077 | 0.106 | 0.169
swim 0.073 | 0.074 | 0.078 { 0.077 | 0.106 | 0.169
su2cor 0.108 | 0.110 } 0.110 | 0.081 | 0.109 { 0.171
hydro2d 0.145 ] 0.152 | 0.152 | 0.075 | 0.105 | 0.168
go 0.195 { 0.198 | 0.200 | 0.147 | 0.145 | 0.192
compress95 | 0.183 | 0.183 | 0.183 | 0.121 | 0.133 | 0.189
Ii 0.181 | 0.183 | 0.190 | 0.132 | 0.139 | 0.191
perl 0.192 | 0.192 | 0.194 | 0.145 | 0.149 | 0.198

with respect to the original scheme. Since the I-Cache is only 8-kbyte in the new scheme, the
on-chip energy consumption is much lower than in the original architecture, but the off-chip
energy will probably go up, because more references have to access the L2 cache and the main
memofy. The original architecture is the one described in Table 6.3.

We notice from Tables 6.13 and 6.14 that performance can be significantly improved. This
is especially true for the L-Cache, since the compiler can guide the hardware to access either
the L-Cache or the I-Cache, and avoid the unacceptably high miss rates of the filter cache for
some programs.

In SPECfp95 benchmarks, the delay when the L-Cache is included drops by 20% when the
L-Cache is 256 bytes or 512 bytes. For a filter cache with a block size of 16 bytes, the delay
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Table 6.13 Normalized delay relative to the base machine for a 256-byte extra cache, and a
direct-mapped, 8-kbyte I-Cache with block size of 16 bytes.

256 bytes extra cache

Benchmark L-Cache Filter Cache

(a) (b) (c) 8B 16B | 32B
tomcatv 0.818 | 0.811 | 0.811 | 0.847 | 0.834 | 0.823
swim 0.823 | 0.823 | 0.823 | 0.845 | 0.835 | 0.83
su2cor 0.810 | 0.810 | 0.810 | 0.856 | 0.837 | 0.824
hydro2d 0.785 | 0.784 | 0.784 | 0.798 | 0.793 | 0.787
go 0.959 { 0.956 | 0.960 | 1.084 | 1.023 | 0.909
compress95 | 0.860 | 0.860 | 0.860 | 1.025 | 0.954 | 0.915
i 0.907 | 0.907 | 0.907 | 1.061 | 1.008 } 0.973
perl 0.989 | 0.989 | 0.989 | 1.141 | 1.079 | 0.999

Table 6.14 Normalized delay relative to the base machine for a 512-byte extra cache, and a
direct-mapped, 8-kbyte I-Cache with block size of 16 bytes.

512 bytes extra cache

Benchmark L-Cache Filter Cache

(a) (b) (¢) 8B 16B | 32B
tomcatv 0.818 | 0.812 | 0.812 | 0.820 | 0.816 | 0.810
swim 0.823 | 0.823 | 0.823 | 0.833 | 0.829 | 0.824
su2cor 0.784 { 0.784 | 0.784 | 0.799 | 0.794 | 0.789
hydro2d 0.785 | 0.784 | 0.784 | 0.789 | 0.787 | 0.783
go 0.958 | 0.960 | 0.956 | 1.070 | 1.014 | 0.903
compress95 | 0.860 | 0.860 | 0.860 | 0.961 | 0.917 | 0.898
i 0.907 | 0.907 | 0.907 | 1.039 ] 0.990 | 0.955
perl 0.989 | 0.989 | 0.989 | 1.119 | 1.064 | 0.984

drops by 17.5% when the filter cache is 256 bytes large, and by 20% when the filter cache is
512 bytes large.

The results favor the L-Cache approach when it comes to the integer benchmarks. The
delay iﬁ the L-Cache approach drops by 9.5% in the SPECint95 benchmarks for either size. On
the other hand, the delay increases by 1.6% for a 256 bytes filter cache with 16 bytes block size,

and it remains the same for a 512 bytes filter cache with the same block size.

6.4 Summary

In this chapter we presented a detailed experimental evaluation for our approach, and we

compared it to the filter cache, i.e., the method which uses an extra cache without compiler
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support. We showed that our method is preferable for high-performance processors because it
only poses a small performance burden on the machine. Results from four FP and four integer
benchmarks show that the energy dissipation in the on-chip memory hierarchy drops by 77%
and 6%, respectively, for a 512-bytes L-Cache, and by 90% and 62%, respectively, for a 512-
bytes filter cache with a block size of 8 bytes. However, the filter cache suffers from a 4.25% and
17.4% delay increase for the FP and integer benchmarks, respectively. On the other hand, the
L-Cache has a negligible delay penalty. The filter cache has more significant energy gains since
it stores all the basic blocks of the code, even if they are not accessed very often. Therefore, it
might be preferable for the low-end, embedded market, where energy is more important than
performance.

We also presented a modification in our scheme which targets performance as well as energy.
The size of the I-Cache is reduced, and the clock period is set equal to the access time of the
smaller I-Cache. This method was shown to have important performance improvements for
programs for which the L-Cache has a high hit rate. Hence, it is particularly attractive for our
scheme.

In Chapter 7, we will analyze a modified scheme which is adapted to integer benchmarks

that do not perform well under the loop-based scheme.
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Chapter 7

MODIFIED SCHEME FOR
INTEGER BENCHMARKS

Integer benchmarks do not perform well under the loop-based selection algorithm as we have
explained in the previous section. Most of the basic blocks in the SPECint95 benchmarks are
not nested; hence, they cannot be placed in the L-Cache during execution. From a performance
point of view, however, the L-Cache is still preferable to a filter cache in a processor that runs
integer code.

The previous methodology was based on the detection of nested basic blocks in loops which
did not contain function calls. These basic blocks were candidates for compiler-driven placement
in the L-Cache. As is evident from the experimental results, the method is not succesful for
a large category of integer benchmarks, such as interpreters and compilers. Figure 7.1 gives
insight into the failure of the algorithm for some of the integer benchmarks.

Shown is the classification of the dynamic mix of instructions for the most troublesome
SPECint95 benchmarks for a 0.5-kbyte L-Cache. An instruction belongs to ome of the six
following categories: “P” if it has been selected by the algorithm to be positioned in the L-
Cache, “U” if it is in a basic block with a small execution frequency (unimportant), “NN” if it
is in a block with large execution frequency but not nested in a loop, “SD” if it is in a nested
block with large execution frequency but small execution density, “SS” if it belongs to a nested
block with large frequency and execution density but small size, and “L” if it satisfies all the
above criteria but does not fit in the L-Cache. For this experiment, the frequency threshold is
Tﬁ%ﬁd of the execution time of the program, the execution density threshold is five executions

per function invocation, and the size threshold is five instructions.
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Figure 7.1 Instruction placement results for the SPECint95 benchmarks with a 128-
instruction L-Cache.

The single most important reason that disqualifies the basic blocks of the integer benchmarks
from being cached is nesting. Most of the basic blocks do not belong to a loop, or they belong
to a loop that has a function call (85% of them). More than 10% of the basic blocks have small
execution density.

The problem seems to be inherent to the structure of integer programs, especially when they
are written in C/C++. This programming methodology favors small sections of sequential code,
procedural abstraction (many functions), and lack of very deeply nested loops. The execution
time is distributed among a larger number of basic blocks, many of which do not execute many
times per function invocation. An alternative approach for selection of blocks for the L-Cache
is therefore appropriate for these programs.

The proposed solution selects a function and places its most important basic blocks perma-
nently in the L-Cache. In other words, they are not replaced when the thread of control leaves
the function. Naturally, we select the function with the largest contribution in the execution
time, as this has been designated by the profile data. The method consists of two steps as

before.

7.1 Function Inlining

Before placement, our method performs function inlining to maximize the gains of this

approach. For example, the function with the largest execution time might contain function
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calls to other functions. If these functions are inlined, the contribution of the original function
in the total execution time will increase.

We use the annotated call graph of the program for inlining. However, we use different
profile data to guide the process, since our target is different now. As before, the call graph is
a weighted graph G = (N, E, init, F,,, F). The definitions of N, E and init are identical to the
definition given in Chapter 3. The function F, : N — [0, 1] is the contribution of a function to
the total execution time. The function F; : E — [0, 1] is the percentage of the function calls of
a function n; from n;. The term F.(e;;) is the percentage of the function calls that were made

from function n; to function n; with respect to all the function calls made to n;.

0.00%

100% 100%

100% 100%

0.00%

fill_text_buffer ) 0.43%

3232% 15.46%
99.99% 99.99% 7007/ 63.11%

10.41% /
36.09%

y 100%

readbytes 3.60%

Figure 7.2 Call graph of the 129.compress benchmark.
The inline heuristic scans each node n; of the graph and computes the quantity
Fu(ni) + Y _(Fe(eg) * Fu(ny))
5

for every child n; of n;. It selects the function with the largest such quantity. This quantity
reveals the potential of each function to contribute to the total execution time if it absorbs all

of its callees. For example, the call graph of 129.compress is given in Fig. 7.2. The function
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putbyte is responsible for 9.99% of the execution time of the program (only the function itself,
not any of its descendants). In addition, 63.11% of all the function calls to putbyte are from
decompress, whereas 36.09% are from output.

In practice, the inliner poses some restrictions on the process. For instance, if the resulting
code is larger than a threshold, the inlining cannot proceed further.

We perform four inline experiments to test the applicability of function inline in the integer
benchmarks. The first three apply brute force inlining to the callees of the most frequently exe-

cuted functions (Table 7.1). The last experiment is based on the previously described heuristic.

Table 7.1 Inline experiments for the integer benchmarks.

Experiment A | No inlining

Experiment B | Inline the callees of the most frequently executed function
Experiment C | Inline the callees of the second most frequently executed function
Experiment D | Inline the callees of the third most frequently executed function
Experiment E | Use the inline heuristic

The execution frequency of the most heavily executed functions for the five experiments is
shown in Table 7.2. Function inlining has a beneficial effect in exposing larger parts of code to
frequently executed functions. In most cases, inline has a beneficial impact on execution time
as well.

In theory, the numbers of Table 7.2 give the percentage of instructions which can be fetched
from the L-Cache. In practice, this percentage is somewhat smaller since not all important
basic blocks fit in the L-Cache, and the inliner of the MIPSpro compiler will not proceed to

inline a function if the code size exceeds a limit.

7.1.1 Block placement

After inlining, the heuristic selects the most frequently executed function. If all the impor-
tant basic blocks of the function fit in the L-Cache, the block placement algorithm will proceed
to place them all. The size of the L-Cache is therefore important, unlike in the loop-based
heuristic in which the integer benchmarks were almost insensitive to size variations.

In general, the problem can take the form of the 0-1 Knapsack problem which is NP-complete
[65]: Given a finite set U of basic blocks bb, each one with a size s(bb), a value n(bb) which is
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Table 7.2 The contribution of the most frequently executed functions in the execution time.

Benchmark Ezperiment
Exp. A | Exp. B | Exp. C | Exp. D | Exp. E
go 13.29% | 13.47% | 13.29% | 13.17% | 13.19%

m38ksim 30.39% | 30.39% | 30.39% | 30.39% | 25.49%
compress 32.32% | 40.02% | 35.20% | 34.48% | 40.02%

i1 15.49% | 15.49% | 20.40% | 15.61% | 20.40%
perl 41.13% | 41.67% | 41.67% | 42.30% | 41.67%
vortex 17.05% | 17.05% | 17.05% | 18.39% | 18.39%

the number of executed instructions in bb, and a positive L-Cache size C, find a subset U/ C U
of basic blocks such that T pper s(b0) < C and such that > -y,-p n(bd) is as large as possible.
Since a basic block can either be placed in the L-Cache or not (we cannot place part of the
block), an optimal solution requires exponential time in the number of basic blocks.

We apply a greedy approximation algorithm which works as follows: we order the set U of
basic blocks by the “key”: g% so that %%’11—;- > %((ggj—)l > -2 24(2—2’% Starting with U’ empty,
we proceed sequentially through the list, each time adding a basic block bb whenever the sum
of the sizes of the blocks already in U’ and bb does not exceed C.

In addition, we perform another greedy procedure in which the list has been sorted using
only the number of cycles n(bb) of each basic block, so that n(bb;) > n(bbg) > --- > n(bbs).

The best solution among the two is selected. A near optimal solution is obtained using this

approach in our experiment.

7.2 Experimental Evaluation of the Modified Scheme

In fhe new experiments we did not set any size or density constraints. Since the basic blocks
are placed in the L-Cache when the selected function is executed for first time and remain there
afterwards, it does not make sense to pose extra limitations in their selection. The results have
been taken after the transformations of Experiment B of Table 7.1 have been applied to the
initial code.

The memory hierarchy subsystem is described in Table 6.3. The energy gains of the L-

Cache are given in Tables 7.3 and 7.4. The results are very encouraging for benchmarks that
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have poor performance under the initial method. On average, the energy dissipated in the I-
Cache/L-Cache subsystem is 84.5% of the energy in the original I-Cache subsystem with almost
no performance overhead. Similar results are obtained for most of the integer benchmarks that

do not score well under the old scheme (e.g. 130.1i, 134.perl).

Table 7.3 Normalized energy and delay relative to the base machine for a 256-byte extra
cache, using the modified scheme for integer benchmarks.

Benchmark | Fnergy | Delay
compress95 | 0.808 | 0.979
1i 0.286 | 0.984
perl 0.823 1

Table 7.4 Normalized energy and delay relative to the base machine for a 512-byte extra
cache, using the modified scheme for integer benchmarks.

Benchmark | Energy | Delay
compress95 | 0.776 | 0.979
Ii 0.269 | 0.981
perl 0.823 1

The execution time overhead is negligible in this scheme for an L-Cache of 0.5-kbyte. This
is because the hit rate is almost 100% and the L-Cache is large enough to accommodate all the
important basic blocks of a function. The improved delay is mainly due to the function inlining

we performed before block placement.

7.3 Summary

In this chapter we focused on the integer benchmarks, and we gave an alternative approach
for selecting basic blocks for the L-Cache in these programs. This method is based on profile
data, and it selects the most frequently executed basic blocks of a function even if they do not
belong to a loop. The selected basic blocks are placed once in the L-Cache, and they are not
replaced thereafter. Function inlining is used to expose as many basic blocks as possible in the
function that provides the basic blocks.

Experimental results show that this method offers negligible performance overhead on the

SPECint95 benchmarks, and significant energy reduction in the memory hierarchy subsystem.
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In the next chapter we will detail a different method to select basic blocks for the extra cache,

which is based on run-time statistics, as opposed to profiling.
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Chapter 8

DYNAMIC TECHNIQUES FOR
BASIC BLOCK SELECTION

In the previous chapters we proposed and analyzed methods for selecting portions of the
executing code for placement in the L-Cache. Those methods were static, i.e., they required
the involvement of the compiler and previous runs of the code to select the basic blocks for the
L-Cache. The compiler restructures the code and remaps some of the basic blocks in the global
memory address space to facilitate the placement of those blocks in the L-Cache. The resulting
extra hardware was shown to be simple and straightforward since most of the work was carried
out statically by the compiler.

However, profiling might not always be an effective or even possible solution. This is because
the user might not be willing to perform this preliminary step, or because the execution time of
the program is prohibitively long to be carried out twice. Moreover, the previous methodology
assumes the involvement of the compiler, and the cooperation of the compiler with the hardware,
which might not always be possible. If a microprocessor company or a design house has no
jurisdiction over the compiler technology, the hardware/software codesign idea might not be
applicable.

In this chapter we propose various alternative schemes for the selection of basic blocks for
placing them in the L-Cache. The schemes are based on the dynamic selection of basic blocks
during run-time. Our approach seeks to manage the L-Cache in a manner that is sensitive to
the frequency of accesses of the instructions executed. It can better exploit the temporalities

of the code and can make decisions on-the-fly, i.e., while the code executes. It adapts itself
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to the variability in the behavior of the program during execution without using any compiler
support.

The problem that the dynamic techniques seek to solve is how to select basic blocks to be
stored in the L-Cache while the program is being executed. If a block is selected, the CPU will
access the L-Cache first; otherwise, it will go directly to the I-Cache. In case of an L-Cache miss,
the CPU is directed to the I-Cache to get the instruction and, at the same time, to transfer the
instruction from the I-Cache to the L-Cache. The L-Cache is loaded with instructions from the

I-Cache after a miss.

8.1 Related Work

There has been an extensive research effort lately on techniques to improve the memory
hierarchy performance through dynamic techniques. This effort has almost always targeted
delay rather than energy reduction. Memory latency remains the single most important problem
in the design of high-performance processors, and researchers in industry and academia have
devoted considerable effort to reduce it.

A great deal of work is focusing on developing ways to improve the management of the
caches, and to store there only the most frequently executed references. In [66] the authors
propose methods with which memory references can bypass the Level-1 (L1) caches and be
fetched from the Level-2 (L2) caches straight to the CPU. In other words, if the L1 cache
misses, and the L2 cache has to provide tha data, those references will not be transfered in the
L1 cache. This aims at reducing the cache pollution in the L1 cache, i.e., at avoiding placing in
the L1 caches data with small spatial or temporal locality that will replace useful data.

The authors in [66] examine the behavior of the load and store instructions. If a load or
store instruction causes a large number of misses, its memory references bypass the L1 data
cache altogether. This method needs profiling to characterize which load or store instructions
cause a large number of misses. In the same paper, a dynamic method is proposed that can be
used instead of profiling.

Along the same line, the authors in [67] and [68] present techniques for dynamic analysis
of program data access behavior, which are then used to proactively guide the placement of

data within the memory hierarchy. Data that are expected to have little reuse in the cache

70



are bypassed and are not placed in the L1 D-Cache. To implement this scheme, the authors
use extra hardware, the Memory Address Table (MAT), which is a table of counters. They
partition the main memory into blocks so that the number of blocks is equal to the number
of counters in the MAT. Each time a location within a block is accessed in the main memory,
the counter that corresponds to that block is incremented by one. That way, the MAT keeps
statistics about the frequency of access of the blocks in the main memory. If a reference is from
a block that has not been accessed very often in the past, the CPU bypasses this reference and
does not store it in the L1 D-Cache.

In a similar work [68], the authors propose a scheme that dynamically adjusts the amount
of data fetched on a cache miss from the L2 to the L1 D-Cache. They introduce the spatial
locality detection table (SLDT), which is used together with the MAT to detect spatial locality
of data in the cache, and to fetch a larger number of words from the 1.2 cache to the L1 cache
when the spatial locality is large.

In a more recent work, the authors propose a cache-conscious data placement in the global
address space to reduce the misses in the D-Cache [69]. In [70}, the authors target the problem
of variable spills, i.e., the explicit transfer of variables from registers to memory and back
again by the program. This is done when there are not enough registers to accomodate all the
variables in the program in a given time. They propose the addition of a compiler-controlled
memory which is under the exclusive control of the compiler and is used to serve the memory
traffic due to the spill of variables.

All these techniques attempt to guide the memory hierarchy as to which references should
be cached and which should be bypassed. Clearly, frequently accessed references with large
spatial and temporal locality should be allowed to stay longer in the L1 caches without being
replaced by references with low reuse. This selection is done dynamically by investing extra
hardware to keep statistics for the access pattern.

These techniques can also be used in our scheme to manage the caching of instructions in
the L-Cache. They can detect the most frequently executed portions of the code dynamically,
and direct the L-Cache to store only those portions. However, they require the addition of
extra hardware in the form of extra tables or counters to keep statistics during execution. The
extra hardware dissipates energy, and can offset the possible energy gains from the usage of the

L-Cache. To make the dynamic techniques attractive for low energy, we need to use hardware
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that already exists in the CPU. The hardware we will use in this work is the branch prediction
mechanism.

In Section 8.2, we give a thorough review of branch prediction and the mechanisms and
technniques that have been proposed to improve it. In Section 8.3 we refer to the relatively
new concept of confidence estimation and explain how it can be used to quantify the results of
branch prediction. In Section 8.4, we detail our solution to dynamic selection of basic blocks to
be cached in the L-Cache, and give several techniques that trade off delay and energy reduction.
These techniques use the foundations developed in Sections 8.2 and 8.3. The experimental

results for each te&hnique are given in Section 8.4.

8.2 Branch Prediction

As the processor speed increases and instruction-level parallelism becomes widely used, con-
ditional branches pose an increasingly heavy burden for the growth of uniprocessor performance.
To fully exploit the potential of the very powerful CPU cores, programs need to have as few
branches as possible. Various compiler techniques, such as loop unrolling, can help towards
that direction, yet they cannot fully solve the problem in integer programs, which have few
loops and small basic blocks.

Branch prediction is the most popular method to increase parallelism in the CPU, by pre-
dicting the outcome of a conditional branch instruction as soon as it is decoded. Provided
that the branch prediction rate is high, the pipeline executes from the correct path and avoids
unnecessary work most of the time. In such a case, the pipeline only executes from a straight
line code and can issue more than one instruction per clock cycle.

The branch prediction problem can actually be divided into two subproblems. The pre-
diction of the direction of the branch and the prediction of the target address if the branch
is predicted to be taken. Both subproblems should be solved for the branch prediction to be
meaningful. The most common method to solve the target prediction subproblem is to use a
Branch Target Buffer, which is a special cache used to store the target addresses of branches.

We are only interested in the prediction of the branch direction in this work.
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8.2.1 - Previous work on branch prediction

There has been an extensive amount of research on hardware-based branch predictors in
the last few years [71]. Successful branch prediction mechanisms take advantage of the non-
random nature of branch behavior. Most branches are either taken or not-taken. Moreover,
the behavior of a branch usually depends on the behavior of the surrounding branches in the
program.

Counts

Branch
prediction

OO

Branch
address

PC

Figure 8.1 Bimodal branch predictor. Each entry in the table is a 2-bit saturated counter.

Bimodal branch predictor. The bimodal branch predictor in Fig. 8.1 takes advantage
of the bimodal behavior of most branches. Each entry in the table shown in Fig. 8.1 is a 2-bit
saturated counter which determines the prediction. Each time a branch is taken, the counter
is incremented by one, and each time it falls through it is decremented by one (Fig. 8.2).
The prediction is done by looking into the value of the counter: if it less than 2, the branch
is predicted as not taken; otherwise, it is predicted as taken. By using a 2-bit counter, the
predictor can tolerate a branch going into an unusual direction once. More generally, an n-bit
saturated counter could be used, but experiments have shown that a 2-bit counter is almost as
good.

The table is accessed through the address of the branch using the PC. Ideally, each branch
has its own entry in the table, but for smaller tables multiple branches may share the same
entry. The table is accessed twice for each branch: first to read the prediction, and then to

modify it when the actual branch direction has been resolved.
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Local branch predictor.
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Figure 8.2 FSM for the 2-bit saturated counters.
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Figure 8.3 Local branch predictor.

execute repetitive patterns [72]. If 1 represents taken and 0 not taken, a 4-bit-long pattern of
the form (1110)™ means that the branch is taken three times and not taken once. The method
described in [72] is called local method, and is based on using two tables to keep the necessary
information for a correct prediction (Fig. 8.3). The first table records the patterns for each
branch in the program. Again, aliases may occur for small history tables. The second table
is the array of the 2-bit counters as in the bimodal method, and it is accessed by the branch

history patterns stored in the first table. If each entry in the first table is n-bits long, the size

of the second table will be 2™ entries.
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Figure 8.4 Global branch predictor.

This way, the predictor has more information about the recent behavior of a branch and can
distinguish between more refined cases than in the bimodal method. For large predictors, the
accuracy of the prediction is about 97%. This method, however, requires a larger investment
in hardware, and might adversely affect the clock cycle.

Global branch predictor. In the previous methods, only the past behavior of the
current branch was considered. Another scheme was proposed in [73] which also considers the
behavior of other branches to predict the behavior of the current branch. This is called global
prediction, and the hardware implementation is similar to the implementation of the bimodal
method (Fig. 8.4). The difference is that the table with the counters is accessed with the Global
Branch History (GBH) register, which contains the outcome of the n more recent branches. A
single shift register, which records the direction taken by the n most recent branches, can be
used.

The global method can be improved if the predictor combines the GBH register with the
branch address [74] [75]. This means that each branch will have its own set of predictions,
and the scheme will be able to distinguish between the behavior of different branches. An
implementation of this method is shown in Fig. 8.5, where the GBH and the PC are combined
by XORing them. This method has a branch prediction rate close to the 97% for large prediction
tables.

McFarling branch predictor. Finally, McFarling [75] combines two predictors to

achieve better results. In Fig. 8.6, a McFarling predictor is shown which consists of three
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Figure 8.5 Global branch predictor with index sharing.

tables. The tables PR1 and PR2 contain the counters for the two independent predictors, and
the selector counter determines which predictor will be used to give the prediction. The two
predictors can be any of the predictors we discussed in the previous paragraphs. McFarling
found out that the combination of a local and a global predictor with index sharing gives the

best results.

Selector
Counter Couritsl Counts2
PR1 PR2
Branch
address
PC

Figure 8.6 McFarling branch predictor.

Fach entry in the selector counter contains a 2-bit saturated counter. This counter deter-
mines which predictor will be used for the prediction and is updated after the direction of the
branch has been resolved. The counter is biased towards the predictor that gave the correct

prediction. The accuracy of the McFarling predictor approaches 98% for large arrays.
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8.3 Confidence Estimation

In many cases computer architects want to assess the quality of a branch prediction and
determine how confident the machine is that the prediction will be correct. The relatively new
concept of confidence estimation has been introduced recently to quantify this confidence and
keep track of the quality of branch predictors [76].

The confidence estimators are hardware mechanisms that are accessed in parallel with the
branch predictors when a branch is decoded, and they are modified when the branch direction
is resolved. They. characterize a branch prediction as “high confidence” or “low confidence”
depending upon the history of the branch predictor for the particular branch. For example, if
the branch predictor predicted a branch correctly most of the time, the confidence estimator
would designate this prediction as “high confidence,” otherwise as “low confidence.” We should
note that the confidence estimation mechanism is orthogonal to the branch predictor used. In
other words, we can use any combination of confidence estimators and branch predictors.

There are a number of applications in which the confidence estimation mechanisms can be
used [77]. In a multithreading CPU, the machine would be more willing to switch threads if
there is uncertainty for the outcome of a branch. If there is a large probability that the branch
is mispredicted, the machine can switch to another thread to hide the misprediction latency. A
“low confidence” branch can trigger this thread switch.

In [78], the authors show how the confidence estimators can be used to reduce the energy
dissipation in the pipeline of speculative, high-performance processors. In such a processor the
machine predicts the outcome of a branch and executes from the predicted path speculatively.
It only commits the results if the path is the correct one, i.e., after the branch has been resolved.
The machine executes 20-100% more instructions than it commits due to speculative execution.
Extrapolating current trends, speculation seems to become more important in the future [79].

In modern processors, the machine might need to predict many branches before any of
them is resolved, and all of them need to be predicted correctly for the speculative execution
to be beneficial. A series of “low confidence” branches in the pipeline indicate that there is a
large probability that the machine fetches and executes instructions from the wrong path. For

example, if a “low confidence” branch has a misprediction rate of p = 30%, the probability that
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the machine executes from a wrong path after three such branches have been encountered is

1~ (1-p)® = 0.657.
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Figure 8.7 Pipeline gating schematic. The fetch and decode stages take two cycles.

The authors in [78] propose a pipeline gating scheme in which the machine disables instruc-
tion fetching from the I-Cache, when there are more than M “low confidence” branches in the
pipeline (Fig. 8.7). They use the pipeline model of a superscalar, speculative machine, in which
more than one instruction can be issued and executed in a clock cycle. The machine uses a
branch predictor which attempts to predict the direction of a branch as soon as the branch is
decoded in the front-end of the pipeline. The fetch unit will then start accessing instructions
from the predicted target address. Since this execution is speculative, the pipeline needs a
final stage which is used to commit the results of the speculative execution only if the branch
prediction was correct. Otherwise, the pipeline is flushed, and the execution starts again from
the mispredicted branch.

In their approach, when the confidence estimator detects such a branch, it increments the
low confidence counter. This counter is decremented when a “low confidence” branch is resolved
in the writeback stage of the pipeline. Using this modification, the machine can stop execution
in the pipeline when there is a large probability of wrong path execution, until the troublesome
branches are resolved. The scheme was shown to have a minimal effect in execution time and
a large reduction in the number of instructions executed and, hence, the energy dissipated.

In [77], the authors introduce some useful metrics to compare various confidence estimators.
Those metrics combine the confidence of a branch (“low” or “high”) with the correctness of a

prediction (“correct” or “incorrect”). For example, the sensitivity is defined as the fraction of
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correct predictions identified as “high confidence.” The predictive value of positive test (PVP)
is defined as the fraction of “high confidence” predictions that are correct. Each of these metrics

is simple to compute, and each is a “higher is better.”

8.3.1 Past work in confidence estimation

Various confidence estimation techniques have been proposed in [76] and [77]. Unlike the
branch predictors, whose performance can be easily measured using the prediction rate, the
confidence estimators are not easy to characterize. Different confidence estimators can be
useful for different applications.

JSR confidence estimator. A one-level and a two-level resetting counter estimator
was proposed in [76]. The one-level estimator has the same organization as the global branch
predictor with index sharing, and the two-level estimator has the same organization with the
local branch predictor. The one-level estimator has a table in which each entry is an n-bit
saturating counter (Fig. 8.8).

Resetting Counters Table

n-bit entries ——

Program Counter
\ XOR high/low confidence

reduction signal
function

m

27m entries
=

Global Branch History

Figure 8.8 One-level JSR confidence estimator.

The table is accessed in the same manner as the global branch predictor with index sharing.
It has an n-bit saturating and resetting counter which is used to record the history of predictions
for each branch as follows: Each time the branch predictor makes a correct prediction, the
counter is incremented by one, whereas each time it mispredicts it is reset to zero. When a
branch is predicted, the estimator is accessed, and the value of the counter is compared to a

specific threshold. If the value is above that threshold, the branch is considered to have “high
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confidence”; if it is below it is considered to have ‘low confidence.” Therefore, branches that are
executed after a mispredicted branch are tagged as “low confidence,” since they are probable
to be mispredicted.

Saturating counters confidence estimator. Another method proposed was the sat-
urating counters estimator. In this method the saturating counters of the branch predictors
are used to determine the confidence of a prediction. This method does not need any extra

hardware for the implementation of the estimator, but it is less accurate than the JSR method.

8.4 Using Branch Prediction and Confidence Estimation in

the L-Cache Scheme

The dynamic scheme for the L-Cache should be able to select the most frequently executed
basic blocks for placement in the L-Cache without any compiler support. It should also rely
on existing mechanisms without much extra hardware investment if it is to be attractive for
energy reduction.

The branch prediction in conjunction with the confidence estimator mechanism is a reliable
solution to this problem. During program execution, the branch predictor accumulates the
history of branches and uses this history to guess the branch behavior in the future. Since the
branch predictor is usually successful in predicting the branch direction, we can assume that
predictors describe accurately the behavior of the branch during a specific phase of the program.
Confidence estimators provide additional information about the steady-state behavior of the
branch.

For example, a “high confidence” branch that was predicted “taken” will be expected to
be taken during program execution in that particular phase of the program. If it is not taken
(i-e., in case of a misprediction), it will be assumed to behave unusually. Of course, what is
“usual” or “unusual” behavior in the course of a program for a particular branch can change.
Some branches can change behavior from mostly taken to mostly untaken during execution.
Moreover, many branches, especially in integer benchmarks, can be in a gray area, and not
have a stable behavior with respect to direction, or can follow a complex pattern of behavior.

If a branch behaves “unusually,” it will probably drive the thread of control to a portion of

the code that is not very frequently executed. The loop shown in Fig. 8.9 executes the basic

80



— @)~ ®~—(D—

Figure 8.9 An “unusual” branch direction leads to a rarely executed portion of the code.

blocks By, By, and B3 most of the time, and it seldom executes By, Bs, and Bg. The branch at
the end of B; will be predicted “not-taken” with “high confidence.” If it is taken, it will drive
the program to the rarely executed branch, i.e., it will behave unusually. A similar situation
exists for B3 and Br.

These observations lay the foundation for the dynamic selection of basic blocks in the L-
Cache scheme. In our approach, we attempt to capture the most frequently executed basic
blocks by looking into the behavior of the branches. The basic idea is that, if a branch behaves
“unusually,” our scheme disables the L-Cache access for the subsequent basic blocks.

Not all branches can be characterized as “high confidence.” In Fig. 8.10, the dynamic
branches are classified according to how many times they are “taken.” For example, the height
of the column 30-39% gives the percentage of the dynamic branches that are “taken” from 30
to 39% percent of the time. For the 130./¢ benchmark, almost 11% of all the dynamic branches
were “taken” between 30% and 39% of the times.

This experiment shows that different benchmarks demonstrate different branch behavior.
For most integer, and many FP benchmarks there are many branches that cannot be classified
as “mostly taken” or as “mostly not taken.” These benchmarks can be “mostly taken” or
“mostly not taken” in different stages of the execution, or they may follow a more random

pattern.
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Figure 8.10 Branch direction percentages for four SPEC95 benchmarks.

Branch predictors have a much easier task in programs like 101.tomcatv in which the be-
havior of branches is predictable, than in 099.go where it is more erratic. For a lot of integer
programs, branches do not demonstrate a bimodal behavior. In Fig. 8.11, the branch mis-
prediction rates for most of the SPEC95 benchmarks are shown. We use a McFarling branch
predictor in which each one of the three tables used has 2048 entries. The bimodal and the
global branch predictor with index sharing are used.

Programs whose branches are evenly distributed in all the columns of Fig. 8.10 suffer from

a large misprediction rate even with the McFarling predictor. On the other hand, programs
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whose dynamic branches are concentrated near the edges do not have such problems. In general,

branch predictors are quite successful with numerical or computation-intensive code.

30 T T T T T T T T T T T

% Misprediction Rate

tomcaty su2cor applu go compress95 per
swim hydro2d foppp m88ksim I

Figure 8.11 Misprediction rate for the SPEC95 benchmarks.

In the following subsections we propose various dynamic methods for the selection of basic
blocks that span the range of accuracy and complexity. We make the realistic assumption
that the processor is already equiped with a branch prediction mechanism. We are assuming a
McFarling predictor for all experiments.

Tables 8.1 and 8.2 show the normalized energy dissipation and delay of the filter cache
configuration with respect to the original scheme. We only present results for a block size of
8 and 16 bytes, since a larger block size requires a larger bus to link the L-Cache with the

I-Cache. The memory hierarchy subsystem is the same one shown in Table 6.3.

8.4.0.1 Simple method without using confidence estimators

The branch predictor can be used as a stand-alone mechanism to provide intuition about
which portions of the code are frequently executed and which are not. A mispredicted branch
is assumed to drive the thread of execution to an infrequently executed part of the program,

assuming that the branch predictor is correct most of the time.
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Table 8.1 Normalized energy for the filter cache.

Benchmark 256 B 512 B
8B |16B| 8B | 16 B
tomcatv 0.182 | 0.174 | 0.097 | 0.117

swim 0.123 { 0.138 | 0.099 | 0.118
su2cor 0.198 | 0.176 | 0.127 | 0.135
hydro2d 0.122 | 0.134 | 0.088 | 0.112
applu 0.298 | 0.220 | 0.257 | 0.196
fpppp 0.566 | 0.352 | 0.557 | 0.348
go 0.478 | 0.332 | 0.426 | 0.302

m88ksim 0.424 | 0.300 | 0.370 | 0.273
compress95 | 0.385 | 0.288 | 0.268 | 0.219
il 0.409 | 0.315 | 0.359 | 0.272
perl 0.481 | 0.355 | 0.415 | 0.310

Table 8.2 Normalized delay for the filter cache.

Benchmark 256 B 512 B
8B 16B | 8B 16 B
tomcatv 1.049 1 1.031 | 1.010 | 1.006

swim 1.028 | 1.017 | 1.015 i 1.008
su2cor 1.062 | 1.036 | 1.026 | 1.016
hydro2d 1.021 | 1.013 | 1.007 | 1.004
applu 1.111 | 1.057 | 1.090 | 1.045
fpppp 1.240 | 1.121 | 1.235 | 1.118
go 1.224 1 1.126 | 1.194 | 1.109

m88ksim 1.190 | 1.106 | 1.160 | 1.091
compress95 | 1.210 | 1.124 | 1.131 | 1.077
i 1.202 | 1.126 | 1.171 | 1.100
perl 1.242 | 1.149 | 1.202 | 1.117

Our strategy is as follows: If a branch is mispredicted, the machine will access the I-Cache
to fetch instructions. If a branch is predicted correctly, the machine will access the L-Cache. In
a misprediction, the pipeline will flush, and the machine will start fetching instruction from the
correct address by accessing the I-Cache. In a correct prediction, the machine will start fetching
instructions from the L-Cache as soon as the branch is resolved. This might well be several
instructions after the branch in a high-performance, superpipelined processor has executed.

Figure 8.12 shows the microarchitecture for the simple method. We assume a more advanced
pipeline as in Fig. 8.7 for illustration purposes. The results, however, are reported for the R-4400

pipeline that implements the MIPS2 ISA.
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Figure 8.12 Microarchitectural modifications for the simple method.

We implemented this method using MINT [64]. The memory hierarhcy is similar to the one
in the compiler-driven experiments: both the I-Cache and the D-Cache are direct-mapped, 32-
kbyte large, with a block size of 32 bytes. The L-Cache is 256 or 512 bytes, direct-mapped with a
block size that varies between 8 and 16 bytes. We compare the energy and delay characteristics
of the dynamic scheme with the filter cache, as we did for the compiler method. The filter cache
is direct-mapped, its size varies between 256 and 512 bytes, and its block size varies between 8
and 16 bytes.

As before, we denote the energy dissipation and the execution time of the original configu-
ration that uses no extra caches as unity, and normalize everything else with respect to that.
Our model accounts for all possible stalls in the R-4400 CPU which is used as the base machine.

In addition, we account for a branch misprediction stall, which is equal to two clock cycles.

Table 8.3 Energy results for the simple method.

Benchmark 256 B 512 B
8B 16B| 8B | 16 B
tomcatv 0.185 | 0.177 | 0.100 ! 0.121

swim 0.123 | 0.134 | 0.099 | 0.118
su2cor 0.238 | 0.208 | 0.161 | 0.172
hydro2d 0.125 | 0.137 { 0.091 | 0.115
apphu 0.329 | 0.253 | 0.292 | 0.232
fpprp 0.574 | 0.365 | 0.566 | 0.361
go 0.609 | 0.509 | 0.572 | 0.488

m88ksim 0.435 | 0.315 | 0.382 | 0.288
compress95 | 0.437 | 0.349 | 0.338 | 0.290
i 0.453 | 0.363 | 0.403 | 0.322
perl 0.513 | 0.396 | 0.451 | 0.355
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Table 8.4 Delay results for the simple method.

Benchmark 256 B 512 B
SB | 16B| 8B | 168
tomcatv 1.050 | 1.032 | 1.011 | 1.006

swim 1.028 | 1.017 | 1.015 | 1.008
su2cor 1.056 | 1.030 | 1.021 | 1.012
hydro2d 1.020 | 1.013 | 1.006 | 1.004
applu 1.108 | 1.056 | 1.089 | 1.045
fpppp 1.235 | 1.118 | 1.230 | 1.116
go 1.159 | 1.091 | 1.138 | 1.079

m88ksim 1.184 | 1.103 | 1.155 | 1.085
compress95 | 1.193 | 1.115 | 1.126 | 1.074
Ii 1.189 | 1.118 | 1.159 | 1.093
perl 1.225 | 1.138 | 1.188 | 1.114

Tables 8.3 and 8.4 show the normalized energy and delay results for the SPEC95 bench-
marks. Our method performs better with respect to performance compared to the filter cache,
but it is not as good for energy gains. The two methods have similar delay and energy charac-
teristics for FP benchmarks, but they differ for integer benchmarks. This is because the branch
predictor has a smaller prediction rate for integer benchmarks; thus, it selects fewer basic blocks
for placement in the L-Cache. This is shown in Table 8.5, which shows the percentage of dy-
namic instructions that cause the L-Cache to be accessed. For FP benchmarks, the percentage

is near 100%.

Table 8.5 Dynamic instructions that cause the L-Cache to be accessed in the simple method.

Benchmark | % dyn. instructions
tomcatv 99.47%
swim 99.95%
su2cor 95.01%
hydro2d 99.58%
applu 95.94%
fpppp 98.00%
go 73.09%
m88ksim 97.56%
compress95 91.69%
i} 93.11%
perl 93.57%
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8.4.0.2 Static method

The next technique we used to select basic blocks for the L-Cache is not dynamic. We used
profiling again, and simulated the branch predictor. We captured the behavior of the branches
of the program and we classified them as “high confidence” if they were predicted correctly
most of the time, and “low confidence” if not. A threshold was used to determine confidence,
so that the branches that were predicted correctly at least 90% of the time were tagged as “high

confidence,”

whereas all other branches were tagged as “low confidence.”

After profiling, we ran the benchmarks again and we selected the basic blocks as follows: If
a “high confidence” branch was predicted incorrectly, the I-Cache is accessed for the subsequent
basic blocks. Moreover, if more than two “low confidence” branches have been decoded, the
I-Cache is accessed. In any other case, the machine accesses the L-Cache.

The first rule for accessing the I-Cache is due to the fact that a mispredicted “high confi-
dence” branch behaves “unusually” and driv;es the program to an infrequently executed portion
of the code. The second rule is due to the fact that a series of “low confidence” branches will
also suffer from the same problem since the probability that they are all predicted correctly is
low.

There are two controlling parameters in the static method; the threshold used to classify a
branch as “high” or “low confidence” and the number of successive “low confidence” branches
which need to be executed before the machine turns to the I-Cache. A larger threshold of
successive “low confidence” branches results in more basic blocks accessed from the L-Cache.

Tables 8.6 and 8.7 show the normalized energy and delay results for the SPEC95 bench-
marks. The same experiments and the same experimental framework was used here. The
results we present are from self-profiled executions where the same input was used to profile
and evé,luate our approach. We include this approach to indicate its potential.

The problem with the static method is that it does not exploit the temporalities of the
branches, but it only assigns a confidence to them statically. It has similar performance to the
simple method, except for the 099.go benchmark for which it has much lower delay and much
higher energy dissipation. This is because this particular benchmark has a large number of
“low confidence” branches. Table 8.8 presents the percentage of dynamic instructions which

cause the CPU to access the L-Cache.
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Table 8.6 Energy results for the static method.

Benchmark 256 B 512 B
SB |16B| 8B | 16B
tomecatv 0.185 | 0.163 | 0.100 | 0.120

swim 0.123 | 0.134 | 0.099 | 0.118
su2cor 0.201 | 0.194 | 0.130 | 0.154
hydro2d 0.124 | 0.137 | 0.091 | 0.114
applu 0.309 | 0.231 | 0.269 | 0.208
fpppp 0.572 | 0.361 | 0.562 | 0.355
go 0.757 | 0.702 | 0.736 | 0.690

m88ksim 0.431 | 0.309 | 0.378 | 0.283
compress95 | 0.410 | 0.315 | 0.294 | 0.246
i 0.431 | 0.337 | 0.382 | 0.296
perl 0.520 | 0.393 | 0.531 | 0.450

Table 8.7 Delay results for the static method.

Benchmark 256 B 512 B
8B 16B | 8B | 16 B
tomcatv 1.049 | 1.025 | 1.011 | 1.006

swim 1.029 | 1.017 | 1.015 | 1.008
su2cor 1.061 | 1.033 | 1.027 | 1.013
hydro2d 1.021 | 1.013 | 1.007 | 1.004
applu 1.109 | 1.057 | 1.089 | 1.045
fpppp 1.239 | 1.121 | 1.234 | 1.118
go 1.090 | 1.052 | 1.078 | 1.045

m88ksim 1.187 | 1.104 | 1.158 | 1.089
compress95 | 1.205 | 1.121 | 1.126 | 1.074
Ii 1.198 | 1.124 | 1.169 | 1.099
perl 1.226 | 1.138 | 1.158 | 1.095

8.4.0.3 Using a confidence estimator

As we showed in Fig. 8.11, branch predictors are not always able to give a correct predic-
tion. Therefore, we need a confidence estimation mechanism which, coupled with the branch
predictor, gives a better intuition about the behavior of the branch.

We are using a similar methodology as in the static method, but no profiling information
is used. Instead, the confidence of each branch is determined dynamically using the saturating
counters approach. In that approach, we use the prediction of each one of the component
predictors (the bimodal and the global) to determine the confidence. If both predictors are

strongly biased in the same direction (both “strongly taken” or both “strongly not-taken”),
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Table 8.8 Dynamic instructions that cause the L-Cache to be accessed in the static method.

Benchmark | % dyn. instructions
tomcatv 99.55%
swim 99.95%
su2cor 97.45%
hydro2d 99.69%
applu 98.57%
fpppp 99.02%
go 43.52%
m88ksim 98.59%
compress95 96.42%
Ii 97.08%
perl 79.49%

we signal a “high confidence” branch. In any other case, we signal a “low confidence” branch.
This methodology uses a minimal amount of extra hardware and has been shown to be reliable

in [77].
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Figure 8.13 Microarchitectural modifications for the confidence estimation method.

The management of the cache subsystem is identical to the static method. We access
the I-Cache if a “high confidence” branch is mispredicted, or more than two successive “low
confidence” branches are encountered. The schematic of the modified pipeline is shown in
Fig. 8.13.

Tables 8.9 and 8.10 show the normalized energy and delay results for the SPEC95 bench-
marks. Table 8.11 presents the percentage of dynamic instructions which cause the CPU to

access the L-Cache.
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This method is slightly better in terms of energy gains than the simple or the static method.
The delay is lower than the previous two methods in some benchmarks and higher in some
others. Likewise, the confidence estimator method is slightly worse than the filter cache in

energy dissipation and slightly better in performance degradation.

Table 8.9 Energy results for the method that uses the confidence estimator.

Benchmark 256 B 512 B
8B 16B| 8B | 16 B
tomcatv 0.181 | 0.174 { 0.096 | 0.119

swim 0.123 | 0.134 | 0.099 | 0.118
su2cor 0.208 | 0.188 | 0.139 | 0.149
hydro2d 0.125 | 0.137 | 0.090 | 0.114
applu 0.369 | 0.293 { 0.338 | 0.276
fpppp 0.572 | 0.361 | 0.564 | 0.357
go 0.642 | 0.548 | 0.609 | 0.529

m88ksim 0.432 | 0.311 | 0.379 | 0.284
compress95 | 0.416 | 0.329 | 0.308 | 0.264
i 0.435 | 0.344 | 0.386 | 0.303
perl 0.503 | 0.382 | 0.440 | 0.340

Table 8.10 Delay results for the method that uses the confidence estimator.

Benchmark 256 B 512 B
3B 16B| 8B | 16 B
tomcatv 1.046 | 1.029 | 1.008 | 1.006

swim 1.029 | 1.017 | 1.015 | 1.008
su2cor 1.059 | 1.034 | 1.025 | 1.014
hydro2d 1.019 | 1.013 | 1.006 | 1.004
applu 1.104 | 1.053 | 1.089 | 1.045
foppp 1.237 | 1.120 | 1.232 | 1.117
go 1.149 | 1.085 | 1.130 | 1.074

m88ksim 1.185 | 1.104 | 1.156 | 1.089
compress95 | 1.192 | 1.114 | 1.119 | 1.071
li 1.194 | 1.122 | 1.164 | 1.097
perl 1.232 | 1.142 | 1.194 | 1.117

8.4.0.4 Another method using a confidence estimator

The method described in the previous section tends to place a large number of basic blocks

in the L-Cache, thus degrading performance. In modern processors, one would prefer a more
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Table 8.11 Dynamic instructions that cause the L-Cache to be accessed in the confidence
estimation method.

Benchmark | % dyn. instructions
tomcatv 99.77%
swim 99.95%
su2cor 98.26%
hydro2d 99.77%
applu 91.00%
fpppp 98.91%
go 67.50%
m88ksim 98.26%
compress95 93.78%
)il 95.91%
perl 95.78%

Table 8.12 Energy results for the modified method that uses the confidence estimator.

Benchmark 256 B 512 B
8B |16B | 8B | 16 B
tomecatv 0.202 | 0.183 | 0.119 | 0.141

swim 0.129 | 0.140 | 0.105 | 0.124
su2cor 0.256 | 0.248 | 0.205 | 0.219
hydro2d 0.138 | 0.151 | 0.105 | 0.130
applu 0.558 | 0.498 | 0.532 | 0.483
fpppp 0.602 | 0.405 { 0.595 | 0.401
go 0.800 | 0.758 | 0.783 | 0.748

m88ksim 0.473 ; 0.361 | 0.419 | 0.334
compress95 | 0.563 | 0.498 | 0.486 | 0.452
i 0.601 | 0.529 | 0.560 | 0.498
perl 0.602 | 0.508 | 0.552 | 0.447

selective scheme in which only the really important basic blocks would be selected for the
L-Cache.

We are using the same set up as before, but the selection mechanism is slightly modified as
follows: the L-Cache is accessed only if a “high confidence” branch is predicted correctly. The
I-Cache is accessed in any other case. We disregard “low confidence” branches altogether.

This method selects some of the very frequently executed basic blocks, yet it misses some
others. Usually the most frequently executed basic blocks come after “high confidence” branches

that are predicted correctly. This is especially true in FP benchmarks.
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Table 8.13 Delay results for the modified method that uses the confidence estimator.

Benchmark 256 B 512 B
8B | 16B| 8B | 16B
tomcatv 1.046 | 1.024 | 1.009 | 1.005

swim 1.028 | 1.017 | 1.015 | 1.008
suZcor 1.041 | 1.023 | 1.015 | 1.008
hydro2d 1.019 | 1.012 | 1.005 | 1.003
applu 1.082 | 1.043 | 1.069 | 1.035
fpppp 1.222 | 1.113 | 1.218 { 1.110
go 1.073 | 1.044 | 1.063 | 1.038

m88ksim 1.171 { 1.096 | 1.142 | 1.081
compress95 | 1.146 | 1.087 | 1.093 | 1.056
i} 1.149 | 1.092 | 1.123 | 1.073
perl 1.190 | 1.119 | 1.159 | 1.098

Table 8.14 Dynamic instructions that cause the L-Cache to be accessed in the modified
confidence estimation method.

Benchmark | % dyn. instructions
tomcatv 97.03%
swim 99.30%
su2cor 89.11%
hydro2d 97.84%
applu 65.70%
fpppp 92.06%
go 35.60%
m88ksim 90.98%
compress95 70.07%
il 69.75%
perl 77.37%

Again, Tables 8.12 and 8.13 present the normalized energy and delay results. As before,
the delay results consider all the possible stalls in the R-4400 processor. Table 8.14 shows the
percentage of the dynamic instructions which causes the CPU to access the L-Cache.

As expected, this scheme is more selective in storing instructions in the L-Cache, and it has
a much lower performance degradation, at the expense of lower energy gains. It is probably

preferable in a system where performance is more important than energy.
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8.4.0.5 Using a distance estimator

Another confidence estimator which was proposed in [77] exploits the clustering of mispre-
dicted branches. As was shown experimentally in that paper, a mispredicted branch triggers a
series of succesive mispredicted branches. The degree of clustering depends on the particular
program, and the predictor used. This correlation fades as more branches are executed, and is
stronger immediately after the mispredicted branch. The observation that branches that follow

a mispredicted branch are more probable to be mispredicted can be exploited in our scheme.
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Figure 8.14 Microarchitectural modifications for the distance estimator method.

We use a counter to measure the distance of a branch from the previous, mispredicted
branch. This is similar to the miss distance counter (MDC) proposed in [77]. The method
works as follows: all N branches after a mispredicted branch are tagged as “low confidence,”
otherwise as “high confidence.” The basic blocks after a “low confidence” branch are fetched
from the I-Cache, whereas the basic blocks after a “high confidence” branch are fetched from
the L-Cache. The net effect is that a branch misprediction causes a series of fetches from the
I-Cache.

The parameter N was set equal to four in our experiments. It can be used to bias the
mechanism towards more energy gains (smaller N) or more performance (larger N). Fig. 8.14
shows the modifications in the pipeline that are needed to implement that scheme.

Again, Tables 8.15 and 8.16 present the normalized energy and delay results. Table 8.17
shows the percentage of the dynamic instructions which causes the CPU to access the L-Cache.

This scheme is also very selective in storing instructions in the L-Cache, even more than

the previous method. Provided that the L-Cache is not too small to contain the working set of
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~ Table 8.15 Energy results for the distance confidence estimation method.

Benchmark 256 B 512 B
SB |16B| 8B | 16 B
tomcatv 0.197 | 0.192 | 0.115 | 0.137

swim 0.126 | 0.137 | 0.103 | 0.122
su2cor 0.268 | 0.263 | 0.222 | 0.236
hydro2d 0.133 | 0.147 | 0.101 | 0.126
applu 0.430 | 0.356 | 0.399 | 0.338
fpppp 0.587 | 0.384 | 0.580 | 0.380
go 0.820 | 0.781 | 0.806 | 0.773

m88ksim 0.465 | 0.355 | 0.412 | 0.328
compress95 | 0.554 | 0.489 | 0.466 | 0.436
i 0.577 | 0.502 | 0.540 | 0.472
perl 0.569 | 0.481 | 0.531 | 0.450

Table 8.16 Delay results for the distance confidence estimation method.

Benchmark 256 B 512 B
8B | 16B | 8B | 16 B
tomcatv 1.045 | 1.029 | 1.008 | 1.005

swim 1.028 | 1.017 | 1.015 | 1.008
su2cor 1.038 | 1.022 | 1.015 | 1.009
hydro2d 1.018 | 1.012 | 1.005 | 1.003
applu 1.100 | 1.051 | 1.085 | 1.043
fpppp 1.229 | 1.116 | 1.225 | 1.114
go 1.064 | 1.037 { 1.056 | 1.033

m88ksim 1.169 | 1.094 | 1.139 | 1.079
compress95 | 1.141 ; 1.083 | 1.081 | 1.047
Ii 1.154 | 1.095 | 1.132 | 1.077
perl 1.188 | 1.114 | 1.158 | 1.095

the program, this approach will be able to manage the L-Cache such that only the basic blocks

with the larger degree of reuse will be stored there.

8.4.1 Comparison of dynamic techniques

The techniques that have been described in the previous sections present a good opportunity
for dynamic management of the L-Cache using minimal extra hardware. Using the information
that the branch predictor and the confidence estimation mechanisms can provide regarding the
frequency of execution of different portions of the code, the machine can selectively place basic

blocks in the L-Cache during program execution.
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Table 8.17 Dynamic instructions that cause the L-Cache to be accessed in the distance
estimator method.

Benchmark | % dyn. instructions
tomcatv 97.37%
swim 99.54%
su2cor 87.24%
hydro2d 98.21%
applu 83.54%
foppp 95.24%
go 31.53%
m88ksim 91.31%
compress95 70.31%
i} 73.39%
perl 79.49%
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Figure 8.15 Normalized energy dissipation for the five dynamic methods. Those are the same
numbers that appeared in the tables of the previous sections.

The normalized energy and delay results of the five different schemes we proposed are shown
graphically in Figs. 8.15 and 8.16, respectively. A 512 bytes L-Cache with a block size of 16
bytes is assumed in all cases. The graphical comparison of the results can be used to extract
useful information about each one of the five methods.

The last two methods are the most successful in reducing the performance overhead, but
the least successful in energy gains. The modified method that uses the dynamic confidence
estimator poses stricter requirements for a basic block to be selected for the L-Cache than the

original dynamic confidence method. The method that uses the distance counter to compute
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Figure 8.16 Normalized delay for the five dynamic methods. Those are the same numbers
that appeared in the tables of the previous sections.

the confidence is parameterized in the distance threshold. A larger threshold favors the usage
of the I-Cache, and results in smaller energy gains and smaller delay degradation.

Again, the numeric benchmarks show the largest potential for energy gains without a severe
performance penalty. The dynamic techniques have a larger impact on the integer benchmarks
as is shown in the two graphs. Since there is a large percentage of “low confidence” branches,
the machine can be very selective when it picks up basic blocks for the L-Cache. This is why
different dynamic techniques have so different energy and delay characteristics for the integer
benchmarks. Regulation of the L-Cache and I-Cache utilization is more flexible in integer

benchmarks.

8.5 Summary

In this chapter, we presented methods for “dynamic” selection of basic blocks for placement
in the L-Cache. First, we presented an extensive overview of previous research in improving the
memory hierarchy subsystem performance using dynamic techniques. Usually, extra hardware
is used to keep statistics about the program execution and, accordingly, to allow or disallow
the storage of specific instructions or data in the L1 caches.

Then, we proceeded by explaining the functionality of the brach prediction and the con-
fidence estimation mechanisms in high-performance, speculative processors. After that, we

explained how those mechanism can provide information to the CPU about the frequency of
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execution of parts of the code, and, finally, we presented five different “dynamic” techniques
for the selection of the basic blocks. These techniques use existing hardware, and they try to
capture the execution profile of the basic blocks by using the branch statistics that are gathered
by the branch predictor.

The experimental evaluation demonstrates that the “dynamic” methods offer an attractive
alternative to the compiler-based approach, especially when profiling is not possible. The energy
gains are more significant than in the compiler-based approach, but not as significant as in the

filter cache method. The performance degradation is also smaller than in the filter cache case.
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Chapter 9

CONCLUSIONS AND FUTURE
< DIRECTIONS

In this research, we have developed techniques for hardware/software co-design in high-
performance processors that result in energy/power reduction at the system level. To that
effect, we make a more judicious use of one of the most power-consuming modules of a CPU,
the I-Cache. In this chapter, we summarize our research accomplishments and we present some

avenues of future research.

9.1 Thesis Contributions and Summary

Our thesis proposes a novel area for research that focuses on the energy minimization in
high-performance processors using hardware/software co-design techniques. In particular, we

have addressed the following problems:

(1) We proposed the insertion of an extra cache, the L-Cache, between the CPU and the

I-Cache, which is used to store the most frequently executed parts of the code.

(2) We proposed and implemented compiler techniques which can be used to exploit the extra

cache so that the energy gains are maximized, and performance degradation is minimized.
(3) We presented the necessary hardware for the implementation of this scheme.
(4) We developed a detailed, transistor-level energy model for the on-chip caches.

(5) We proposed and implemented an alternative compiler technique which gives better results

for integer benchmarks.
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(6) Finally, we developed “dynamic” techniques which do not need compiler support to select

and place instructions in the L-Cache.

(7) We presented extensive experimental results for each one of the previous techniques to

provide evidence for its applicability in the context of a modern processor.

More specifically, in Chapter 1 we introduced the power problem and the various sources
of power dissipation in a CMOS circuit. We explained how power and performance are inter-
related, and we gave evidence why the power problem is especially hard to solve in a complex
processor. We also give an extensive review of related work in the area of microarchitectural
and compiler techniques for power and energy minimization in microprocessors.

In Chapter 2, we demonstrated the motivation behind the proposed approach through an
example, and we briefly explained our solution. The basic idea is that a small cache, the L-
Cache, can be used to store and provide instructions that belong to a loop. The I-Cache can
be disabled during loop execution and its energy dissipation can be saved.

The detailed compiler transformations that are needed to manage the L-Cache were pre-
sented in Chapter 3. Their main task is to remap some of the basic blocks of the code to new
memory locations in the global memory address space, in order to reduce the conflicts in the
L-Cache. Our approach benefits by using profiling results from previous runs of the code, in
order to select the basic blocks for the L-Cache. After selection, the compiler remaps these basic
blocks so that their mapping conflicts are minimized. To that effect, it uses profile information
as well as the nesting relationship between the selected basic blocks. We presented algorithms
for the selection of the basic blocks, for their remapping, and for their final mapping in the
address space.

In Chapter 4, we presented the extra hardware needed to implement our scheme. Besides
the small L-Cache, only an additional register and a multiplexer are needed. The L-Cache and
the I-Cache are only accessed serially to minimize energy. In the worst case, the L-Cache will
be accessed first, it will miss, and the I-Cache will be accessed with one clock cycle penalty.
Our compiler-based approach ensures that the worst case does not happen often.

Extensive experimental evaluation was given in Chapter 6. We evaluated the L-Cache
and the filter cache [22], and we compared them in terms of energy gains and performance

degradation. We also evaluated different compiler options in selecting basic blocks for the L-
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Cache. We detailed our experimental setup which was used to run the SPEC95 benchmarks.
Our results show that numerical code performs better than non-numerical code in terms of
energy and performance. The filter cache leads to larger energy gains, but also to higher
performance degradation. We also showed how performance can be improved if we reduce the
clock period of the CPU.

In Chapter 7 we focused on the integer benchmarks which, as stated before, do not perform
well under the previous scheme. We explained why this is the case and, based on that, we
proposed an alternative approach for selecting and storing basic blocks in the L-Cache. The
experimental results show that this scheme is better than the previous one in terms of energy
gains and performance degradation for integer benchmarks.

Finally, in Chapter 8, we looked into “run-time” techniques for the selection and storage of
basic blocks in the L-Cache. We explained the functionality of branch prediction and confidence
estimation mechanisms, and we linked them to the demands of our problem. We developed
several “dynamic” techniques that use the branch history that is accumulated by the branch
predictors and the confidence estimators, and we presented experimental results to prove the
efficacy of our approach. Those techniques have larger energy gains than the compiler-based
method, both for FP and integer benchmarks.

There is a large set of related problems which need to be investigated in this area. In the

next section we present some of them.

9.2 Future Directions

In this section, we will delineate some interesting research problems in the area of microar-

chitectural and compiler techniques for energy reduction in modern processors.

9.2.1 Dynamic techniques

In our research we have focused on “dynamic” techniques that do not require any extra
hardware. We assume that a modern processor is already equipped with a branch prediction
mechanism which is used to keep track of the branch characteristics and to guide the storage
of basic blocks in the extra cache. Since these techniques are used for energy reduction, any

substantial hardware investment might have an adverse impact on energy.
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In Section 8.1, we refered to a series of papers that deal with the problem of selectively
caching data or instructions in the L1 caches. The basic idea was that if we ban infrequently
accessed references from being stored in the L1 caches, we can avoid some conflict misses with
frequently accessed references and thus decrease cache pollution. We cited a series of papers
that propose techniques to achieve this objective [66], [67], [68]. Those techniques entail the
insertion of extra hardware to keep statistics about the frequency of execution of portions of
the code.

These methods can be more successful than the branch predictors in determining which
portions of the code should be inserted in the L-Cache. We can keep track of which memory
addresses are accessed frequently using a table of counters (the memory access table, or MAT,
in [67]), and only redirect those portions in the L-Cache. Provided that the MAT is large
enough, we can provide detailed information for the, and only use the L-Cache for the most
heavily accessed part of the code.

However, it is not clear whether the extra hardware will offset any energy gains from the
better management of the L-Cache. The extra tables should be accessed in every clock cycle,
and their energy consumption is not negligible. An interesting problem is to determine if such
schemes can potentially reduce the overall energy consumption, and what trade-offs between

performance and energy are involved.

9.2.2 Techniques for the D-Cache

In our work, we have focused only on the problem of reducing energy for the I-Cache
subsystem. This is justified from the fact that I-Caches are accessed in every clock cycle to
provide an instruction (or more than one instructions for a superscalar machine), whereas D-
Caches are only accessed in a load or store instruction. These instructions account for about
35% of the dyhamic instructions in a set of five SPECint92 benchmarks [71]. Therefore, the
number of accesses, and the energy dissipation of the D-Cache will be less than in the I-Cache.

An interesting problem is to compare the energy/performance opportunities of static and
dynamic schemes for caching of data in an extra buffer placed between the D-Cache and the
CPU. Since the access time of the D-Cache is often the critical path in the processor, we need to

explore the impact on performance of the extra buffer for different configurations. The insertion
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of an extra buffer for both the I-Cache and the D-Cache will probably have large energy gains
at the expense of performance.

There has been an extensive research effort aiming at increasing the hit rate of the D-Cache,
and, thus, at increasing the performance of the system [80], [81], [82], [83]. The authors in [80]
present a methodology and an algorithm for loops transformations that enhance the D-Cache
locality. Loop blocking is an especially attractive transformation [83] which is sensitive to the
size of the cache.

A series of compiler optimizations can be used to improve the efficacy of this approach. For
example, loop blocking, loop exchange, and loop reversal are some optimizations that are used
for locality enhancement in the D-Cache, and they can also be used here to exploit the new
memory hierarchy. As before, profile data can be used to tag basic blocks within loops that are
executed very often. These basic blocks will be stored in the extra cache.

In addition, the “dynamic” approach can also be applied in this case. For example, only
the data accesses from the most frequently executed portion of the code can be stored in the
extra cache, or only the most frequently accessed data. Again, any extra hardware that is used

should not offset the gains from the utilization of the extra cache.

9.2.3 Novel architectures for low energy

A more general and still open question is what kind of architectures are more energy efficient
for a given performance level. Gonzalez and Horowitz [3] suggest that the energy—delay product
of a wide range of processors does not vary significantly, and therefore an increase in performance
is more or less offset by an increase in energy, and vice versa. This result is pessimistic since it
suggests that as processors become faster and more complex, the power will also increase, no
matter what techniques are applied in the microarchitectural level.

Novel memory organizations show more promise. The intelligent RAM (IRAM) has been
proposed as a low-energy alternative to the conventional memory hierarchy in a recent pa-
per [29]. Since the main memory is in the same die with the processor, no off-chip access is
necessary, and the energy of the system will drop. However, the energy consumption within the
processor might increase since the IRAM is larger than the SRAM-based caches. Additional
research and implementation of an IRAM-based processor is required to justify.the claim that

IRAM is a low-energy alternative.
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Asynchronous logic has been proposed as a low-power alternative, especially for systems that
suffer from a high power dissipation in the clock distribution network. Moreover, systems-on-
chip will most likely be composed of many cores which will carry out tasks independently, and
which will only communicate asynchronously. Thus, they will not need a globally distributed

clock.

9.3 Conclusions

We believe that since performance is the most important objective of today’s high-end
microprocessors, no energy reduction technique will be acceptable, unless it only marginally
affects the execution time, or unless its overhead can be hidden by other compiler /architectural
techniques. If this is the case, even a moderate energy reduction will be welcome.

This research presented a paradigm for hardware/compiler co-design that targets activity
minimization in a processor. These techniques are orthogonal to the standard circuit- or gate-
level techniques that are traditionally used by designers to reduce energy and can therefore
be used to further reduce energy consumption without impairing performance. This paradigm
describes a more judicious use of the I-Cache unit of a processor when the flow of control is
caught within a loop. The compiler is given the responsibility to restructure the code. The
aim is to minimize the overlap between basic blocks that are selected to be placed in an extra
cache.

Moreover, dynamic techniques that do not need compiler support were developed. They
use existing hardware which is used to capture the dynamic characteristics of the program and,
accordingly, to direct the basic blocks in the L-Cache or the I-Cache.

We feel that most of the energy gains in high-performance and embedded processors alike will
be extracted from the high level of the design flow, when the designers have not yet committed
to major design decisions. Major energy gains can be obtained if the compiler and the hardware
are designed with low energy in mind. As mentioned in this work, there are problems to be
addressed to make the software/hardware co-design approach we propose more effective and
practical for the industrial design flow. In our opinion, this thesis is an important step since it
proposes and advocates the cooperation of compiler and hardware to reduce energy in a real-life

ProCessor.
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APPENDIX A

LABELTREE PROOF

Theorem 1 The DAG that was constructed using the LabelSets is a tree.

To prove this, we will show that there is only one path between a predecessor and a successor
node in the graph. Assume a node S; which corresponds to the LabelSet {L1, Ls,..., Ly}, and
let S, be a successor node of S;. Assume that there are two paths between 57 and 5. We
will show that this cannot be the case. Let Sz be a node in the first path and 54 be a node
in the second path between §; and S; (S3 or S4 can be null). Node 53 will correspond to
a LabelSet {L1,Ls,..., Lk, z,...}, i.e., it will represent basic blocks that are enclosed by the
loops L1, La,...,Lg,z. Node Sy will correspond to a LabelSet {L1,Lg,...,Lk,¥,...}, le., it
will represent basic blocks that are enclosed by the loops Ly, L, ..., L, y. Then, node 53 will
correspond to LabelSet {L1,Ls,..., Lk, 2,y,...} since it is a successor of both S3 and 54. We
notice that loops z and y cannot overlap since 54 is not a successor of S3 or vice versa in the
LabelTree. No basic block can be nested within both z and y; and therefore, node .53 cannot
have both these loops in its LabelSet. There should only be one path between 57 and S3;

therefore, the graph is acyclic. An acyclic, connected graph is a tree. O
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