
An Energy-Efficient High-Performance
Deep-Submicron Instruction Cache

Appears inIEEE TVLSI special issue on low-power design, February 2001.

Michael D. Powellϒ, Se-Hyun Yangβ1, Babak Falsafiβ1, Kaushik Royϒ, and T. N. Vijaykumarϒ

βElectrical and Computer Engineering Department
Carnegie Mellon University

{syang,babak}@ece.cmu.edu

ϒSchool of Electrical and Computer Engineering
Purdue University

{mdpowell,kaushik,vijay}@ecn.purdue.edu

http://www.ece.purdue.edu/~icalp
ling

all
nd
ly
.

n-

ave
ent
uch

a
ge
y
up-
old
er-
nt
e
not
.5
age

the
on
tion
M
ic

is-
is-
unt
a-

e.
e

of
y-
ic

rgy
or
r

nd
1 This work was performed when Se-Hyun Yang and Babak Falsafi were at the

School of Electrical and Computer Engineering at Purdue University.

Abstract

Deep-submicron CMOS designs maintain high transistor switching
speeds by scaling down the supply voltage and proportionately
reducing the transistor threshold voltage. Lowering the threshold
voltage increasesleakage energydissipation due to subthreshold
leakage current even when the transistor is not switching. Estimates
suggest a five-fold increase in leakage energy in every future genera-
tion. In modern microarchitectures, much of the leakage energy is
dissipated in large on-chip cache memory structures with high tran-
sistor densities. While cache utilization varies both within and across
applications, modern cache designs are fixed in size resulting in tran-
sistor leakage inefficiencies.

This paper explores an integrated architectural and circuit-level
approach to reducing leakage energy in instruction caches (i-
caches). At the architecture level, we propose theDynamically
ResIzablei-cache (DRI i-cache), a novel i-cache design that dynami-
cally resizes and adapts to an application’s required size. At the cir-
cuit-level, we use gated-Vdd, a novel mechanism that effectively
turns off the supply voltage to, and eliminates leakage in, the SRAM
cells in a DRI i-cache’s unused sections. Architectural and circuit-
level simulation results indicate that a DRI i-cache successfully and
robustly exploits the cache size variability both within and across
applications. Compared to a conventional i-cache using an aggres-
sively-scaled threshold voltage a 64K DRI i-cache reduces on aver-
age both the leakage energy-delay product and cache size by 62%,
with less than 4% impact on execution time. Our results also indicate
that a wide NMOS dual-Vt gated-Vdd transistor with a charge pump
offers the best gating implementation and virtually eliminates leak-
age energy with minimal increase in an SRAM cell read time area as
compared to an i-cache with an aggressively-scaled threshold volt-
age.

Keywords: Cache memories, adapative systems, computer architec-
ture, energy management, leakage currents.

1 INTRODUCTION

The ever-increasing levels of on-chip integration in the recent
decade have enabled phenomenal increases in computer system per-
formance. Unfortunately, the performance improvement has been
accompanied by an increase in chips’ energy dissipation. Higher

energy dissipation requires more expensive packaging and coo
technology, increases cost, and decreases reliability of products in
segments of computing market from portable systems to high-e
servers [21]. Moreover, higher energy dissipation significant
reduces battery life and diminishes the utility of portable systems

Historically, the primary source of energy dissipation in CMOS tra
sistor devices has been thedynamic energydue to charging/discharg-
ing load capacitances when a device switches. Chip designers h
relied on scaling down the transistor supply voltage in subsequ
generations to reduce this dynamic energy dissipation due to a m
larger number of on-chip transistors.

Maintaining high transistor switching speeds, however, requires
commensurate down-scaling of the transistor threshold volta
along with the supply voltage [19]. The International Technolog
Roadmap for Semiconductors [20] predicts a steady scaling of s
ply voltage with a corresponding decrease in transistor thresh
voltage to maintain a 30% improvement in performance every gen
ation. Transistor threshold scaling, in turn, gives rise to a significa
amount ofleakage energydissipation due to an exponential increas
in subthreshold leakage current even when the transistor is
switching [3,28,24,16,22,11,6]. Borkar [3] estimates a factor of 7
increase in leakage current and a five-fold increase in total leak
energy dissipation in every chip generation.

State-of-the-art microprocessor designs devote a large fraction of
chip area to memory structures — e.g., multiple levels of instructi
caches and data caches, translation lookaside buffers, and predic
tables. For instance, 30% of Alpha 21264 and 60% of StrongAR
are devoted to cache and memory structures [14]. Unlike dynam
energy which depends on the number of actively switching trans
tors, leakage energy is a function of the number of on-chip trans
tors, independent of their switching activity. As such, caches acco
for a large (if not dominant) component of leakage energy dissip
tion in recent designs, and will continue to do so in the futur
Recent energy estimates for 0.13µ processes indicate that leakag
energy accounts for 30% of L1 cache energy and as much as 80%
L2 cache energy [7]. Unfortunately, current proposals for energ
efficient cache architectures [13,2,1] only target reducing dynam
energy and do not impact leakage energy.

There are a myriad of circuit techniques to reduce leakage ene
dissipation in transistors/circuits (e.g., multi-threshold [26,22,16]
multi-supply [9,23] voltage designs, dynamic threshold [25] o
dynamic supply [4] voltage designs, transistor stacking [28], a
1

Appears inIEEE TVLSI special issue on low-power design, February 2001.

d-
I
ith

er

he
I i-
the
he
c-

e
ally.

ri-
lts.

t

-
in

cur-
i-

es a

e
e

ge.

-
on
tes
ach
ate
i-
our

er-

-
tion
che
ess

ssi-
age
ng
long

to
ing
vely,
cing
ey
cia-
are
ang-
cooling [3]). These techniques, however, typically impact circuit
performance and are only applicable to circuit sections that are not
performance-critical [10]. Second, unlike embedded processor
designs [15,8], techniques relying only on multiple threshold volt-
ages may not be as effective in high-performance microprocessor
designs, where the range of offered supply voltages is limited due to
gate-oxide wear-out and reliability considerations [10]. Third, tech-
niques such as dynamic supply- and threshold-voltage designs may
require a sophisticated fabrication process and increase cost. Finally,
the circuit techniques apply low-level leakage energy reduction atall
timeswithout taking into account the application behavior and the
dynamic utilization of the circuits.

Current high-performance microprocessor designs incorporate
multi-level cache hierarchies on chip to reduce the off-chip access
frequency and improve performance. Modern cache hierarchies are
designed to satisfy the demands of the most memory-intensive appli-
cations or application phases. The actual cache hierarchy utilization,
however, varies widely bothwithin andacrossapplications. Recent
studies on block frame utilization in caches [17], for instance, show
that at any given instance in an application’s execution, on average
over half of the block frames are “dead” — i.e., they miss upon a
subsequent reference. These “dead” block frames continue dissipat-
ing leakage energy while not holding useful data.

This paper presents the first integrated architectural and circuit-level
approach to reducing leakage energy dissipation in deep-submicron
cache memories. We propose a novel instruction cache design, the
Dynamically ResIzable instruction cache (DRI i-cache),which
dynamically resizes itself to the size required at any point during
application execution and virtually turns off the supply voltage to the
cache’s unused sections to eliminate leakage. At the architectural
level, a DRI i-cache relies on simple techniques to exploit variability
in i-cache usage and reduce the i-cache size dynamically to capture
the application’s primary instruction working set.

At the circuit level, a DRI i-cache uses a mechanism we recently
proposed,gated-Vdd [18], which reduces leakage by effectively turn-
ing off the supply voltage to the SRAM cells of the cache’s unused
block frames. Gated-Vdd may be implemented using NMOS or
PMOS transistors, presenting a trade-off among area overhead, leak-
age reduction, and impact on performance. By curbing leakage,
gated-Vdd enables high performance through aggressive threshold-
voltage-scaling, which has been considered difficult due to inordi-
nate increase in leakage.

We use cycle-accurate architectural simulation and circuit tools for
energy estimation, and compare a DRI i-cache to a conventional i-
cache using an aggressively-scaled threshold voltage to show that:

• There is a large variability in L1 i-cache utilization bothwithin
and across applications. Using a simple adaptive hardware
scheme, a DRI i-cache effectively exploits this variability and
reduces the average size of a 64K cache by 62% with perfor-
mance degradation constrained within 4%.

• Lowering the cell threshold voltage from 0.4V to 0.2V results in
doubling the cell speed and two orders of magnitude increase in
leakage. A wide NMOS dual-Vt gated-Vdd transistor with a
charge pump offers the best gated-Vdd implementation and virtu-
ally eliminates leakage with only 8% cell read time and 5% area
increase.

• A DRI i-cache effectively integrates architectural and the gate
Vdd circuit techniques to reduce leakage in an L1 i-cache. A DR
i-cache reduces the leakage energy-delay product by 62% w
performance degradation within 4%, and by 67% with high
performance degradation.

• Our adaptive scheme gives a DRI i-cache tight control over t
miss rate to keep it close to a preset value, enabling the DR
cache to contain both the performance degradation and
increase in lower cache levels’ energy dissipation. Moreover, t
scheme is robust and performs predictably without drastic rea
tions to varying the adaptivity parameters.

The rest of the paper is organized as follows. In Section 2, w
describe the architectural techniques to resize i-caches dynamic
In Section 3, we describe the gated-Vdd circuit-level mechanism to
reduce leakage in SRAM cells. In Section 4, we describe our expe
mental methodology. In Section 5, we present experimental resu
Finally, in Section 6 we conclude the paper.

2 DRI I- CACHE: REDUCING DEEP-SUBMICRON I-CACHE LEAKAGE

This paper describes theDynamically ResIzable instruction cache
(DRI i-cache). The key observation behind a DRI i-cache is tha
there is a large variability in i-cache utilization bothwithin and
acrossprograms leading to large energy inefficiency for conven
tional caches in deep-submicron designs; while the memory cells
a cache’s unused sections are not actively referenced, they leak
rent and dissipate energy. A DRI i-cache’s novelty is that it dynam
cally estimates and adapts to the required i-cache size, and us
novel circuit-level technique, gated-Vdd [18], to turn off the supply
voltage to the cache’s unused SRAM cells. In this section, w
describe the anatomy of a DRI i-cache. In the next section, w
present the circuit technique to gate a memory cell’s supply volta

The large variability in i-cache utilization is inherent to an applica
tion’s execution. Application programs often break the computati
into distinct phases. In each phase, an application typically itera
and computes over a set of data. The code size executed in e
phase dictates the required i-cache size for that phase. Our ultim
goal is to exploit the variability in the code size and the required
cache size across application phases to save energy. The key to
leakage energy saving technique is to have a minimal impact on p
formance and a minimal increase in dynamic energy dissipation.

To exploit the variability in i-cache utilization, hardware (or soft
ware) must provide accurate mechanisms to determine a transi
among two application phases and estimate the required new i-ca
size. Inaccurate cache resizing may significantly increase the acc
frequency to lower cache levels, increase the dynamic energy di
pated, and degrade performance, offsetting the gains from leak
energy savings. A mechanism is also required to determine how lo
an application phase executes so as to select phases that have
enough execution times to amortize the resizing overhead.

In this paper, we use a simple and intuitive all-hardware design
resize an i-cache dynamically. Our approach to cache resiz
increases or decreases the number of active cache sets. Alternati
we could increase/decrease associativity, as is proposed for redu
dynamic energy in [1]. This alternative, however, has several k
shortcomings. First, it assumes that we start with a base set-asso
tive cache and is not applicable to direct-mapped caches, which
widely used due to their access latency advantages. Second, ch
2

Appears inIEEE TVLSI special issue on low-power design, February 2001.

e i-
und.
and
he
set
l.

ol
ca-
d

ize-
he

ity,
e
est
lity

s in
ent
een
ated
ism
f
in

che
ed
m-

the
sets
p
its
n-
ex
m-
ing associativity is a coarse-grained approach to resizing and may
increase both capacity and conflict miss rates in the cache. Such an
approach increases the cache resizing overhead, significantly reduc-
ing the opportunity for energy reduction.

While many of the ideas in this paper apply to both i-caches and data
caches (d-caches), we focus on i-cache designs. Because of compli-
cations involving dirty cache blocks, studying d-cache designs is
beyond the scope of this paper.

In the rest of this section, we first describe the basic DRI i-cache
design and the adaptive mechanisms to detect application phase tran-
sitions and the required i-cache size. Next, we discuss the block
lookup implications of a DRI i-cache. Finally, we present the impact
of our design on energy dissipation and performance.

2.1 Basic DRI I-Cache Design

Much like conventional adaptive computing frameworks, our cache
uses a set of parameters to monitor, react, and adapt to changes in
application behavior and system requirements dynamically. Figure 1
depicts the anatomy of a direct-mapped DRI i-cache (the same
design applies to set-associative caches). To monitor cache perfor-
mance, a DRI i-cache divides an application’s execution time into
fixed-length intervals, thesense-intervals,measured in the number
of dynamic instructions (e.g., one million instructions). We use miss
rate as the primary metric for monitoring cache performance. A miss
counter counts the number of cache misses in each sense-interval. At
the end of each sense-interval, the cache upsizes/downsizes, depend-
ing on whether the miss counter is lower/higher than a preset value,
themiss-bound(e.g., ten thousand misses). The factor by which the
cache changes size is called thedivisibility. A divisibility of two, for
instance, changes the cache size upon upsizing/downsizing by a fac-
tor of two. To prevent the cache from thrashing and downsizing to
prohibitively small sizes (e.g., 1K), thesize-boundspecifies the min-
imum size the i-cache can assume.

All the cache parameters can be set either dynamically or statically.
Because this paper is a first step towards understanding a dynami-
cally resizable cache design, we focus on designs that statically set
the values for the parameters prior to the start of program execution.

Among these parameters, the key parameters that control th
cache’s size and performance are the miss-bound and size-bo
The combination of these two key parameters provides accurate
tight control over the cache’s performance. Miss-bound allows t
cache to react and adapt to an application’s instruction working
by “bounding” the cache’s miss rate in each monitoring interva
Thus, the miss-bound provides a “fine-grain” resizing contr
between any two intervals independent of the cache size. Appli
tions typically require a specific minimum cache capacity beyon
which they incur a large number of capacity misses and thrash. S
bound provides a “coarse-grain” resizing control by preventing t
cache from thrashing by downsizing past a minimum size.

The other two parameters, the sense-interval length and divisibil
are less-critical to a DRI i-cache’s performance. Intuitively, th
sense-interval length allows selecting an interval length that b
matches an application’s phase transition times, and the divisibi
determines the rate at which the i-cache is resized.

While the above parameters control the cache’s aggressivenes
resizing, the adaptive mechanism may need throttling to prev
repeated resizing between two sizes if the desired size lies betw
the two sizes. We use a simple saturating counter to detect repe
resizing between two adjacent sizes. Upon detection, our mechan
prevents downsizing (while allowing upsizing) for a fixed number o
successive intervals. This simple throttling mechanism works well
practice, at least for the benchmarks studied in this paper.

Resizing the cache requires that we dynamically change the ca
block lookup and placement function. Conventional (direct-mapp
or set-associative) i-caches use a fixed set of index bits from a me
ory reference to locate the set to which a block maps. Resizing
cache either reduces or increases the total number of cache
thereby requiring a larger or smaller number of index bits to look u
a set. Our design uses a mask to find the right number of index b
used for a given cache size (Figure 1). Every time the cache dow
sizes, the mask shifts to the right to use a smaller number of ind
bits and vice versa. Therefore, downsizing removes the highest-nu
bered sets in the cache in groups of powers of two.

tag index offsetaddress:

size mask: 0 11

+

masked index

mask shift right

miss counter

FIGURE 1: Anatomy of a DRI i-cache.

miss count < miss-bound?miss count > miss-bound?

miss

upsize

mask shift left

downsize

miss-bound compare miss
count

yes

111

resizing range
minimum

size

tag data blockv

DRI I-CACHE

hit/miss?

do
w

ns
ize

up
si

ze

re
si

zi
ng

 ra
ng

e

end of interval?

size-bound
3

Appears inIEEE TVLSI special issue on low-power design, February 2001.

I i-
ver,
al i-
The
me
e-
r-
ic

1].
r a
gy,
In

the

i-
tag
lcu-
hat
i-

t-
le-
he,

t is
all.
an

very

for-
trol
iss

ing.
nd
f a
siz-

ons
nd-
due
he
lly
ce.
a-
ead
l

nt
w a
he
ize-

om
Because smaller caches use a small number of index bits, they
require a larger number of tag bits to distinguish data in block
frames. Because a DRI i-cache dynamically changes its size, it
requires a different number of tag bits for each of the different sizes.
To satisfy this requirement, our design maintains as many tag bits as
required by the smallest size to which the cache may downsize itself.
Thus, we maintain more tag bits than conventional caches of equal
size. We define the extra tag bits to be theresizing tag bits. The size-
bound dictates the smallest allowed size and, hence, the correspond-
ing number of resizing bits. For instance, for a 64K DRI i-cache with
a size-bound of 1K, the tag array uses 16 (regular) tag bits and 6
resizing tag bits for a total of 22 tag bits to support downsizing to
1K.

2.2 Implications on Cache Lookups

Using the resizing tag bits, we ensure that the cache functions cor-
rectly at every individual size. However, resizing from one size to
another may still cause problems in cache lookup. Because resizing
modifies the set-mapping function for blocks (by changing the index
bits), it may result in an incorrect lookup if the cache contents are
not moved to the appropriate places or flushed before resizing. For
instance, a 64K cache maintains only 16 tag bits whereas a 1K cache
maintains 22 tag bits. As such, even though downsizing the cache
from 64K to 1K allows the cache to maintain the upper 1K contents,
the tags are not comparable. While a simple solution, flushing the
cache or moving block frames to the appropriate places may incur
prohibitively large overhead. Our design does not resort to this solu-
tion because we already maintain all the tag bits necessary for the
smallest cache size at all times (i.e., a 64K cache maintains the same
22 tag bits from the block address that a 1K cache would).

Moreover, upsizing the cache may complicate lookup because
blocks map to different sets in different cache sizes when upsizing
the cache. Such a scenario creates two problems. A lookup for a
block after upsizing fails to find it, and therefore fetches and places
the block into a new set. While the overhead of such (compulsory)
misses after upsizing may be negligible and can be amortized over
the sense-interval length, such an approach will result in multiple
aliasesof the block in the cache. Unlike d-caches, however, in the
common case a processor only reads and fetches instructions from
an i-cache and does not modify a block’s contents. Therefore, allow-
ing multiple aliases does not interfere with processor lookups and
instruction fetch in i-caches. There are scenarios, however, which
require invalidating all aliases of a block. Fortunately, conventional
systems often resort to flushing the i-cache in these cases because
such scenarios are infrequent.

Compared to a conventional cache, the DRI i-cache has one extra
gate delay in the index path due to the size mask (Figure 1), which
may impact the cache lookup time. Because the size mask is modi-
fied at most only once every sense-interval, which is usually of the
order of a million cycles, implementation of the extra gate level can
be optimized to minimize delay. For instance, the size mask inputs to
the extra gate level can be set up well ahead of the address, minimiz-
ing the index path delay. Furthermore, the extra gate level can also
be folded into the address decode tree of the cache’s tag and data
arrays. Hence, in the remainder of the paper we assume that the extra
gate delay does not significantly impact the cache lookup time.

2.3 Impact on Energy and Performance

Cache resizing helps reduce leakage energy by allowing a DR
cache to turn off the cache’s unused sections. Resizing, howe
may adversely impact the miss rate (as compared to a convention
cache) and the access frequency to the lower-level (L2) cache.
resulting increase in L2 accesses may impact both execution ti
and the dynamic energy dissipated in L2. While the impact on ex
cution time depends on an application’s sensitivity to i-cache perfo
mance, the higher miss rate may significantly impact the dynam
energy dissipated due to the growing size of on-chip L2 caches [
We present energy calculations in Section 5.2.1 to show that fo
DRI i-cache to cause significant increase in the L2 dynamic ener
the extra L1 misses have to be considerably large in number.
Section 5.3, we present experimental results that indicate that
extra L1 misses are usually small in number.

In addition to potentially increasing the L2 dynamic energy, a DRI
cache may dissipate more dynamic energy due to the resizing
bits, as compared to a conventional design. We present energy ca
lations in Section 5.2.1 and experimental results in Section 5.3 t
indicate that the resizing tag bits have minimal impact on a DRI
cache’s energy.

Finally, the resizing circuitry may increase energy dissipation offse
ting the gains from cache resizing. The counters required to imp
ment resizing have a small number of bits compared to the cac
making their leakage negligible. Using the argument that the ith bit
in a counter switches once only every 2i increments, we can show
that the average number of bits switching on a counter incremen
less than two. Thus the dynamic energy of the counters is also sm
The dynamic energy dissipated to drive the resizing control lines c
be neglected because resizing occurs infrequently (e.g., once e
one million instructions).

2.3.1 Controlling Extra Misses

Because a DRI i-cache’s miss rate impacts both energy and per
mance, the cache uses its key parameters to achieve tight con
over its miss rate. We explain the factors that may cause a high m
rate and describe how the parameters control the miss rate.

There are two sources of increase in the miss rate when resiz
First, resizing may require remapping of data into the cache a
incur a large number of (compulsory) misses at the beginning o
sense-interval. The resizing overhead is dependent on both the re
ing frequency and the sense-interval length. Fortunately, applicati
tend to have at most a small number of well-defined phase bou
aries at which the i-cache size requirements drastically change
to a change in the instruction working set size. Furthermore, t
throttling mechanism helps reduce unnecessary switching, virtua
eliminating frequent resizing between two adjacent sizes, in practi
Our results indicate that optimal interval lengths to match applic
tion phase transition times are long enough to amortize the overh
of moving blocks around at the beginning of an interva
(Section 5.3).

Second, downsizing may be suboptimal and result in a significa
increase in miss rate when the required cache size is slightly belo
given size. The impact on the miss rate is highest at small cac
sizes when the cache begins to thrash. A DRI i-caches uses the s
bound to guarantee a minimum size preventing the cache fr
thrashing.
4

Appears inIEEE TVLSI special issue on low-power design, February 2001.

cir-
t-

s.

ite
ad

ce
te-
c-

to
ey

the
elf

ed-
e.
n
y”

th
ess,
de

bit-
e

is-
r

ing

-
d-

sec-
Miss-bound and size-bound control a DRI i-cache’s aggressiveness
in reducing the cache size and leakage energy. In an aggressive DRI
i-cache configuration with a large miss-bound and a small size-
bound, the cache is allowed to resize more often and to small cache
sizes, thereby aggressively reducing leakage at the cost of high per-
formance degradation. A conservative DRI i-cache configuration
maintains a miss rate which is close to the miss rate of a conven-
tional i-cache of the same base size, and bounds the downsizing to
larger sizes to prevent thrashing and significantly increasing the miss
rate. Such a configuration reduces leakage with minimal impact on
execution time and dynamic energy.

Sense-interval length and divisibility may also affect a DRI i-cache’s
ability to adapt to the required i-cache size accurately and timely.
While larger divisibility favors applications with drastic changes in
i-cache requirements, it makes size transitions more coarse reducing
the opportunity to adapt closer to the required size. Similarly, while
longer sense-intervals may span multiple application phases reduc-
ing opportunity for resizing, shorter intervals may result in higher
overhead. Our results indicate that sense-interval and divisibility are
less critical than miss-bound and size-bound to controlling extra
misses (Section 5.3.3).

3 GATED-VDD: CIRCUIT -LEVEL SUPPLY-VOLTAGE GATING

Current technology scaling trends [3] require aggressively scaling
down the threshold voltage (Vt) to maintain transistor switching
speeds. Unfortunately, there is asubthreshold leakagecurrent
through transistors that increases exponentially with decreasing
threshold voltage, resulting in a significant amount ofleakage
energydissipation at a low threshold voltage.

To prevent the leakage energy dissipation in a DRI i-cache from lim-
iting aggressive threshold-voltage scaling, we use a circuit-level
mechanism calledgated-Vdd [18]. Gated-Vdd enables a DRI i-cache
to turn off effectively the supply voltage and eliminate virtually all
the leakage energy dissipation in the cache’s unused sections. The
key idea is to introduce an extra transistor in the leakage path from
the supply voltage to the ground of the cache’s SRAM cells; the
extra transistor is turned on in the used and turned off in the unused
sections, essentially “gating” the cell’s supply voltage. Gated-Vdd
maintains the performance advantages of lower supply and threshold
voltages while reducing the leakage.

Rather than gating the cells, many embedded designs [15] use
cuit-only techniques [8] and primarily rely on a dual-threshold vol
age (dual-Vt) process technology [24] to reduce leakage. Dual-Vt
allows integrating transistors with two different threshold voltage
These designs use high Vt and Vdd for the cell transistors (which
account for much of the leakage energy) and use low Vt and Vdd for
the transistors in the rest of the cache (to maintain low read/wr
delay and low switching energy). However, the voltage spre
between the high Vdd and low Vdd in such dual-Vt designs may be
large. Unfortunately, unlike embedded designs, in high-performan
designs the range of offered supply voltages is limited due to ga
oxide wear-out and stability considerations [10], reducing the effe
tiveness of dual-Vt alone in eliminating leakage. By providing an
alternative solution, our integrated circuit/architecture approach
reducing leakage for high-performance designs [18] offers a k
advantage over the dual-Vt approach.

The fundamental reason why gated-Vdd achieves significantly lower
leakage is that two off transistors connected in series reduce
leakage current by orders of magnitude; this effect is due to the s
reverse-biasing of stacked transistors, and is called thestacking
effect [28]. The gated-Vdd transistor connected in series with the
SRAM cell transistors produces the stacking effect when the gat
Vdd transistor is turned off, resulting in a high reduction in leakag
When the gated-Vdd transistor is turned on, the cell is said to be i
“active” mode and when turned off, the cell is said to be in “standb
mode.

Figure 2 depicts the anatomy of conventional 6-T SRAM cells wi
dual-bitline architecture we assume in this paper. On a cache acc
the corresponding row’s wordline is activated by the address deco
logic, causing the cells to read their values out to the precharged
lines or to write the values from the bitlines into the cells through th
pass transistors. Each of the two inverters have a Vdd to Gnd leakage
path through a pair of series-connected NMOS and PMOS trans
tors, one of which is turned off. Depending on the bit value (of 0 o
1) held in the cell, the PMOS transistor of one and the correspond
NMOS transistor of the other inverter are off. When the gated-Vdd
transistor is off, it is in series with the off inverter transistors, pro
ducing the stacking effect. The resizing circuitry keeps the gate
Vdd transistors of the used sections turned on and the unused
tions turned off.

FIGURE 2: 6-T SRAM cells connected to a gated-V dd transistor (typical transistor W/L ratios).

Gnd

gated-Vdd

control

Vdd

wordline

bitlinebitline

virtual Gnd

(3)

(3)

(6)

(1100)

... ...
5

Appears inIEEE TVLSI special issue on low-power design, February 2001.

etry

nd
nd
on

to
lls

the
he
of

rea

V.
an-
a

age
tion

wer

and
en-
ng
r-

the
e
ting

and
on

is
of
ent

ion,
ed-

la-

the

lt-
ost
Much as conventional gating techniques, the gated-Vdd transistor
can be shared among multiple SRAM cells from one or more cache
blocks to amortize the overhead of the extra transistor (Figure 2). To
reduce the impact on SRAM cell speed, the gated-Vdd transistor
must be carefully sized with respect to the SRAM cell transistors it
is gating. While the gated-Vdd transistor must be made large enough
to sink the current flowing through the SRAM cells during a read/
write operation in the active mode, too large a gated-Vdd transistor
may reduce the stacking effect, thereby diminishing the energy sav-
ings. Moreover, large transistors also increase the area of overhead
due to gating. Figure 2 shows the width/length ratios for cell and
gated-Vddtransistors typically used in this paper.

Gated-Vdd can be implemented using either an NMOS transistor
connected between the SRAM cell and Gnd or a PMOS transistor
connected between Vdd and the cell. Using a PMOS or an NMOS
gated-Vdd transistor presents a trade-off among area overhead, leak-
age reduction, and impact on performance [18]. Moreover, gated-
Vdd can be coupled with dual-Vt to achieve even larger reductions in
leakage. With dual-Vt, the SRAM cells use low-Vt transistors to
maintain a high speed while the gated-Vdd transistors use high Vt to
achieve additional leakage reduction. Because the gated-Vdd transis-
tor already exploits the stacking effect, the gated-Vdd transistor
needs to use only marginally higher Vt to achieve further leakage
reduction. Hence, the dual-Vt required for gated-Vdd is not likely to
run into the previously-mentioned supply voltage spread problems.
In Section 5.1.2, we evaluate various gated-Vdd implementations
and show that NMOS gated-Vdd transistors with dual-Vt achieves a
good compromise among performance, energy, and area [18].

4 METHODOLOGY

We use SimpleScalar-2.0 [5] to simulate an L1 DRI i-cache in the
context of an out-of-order microprocessor. Table 1 shows the base
configuration for the simulated system. We simulate a 1Ghz proces-
sor. We run all of SPEC95 with the exception of two floating-point
benchmarks and one integer benchmark (in the interest of reducing
simulation turnaround time).

To determine the energy usage of a DRI i-cache, we use geom
and layout information from CACTI [27]. Using Spice information
from CACTI to model the 0.18µ SRAM cells and related capaci-
tances, we determine the leakage energy of a single SRAM cell a
the dynamic energy of read and write operations on single rows a
columns. We use this information to determine energy dissipati
for appropriate cache configurations.

We use a Mentor Graphics IC-Station layout of a single cache line
estimate area. Figure 3 shows an example layout of 64 SRAM ce
on the left and an adjoining NMOS gated-Vdd transistor. To mini-
mize the area overhead and optimize layout, we implemented
gated-Vdd transistor as rows of parallel transistors placed along t
length of the SRAM cells where each row is as long as the height
the SRAM cells. We obtain the desired gated-Vdd transistor width by
varying the number of rows of transistors used, and estimate the a
overhead accordingly.

All simulations use an aggressively-scaled supply voltage of 1.0
We estimate cell read time and energy dissipation using Hspice tr
sient analysis. We ensure that the SRAM cells are all initialized to
stable state before measuring read time or active mode leak
energy. We compute active and standby mode energy dissipa
after the cells reach steady state with the gated-Vdd transistor in the
appropriate mode. We assume the read time to be the time to lo
the bitline to 75% of Vdd after the wordline is asserted.

5 RESULTS

In this section, we present experimental results on the energy
performance trade-off of a DRI i-cache as compared to a conv
tional i-cache. First, we present detailed circuit results corroborati
the impact of technology scaling trends on an SRAM cell’s perfo
mance and leakage, and evaluate various gated-Vdd implementa-
tions. Second, we present our energy calculations and discuss
leakage and dynamic energy trade-off of a DRI i-cache. Finally, w
present energy savings achieved for the benchmarks, demonstra
a DRI i-cache’s effectiveness in reducing average cache size
energy dissipation, and the impact of a DRI i-cache’s parameters
energy and performance.

5.1 Circuit Results

Because the key motivation for lowering the threshold voltage
higher performance, in this section we first analyze the impact
threshold voltage on performance and leakage. Then, we pres
experimental results to show the trade-off among leakage reduct
overall energy savings, and cell performance for the various gat
Vdd implementations (as discussed in Section 3).

5.1.1 Impact of Lowering Threshold Voltage

Table 2 shows the impact of lowering the threshold voltage on re
tive cell read time and leakage energy using NMOS gated-Vdd tran-
sistors. The relative cell read times are computed with respect to
cell and gated-Vdd transistor combination, both using a Vt of 0.2V.
The first three rows indicate that decreasing the cell threshold vo
age improves cell read time by more than a factor of two at the c

Instruction issue &
decode bandwidth

8 issues per cycle

L1 i-cache/
L1 DRI i-cache

64K, direct-mapped, 1 cycle latency

L1 d-cache 64K, 2-way (LRU), 1 cycle latency

L2 cache 1M, 4-way, unified, 12 cycle latency

Memory access
latency

80 cycles + 4cycles per 8 bytes

Reorder buffer size 128

LSQ size 128

Branch predictor 2-level hybrid

Table 1: System configuration parameters.

FIGURE 3: Layout of 64 SRAM cells connected to a single gated-V dd NMOS transistor.

gated-Vdd

transistor
6

Appears inIEEE TVLSI special issue on low-power design, February 2001.

an
a
ur-

the
er-
ge

to
es.
to a
ge.
of increasing the active leakage energy by several orders of magni-
tude. The standby column shows the standby mode leakage energy
using gated-Vdd to be orders of magnitude smaller than active
energy. Comparing the first three rows with the last three indicates
that decreasing the threshold voltage of the gated-Vdd transistors sig-
nificantly increases standby leakage energy dissipation.

5.1.2 Impact of Various Gated-Vdd Implementations

Increasing the gated-Vdd transistor width improves SRAM cell read
times but decreases energy savings while increasing area. Table 3
shows energy, area, and relative speed as the width of the gated-Vdd
transistor is increased. In the first row, the gated-Vdd transistor width
is set as described in Section 3 and increased in the second and third
rows. The cell and the gated-Vdd transistors threshold voltage is
0.20V for these simulations. There is a clear trade-off in cell read
time against area and standby energy, though the standby energy is
low in all cases.

Table 4 depicts the four circuit-level gated-Vdd implementations we
evaluate. The table depicts the percentage of leakage energy saved in
the standby mode, the cell read times, and the area overhead of each
technique relative to a standard low-Vt SRAM cell with no gated-
Vdd. The techniques can be grouped into two categories: the first cat-
egory (the first three rows) has lower performance and the second
(the last three rows) has higher performance.

From the first two rows we see that in spite of decreasing the cell
threshold voltage from 0.40V to 0.20V, gated-Vdd manages to
reduce the standby mode energy. The second and third rows indicate
the trade-off between energy and speed depending on the threshold
voltage of the gated-Vdd transistor. The fifth row indicates a slightly

faster read time for gated-Vdd because the PMOS gated-Vdd transis-
tor creates a virtual Vdd for the SRAM cells slightly lower than the
supply voltage. Therefore, we may use PMOS gated-Vdd transistors
to sacrifice energy savings for better performance.

To mitigate the negative impact on SRAM cell speed due to
NMOS gated-Vdd transistor, we can use a wider transistor with
charge pump. To offset a wider transistor’s increased leakage c
rent, we further raise the gated-Vdd transistor’s threshold voltage.
The last row shows results for increasing the gated-Vdd transistor
width by a factor of four and adding a charge pump that raises
active mode gate voltage to 1.35V. The resulting SRAM speed ov
head is only around 8% compared to the low threshold volta
SRAM cells without gated-Vdd, while the relative reduction in
standby mode energy is 97%.

5.2 Energy Calculations

A DRI i-cache decreases leakage energy by gating Vdd to cache sec-
tions in standby mode but increases both L1 dynamic energy due
the resizing tag bits and L2 dynamic energy due to extra L1 miss
We compute the energy savings using a DRI i-cache compared
conventional i-cache using an aggressively-scaled threshold volta
Therefore,

energy savings = conventional i-cache leakage energy−
effective L1 DRI i-cache leakage energy

effective L1 DRI i-cache leakage energy = L1 leakage energy +
extra L1 dynamic energy + extra L2 dynamic energy

L1 leakage energy = active portion leakage energy +
standby portion leakage energy

active portion leakage energy = active fraction×
conventional i-cache leakage energy

standby portion leakage energy≈ 0

SRAM
Cell
Vt (V)

Gated-Vdd
Vt (V)

Relative
Read
Time

Active
Leakage
Energy (aJ)

Standby
Leakage
Energy (aJ)

0.40 0.40 2.8 12 10

0.30 0.40 2.3 143 49

0.20 0.40 1.1 1700 50

0.40 0.20 2.6 12 11

0.30 0.20 2.1 143 76

0.20 0.20 1.0 1700 165

Table 2: Lowering transistor threshold voltages.

Area
Increase (%)
of NMOS
Gated-Vdd

Relative
Read
Time

Active
Leakage
Energy (aJ)

Standby
Leakage
Energy (aJ)

2 1.00 1700 166

4 0.90 1710 245

8 0.85 1720 371

Table 3: Widening the gated-V dd transistor.

Implementation
Technique

Gated-Vdd
Vt (V)

SRAM
Vt (V)

Relative
Read
Time

Active
Leakage
Energy (nJ)

Standby
Leakage
Energy (nJ)

Energy
Savings (%)

Area
Increase (%)

no gated-Vdd, high-Vt N/A 0.40 2.22 50 N/A N/A N/A

NMOS gated-Vdd, dual-Vt 0.40 0.20 1.30 1690 50 97 2

NMOS gated-Vdd, dual-Vt 0.50 0.20 1.35 1740 49 97 2

no gated-Vdd, low-Vt N/A 0.20 1.00 1740 N/A N/A N/A

PMOS gated-Vdd, low-Vt 0.20 0.20 1.00 1740 235 86 0

NMOS gated-Vdd, dual-Vt,
wide, charge pump

0.40 0.20 1.08 1740 53 97 5

Table 4: Energy, speed, and area of various gated-V dd implementations.
7

Appears inIEEE TVLSI special issue on low-power design, February 2001.

e-
ive
24,
1
rtion
the

k-
is
tal
s a
f
he
ute
ses
2

ese
he
rgy

y a
this
si-
nt
ot-

the
ings
ter-
m-
s-
to
ver,
ol-
her

both
or-
We

ed”
ith
nts
ce

che
ce-
ase
e

best
ase

on.
e

extra L1 dynamic energy = resizing bits×
dynamic energy of 1 bitline per L1 access× L1 accesses

extra L2 dynamic energy = dynamic energy per L2 access×
extra L2 accesses

The effective L1 leakage energy is the leakage energy dissipated by
the DRI i-cache during the course of the application execution. This
energy consists of three components. The first component, the L1
leakage energy, is the leakage energy dissipated in the active and
standby portions of the DRI i-cache. We compute the active por-
tion’s leakage energy as the leakage energy dissipated by a conven-
tional i-cache in one cycle times a DRI i-cache active portion size (as
a fraction of the total size) times the number of cycles. We obtain the
average active portion size and the number of cycles from Simples-
calar simulations. Using the low-Vt active cell leakage energy num-
bers in Table 4, we compute the leakage energy for a conventional i-
cache per cycle to be 0.91 nJ. Because the standby mode energy is a
factor of 30 smaller than the active mode energy in Table 4, we
approximate the standby mode term as zero. Therefore,

L1 leakage energy = active fraction× 0.91× cycles

The second component is the extra L1 dynamic energy dissipated
due to the resizing tag bits during the application execution. We
compute this component as the number of resizing tag bits used by
the program times the dynamic energy dissipated in one access of
one resizing tag bitline in the L1 cache times the number of L1
accesses made in the program. Using CACTI’s Spice files, we esti-
mate the dynamic energy per resizing bitline to be 0.0022 nJ. There-
fore,

extra L1 dynamic energy = resizing bits× 0.0022× L1 accesses

The third component is the extra L2 dynamic energy dissipated in
accessing the L2 cache due to the extra L1 misses during the appli-
cation execution. We compute this component as the dynamic
energy dissipated in one access of the L2 cache times the number of
extra L2 accesses. We use the calculations for cache access energy in
[12] and estimate the dynamic energy per L2 access to be 3.6 nJ.
Therefore,

extra L2 dynamic energy = 3.6× extra L2 accesses

Using these expressions for L1 leakage energy, extra L1 dynamic
energy, and extra L2 dynamic energy, we compute the effective L1
leakage energy and the overall energy savings of a DRI i-cache.

5.2.1 Leakage and Dynamic Energy Trade-off

If the extra L1 and L2 dynamic energy components do not signifi-
cantly add to L1 leakage energy, a DRI i-cache’s energy savings will
not be outweighed by the extra (L1+L2) dynamic energy, as fore-
casted in Section 2.3. To demonstrate that the components do not
significantly add to L1 leakage energy, we compare each of the com-
ponents to the L1 leakage energy and show that the components are
much smaller than the leakage energy.

extra L1 dynamic energy / L1 leakage energy≈
(resizing bits× 0.0022) / (active fraction× 0.91)≈
0.024 (if resizing bits = 5 and active fraction = 0.50)

We compare the extra L1 dynamic energy against the L1 leakage
energy by computing their ratio. We simplify the ratio by approxi-
mating the number of L1 accesses to be equal to the number of
cycles (i.e., an L1 access is made every cycle), and cancelling the

two in the ratio. If the number of resizing tag bits is 5 (i.e., the siz
bound is a factor of 32 smaller than the original size), and the act
portion is as small as half the original size, the ratio reduces to 0.0
implying that the extra L1 dynamic energy is about 3% of the L
leakage energy, under these extreme assumptions. This asse
implies that if a DRI i-cache achieves sizable savings in leakage,
extra L1 dynamic energy will not outweigh the savings.

extra L2 dynamic energy / L1 leakage energy =
 (3.6× extra L2 accesses) / (active fraction× 0.91× cycles)≈
 (3.95 / active fraction)× extra L1 miss rate≈
0.08 (if active fraction = 0.50 and extra L1 miss rate = 0.01)

Now we compare the extra L2 dynamic energy against the L1 lea
age energy by computing their ratio. As, before, we simplify th
ratio by approximating the number of cycles to be equal to the to
number of L1 accesses, which allows us to express the ratio a
function of theabsoluteincrease in the L1 miss rate (i.e., number o
extra L1 misses divided by the total number of L1 accesses). If t
active portion is as small as half the original size, and the absol
increase in L1 miss rate is as high as 1% (e.g., L1 miss rate increa
from 5% to 6%), the ratio reduces to 0.08, implying that the extra L
dynamic energy is about 8% of the L1 leakage energy, under th
extreme assumptions. This assertion implies that if a DRI i-cac
achieves sizable savings in leakage, the extra L2 dynamic ene
will not outweigh the savings.

5.3 Overall Energy Savings and Performance Results

In this section, we present the overall energy savings achieved b
DRI i-cache. Unless stated otherwise, all the measurements in
section use a sense-interval of one million instructions and a divi
bility of two. To prevent repeated resizing between two adjace
sizes (Section 2.1), we use a 3-bit saturating counter to trigger thr
tling and prevent downsizing for a period of ten sense-intervals.

Because a DRI i-cache’s energy dissipation mainly depends on
miss-bound and size-bound, we show the best-case energy sav
achieved under various combinations of these parameters. We de
mine the best case via simulation by empirically searching the co
bination space. Each benchmark’s level of sensitivity to the mis
bound and size-bound is different, requiring different values
determine the best-case energy-delay. Most benchmarks, howe
exhibit low miss rates in the conventional i-cache, and therefore t
erate miss-bounds that are one to two orders of magnitude hig
than the conventional i-cache miss rates.

We present the energy-delay product because it ensures that
reduction in energy and the accompanying degradation in perf
mance are taken into consideration together, and not separately.
present results on two design points. Our “performance-constrain
measurements focus on a DRI i-cache’s ability to save energy w
minimal impact on performance. Therefore, these measureme
search for the best-case energy-delay while limiting the performan
degradation to under 4% as compared to a conventional i-ca
using an aggressively-scaled threshold voltage. The “performan
unconstrained” measurements simply search for the best-c
energy-delay without limiting the performance degradation. W
include performance-unconstrained measurements to show the
possible energy-delay, although the performance-unconstrained c
sometimes amounts to prohibitively high performance degradati
We compute the energy-delay product by multiplying the effectiv
8

Appears inIEEE TVLSI special issue on low-power design, February 2001.

is

e is
he
che

for

ce
%,

po-

wn-
L2
the
l is
ec-

ate-
first
n.

he
nce-

y
he
L1
DRI i-cache leakage energy numbers from Section 5.2 with the exe-
cution time.

Figure 4 shows our base energy-delay product and average cache
size measurements normalized with respect to the conventional i-
cache. The figure depicts measurements for both performance-con-
strained (left bars) and performance-unconstrained (right bars)
cases. The top graph depicts the normalized energy-delay products.
The graph shows the percentage increase in execution time relative
to a conventional i-cache above the bars whenever performance deg-
radation is more than 4% for the performance-unconstrained mea-
surements. In the graph, the stacked bars show the breakdown
between the leakage and the dynamic component due to the extra
dynamic energy. The bottom graph shows the DRI i-cache size aver-
aged over the benchmark execution time, as a fraction of the conven-
tional i-cache size. We show the miss rates under the performance-
unconstrained case above the bars whenever the miss rates are higher
than 1%.

From the top graph, we see that a DRI i-cache achieves large reduc-
tions in the energy-delay product as performance degradation is con-
strained, demonstrating the effectiveness of our adaptive resizing
scheme. The reduction ranges from as much as 80% forapplu, com-
press, ijpeg, andmgrid, to 60% forapsi, hydro2d, li , andswim, 40%
for m88ksim, perl, andsu2cor, and 10% forgcc, go, andtomcatv. In
fpppp the 64K i-cache is fully-utilized preventing the cache from
resizing and reducing the energy-delay. The energy-delay products’
dynamic component is small for all the benchmarks, indicating that
both the extra L1 dynamic energy due to resizing bits is small and
the extra L2 accesses are few, as discussed in Section 2.3.

There are only a few benchmarks (gcc, go, m88ksim, andtomcatv)
which exhibit a significantly lower energy-delay under the perfor-
mance-unconstrained scenario. For all these benchmarks, perfor-
mance of the performance-unconstrained case is considerably worse

than that of the conventional i-cache (e.g.,gccby 27%,go by 30%,
tomcatvby 21%), indicating that the lower energy-delay product
achieved at the cost of lower performance.

From the bottom graph, we see that the average DRI i-cache siz
significantly smaller than the conventional i-cache and the i-cac
requirements largely vary across benchmarks. The average ca
size reduction ranges from as much as 80% forapplu, compress,
ijpeg, li , andmgrid, to 60% form88ksim, perl, andsu2cor, and 20%
for gcc, go, andtomcatv.

The conventional i-cache miss rate (not shown) is less than 1%
all the benchmarks (highest being 0.7% forperl). The DRI i-cache
miss rates are also all below 1%, except forperl at 1.1%, for the per-
formance-constrained case. It follows that the absolute differen
between DRI and conventional i-cache miss rates is less than 1
well within the bounds necessary to keep the extra dynamic com
nent low (computed in Section 5.2).

A DRI i-cache’s simple adaptive scheme enables the cache to do
size while keeping a tight control over the miss rate and the extra
dynamic energy. Our miss rate measurements (not shown) for
performance-constrained experiments, where miss rate contro
key, indicate that the largest absolute difference between the eff
tive DRI i-cache miss rate and the miss-bound is 0.004 forgcc.

To understand the average i-cache size requirements better, we c
gorize the benchmarks into three classes. Benchmarks in the
class primarily require a small i-cache throughout their executio
They mostly execute tight loops allowing a DRI i-cache to stay at t
size-bound, causing the performance-constrained and performa
unconstrained cases to match.Applu, compress, li, mgridandswim
fall in this class, and primarily stay at the minimum size allowed b
the size-bound. The dynamic component is a large fraction of t
DRI i-cache energy in these benchmarks because much of the

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e C

ac
he

 S
ize

applu

compress li
mgrid swim apsi

fpppp go

m88ksim perl gcc
hydro2d

ijpeg
su2cor

tomcatv

3.73.2

1.1

2.3
1.4

 C U
0.0

0.2

0.4

0.6

0.8

1.0

C: Performance-constrained U: Performance-unconstrained
L1 Leakage Extra L1 + L2 Dynamic

 Class 1 Class 2 Class 3

DRI i-cache miss rate

Re
lat

ive
 E

ne
rg

y-D
ela

y

14

30

6
12 27

7

21
9

6

 % Slowdown

FIGURE 4: Base energy-delay and average cache size measurements.
9

Appears inIEEE TVLSI special issue on low-power design, February 2001.

nd
ea-

aph
en-
age
4%.
con-
ses

und
y-
ss-
L2
ch-
ect

tes
in
sizes
per-

nd
ure-

ing

he
the
age
leakage energy is eliminated through size reduction and a large num-
ber of resizing tag bits are used to allow a small size-bound.

The second class consists of the benchmarks that primarily require a
large i-cache throughout their execution and do not benefit much
from downsizing.Apsi, fpppp, go, m88ksimandperl fall under this
class, andfppppis an extreme example of this class. If these bench-
marks are encouraged to downsize via high miss-bounds, they incur
a large number of extra L1 misses, resulting in a significant perfor-
mance loss. Consequently, the performance-constrained case uses a
small number of resizing tag bits, forcing the size-bound to be rea-
sonably large.Fpppprequires the full-sized i-cache, so reducing the
size dramatically increases the miss rate, canceling out any leakage
energy savings for this benchmark. Therefore, we disallow the cache
from downsizing forfppppby setting the size-bound to 64K. In the
rest of the benchmarks, when performance is constrained, the
dynamic energy overhead is much less than the leakage energy sav-
ings, allowing the cache to benefit from downsizing.

The last class of benchmarks exhibit distinct phases with diverse i-
cache size requirements.Gcc, hydro2d, ijpeg, su2corand tomcatv
belong to this class of benchmarks. A DRI i-cache’s effectiveness to
adapt to the required i-cache size is dependent on its ability to detect
the program phase transitions and resize appropriately.Hydro2dand
ijpeg both have relatively clear phase transitions. After the initializa-
tion phase requiring the full size of i-cache, these benchmarks con-
sists mainly of small loops requiring only 2K of i-cache. Therefore,
a DRI i-cache adapts to the phases ofhydro2dandijpegwell, achiev-
ing small average sizes with little performance loss. The phase tran-
sitions in gcc, su2corand tomcatv are not as clearly defined,
resulting in a DRI i-cache not adapting as well as it did forhydro2d
or ijpeg. Consequently, these benchmarks’ average sizes under both
the performance-constrained and performance-unconstrained cases
are relatively large.

5.3.1 Impact of Varying Miss-Bound

Figure 5 shows the results for varying the miss-bound to half a
double the miss-bound for the base performance-constrained m
surements, while keeping the size-bound the same. The top gr
shows the effective energy-delay product normalized to the conv
tional i-cache leakage energy-delay, together with the percent
performance degradation for those cases which are higher than
The bottom graph shows average cache sizes as a fraction of the
ventional i-cache size, together with the miss rate for those ca
which are above 1%.

The energy-delay graph shows that despite varying the miss-bo
over a factor of four range (i.e., from 0.5x to 2x), most of the energ
delay products do not change significantly. Even when the mi
bound is doubled, the L1 miss rates stay within 1% and the extra
dynamic energy-delay does not increase much for most of the ben
marks. Therefore, our adaptive scheme is fairly robust with resp
to a reasonable range of miss-bounds. The exceptions aregcc, go,
perl, and tomcatv, which need large i-caches but allow for more
downsizing under higher miss-bounds. The bottom graph indica
that the DRI i-cache does not readily identify phase transitions
these benchmarks. These benchmarks achieve average i-cache
smaller than those of the base case, but incur between 5%-8%
formance degradation compared to the conventional i-cache.

5.3.2 Impact of Varying Size-Bound

Figure 6 shows the results for varying the size-bound to double a
half the size-bound for the base performance-constrained meas
ments, while keeping the miss-bound the same.Fpppp’sbase size-
bound is 64K, and therefore there is no measurement correspond
to double the size-bound forfpppp. The top graph shows the effec-
tive energy-delay product normalized to the conventional i-cac
leakage energy-delay and also the percentage slowdown for
cases which are higher than 4%. The bottom graph shows aver

FIGURE 5: Impact of varying the miss-bound.

0.0

0.2

0.4

0.6

0.8

1.0

Re
lat

ive
 E

ne
rg

y-D
ela

y

L1 Leakage Extra L1 Dynamic Extra L2 Dynamic

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e C

ac
he

 S
ize

7

7

8

5

-: 0.5 x base miss-bound b: base miss-bound +: 2 x base miss-bound

- b +

1.1
1.1

1.2

 Class 1 Class 2 Class 3

DRI i-cache miss rate

 % Slowdown

applu

compress li
mgrid swim apsi

fpppp go
m88ksim perl gcc

hydro2d
ijpeg

su2cor
tomcatv
10

Appears inIEEE TVLSI special issue on low-power design, February 2001.

i-
m
om

el
ron
ey
pac-
w-
nd,
-

the
ly
size
-

ade-
it-
a

nce
ld
o

V

ll
e-

gy-
nd
cache sizes as a fraction of the conventional i-cache size, together
with the miss rate for those cases which are above 1%.

The graphs show that a smaller size-bound results in a larger reduc-
tion in the average cache size, but the effect on the energy-delay var-
ies depending on the benchmark class. The first class of benchmarks
incur little performance degradation with the base size-bound
because the benchmarks’ i-cache requirements are small. Through-
out the benchmarks’ execution, a DRI i-cache stays at the minimum
size allowed by the size-bound. Therefore, doubling the size-bound
simply increases the energy-delay and halving it increases the extra
L2 dynamic energy, which worsens the energy-delay.

Decreasing the size-bound for the second class encourages downsiz-
ing at the cost of a lower performance due the benchmarks’ large i-
cache requirements. For the third class of benchmarks, the extra L1
dynamic energy incurred by decreasing the size-bound outstrips the
leakage energy savings, resulting in an increase in energy-delay.
Fpppp’s results for a 32K size-bound indicate that a poor choice of
parameters may result in unnecessary resizing and actually increase
the energy-delay beyond that of a conventional i-cache.

5.3.3 Impact of Varying Sense-Interval Length and Divisibility

In this section, we discuss our measurements varying the sense-
interval length and divisibility. Ideally, we want the sense-interval
length to correspond to program phases, allowing the cache to resize
before entering a new phase. Our experiments show that a DRI i-
cache is highly robust to the interval length for the benchmarks we
studied. When varying the interval length from 250K to 4M i-cache
accesses, the energy-delay product varies by less than 1% in all but
one benchmark, and less than 5% ingo due to its irregular phase
transitions.

A large divisibility reduces the switching overhead in applications
with frequent switching between two extreme i-cache sizes. Our
experiments indicate that for all the benchmarks, a divisibility of

four or eight (i.e., a factor of four or eight change in size) prohib
tively increases the resizing granularity preventing the cache fro
assuming a size close to the required size, offsetting the gains fr
reduced switching overhead.

6 CONCLUSIONS

This paper explored an integrated architectural and circuit-lev
approach to reducing leakage energy dissipation in deep-submic
cache memories while maintaining high performance. The k
observation in this paper is that the demand on cache memory ca
ity varies both within and across applications. Modern caches, ho
ever, are designed to meet the worst-case application dema
resulting in poor utilization and consequently high energy ineffi
ciency in on-chip caches. We introduced a novel cache called
Dynamically Resizable i-cache (DRI i-cache) that dynamical
reacts to application demand and adapts to the required cache
during an application’s execution. At the circuit-level, the DRI i
cache employs gated-Vdd to virtually eliminate leakage in the
cache’s unused sections.

We evaluated the energy savings and the energy performance tr
off of a DRI i-cache and presented detailed architectural and circu
level simulation results. Our results indicated that: (i) There is
large variability in L1 i-cache utilization bothwithin and across
applications. A DRI i-cache effectively exploits this variability and
reduces the average size of a 64K cache by 62% with performa
degradation constrained within 4%; (ii) Lowering the cell thresho
voltage from 0.4V to 0.2V results in doubling the cell speed and tw
orders of magnitude increase in leakage. A wide NMOS dual-t
gated-Vdd transistor with a charge pump offers the best gated-Vdd
implementation and virtually eliminates leakage with only 8% ce
read time and 5% area increase; (iii) A DRI i-cache effectively int
grates architectural and the gated-Vdd circuit techniques to reduce
leakage in an L1 i-cache. A DRI i-cache reduces the leakage ener
delay product by 62% with performance degradation within 4%, a

FIGURE 6: Impact of varying the size-bound.

+ b -

17

1.0

1.1
1.7

6 12 14

8

5
8

6

L1 Leakage Extra L1 Dynamic Extra L2 Dynamic

+: 2 x base size-bound b: base size-bound -: 0.5 x base size-bound

 Class 1 Class 2 Class 3

N
O
T

A
P
P
L
I
C
A
B
L
E

N
O
T

A
P
P
L
I
C
A
B
L
E

DRI i-cache miss rate

% Slowdown

0.0

0.2

0.4

0.6

0.8

1.0

Re
lat

ive
 E

ne
rg

y-D
ela

y

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e C

ac
he

 S
ize

applu

compress li
mgrid swim apsi

fpppp go

m88ksim perl gcc
hydro2d

ijpeg
su2cor

tomcatv
11

Appears inIEEE TVLSI special issue on low-power design, February 2001.

e-

n

:

r-

-
p-
,
r,

,
it

-

n
-

e

-

al
://

t

-

,
r,
m
r-

h-
-

d
d
-

ld
-

e

by 67% with higher performance degradation; (iv) Our adaptive
scheme gives a DRI i-cache tight control over the miss rate to keep it
close to a preset value, enabling the DRI i-cache to contain both the
performance degradation and the increase in lower cache levels’
energy dissipation. Moreover, the scheme is robust and performs
predictably without drastic reactions to varying the adaptivity
parameters.

Acknowledgements

This research is supported in part by SRC under contract 2000-HJ-
768. This material is also based upon work supported under a
National Science Foundation Graduate Fellowship. We would like to
thank Shekhar Borkar, Vivek De, Ali Keshavarzi, and Faith Hamzao-
glu for information on leakage trends in cache hierarchies in emerg-
ing deep-submicron technologies.

References

[1] D. H. Albonesi. Selective cache ways: On-demand cache re-
source allocation. InProceedings of the 32nd Annual IEEE/
ACM International Symposium on Microarchitecture (MI-
CRO 32), pages 248–259, Nov. 1999.

[2] N. Bellas, I. Hajj, and C. Polychronopoulos. Using dynamic
management techniques to reduce energy in high-perfor-
mance processors. InProceedings of the 1999 International
Symposium on Low Power Electronics and Design (IS-
LPED), pages 64–69, Aug. 1999.

[3] S. Borkar. Design challenges of technology scaling.IEEE
Micro, 19(4):23–29, July 1999.

[4] T. Burd and R. Brodersen. Design issues for dynamic voltage
scaling. InProceedings of the 2000 International Symposium
on Low Power Electronics and Design (ISLPED), July 2000.

[5] D. Burger and T. M. Austin. The SimpleScalar tool set, ver-
sion 2.0. Technical Report 1342, Computer Sciences Depart-
ment, University of Wisconsin–Madison, June 1997.

[6] B. Davari, R. Dennard, and G. Shahidi. CMOS scaling for
high performance and low power- the next ten years.Pro-
ceedings of the IEEE, 83(4):595, June 1995.

[7] V. De. Private communication.
[8] I. Fukushi, R. Sasagawa, M. Hamaminato, T. Izawa, and

S. Kawashima. A low-power SRAM using improved charge
transfer sense. InProceedings of the 1998 International Sym-
posium on VLSI Circuits, pages 142–145, 1998.

[9] M. Hamada and et al. A top-down low power design tech-
nique using cluster volatge scaling with variable supply volt-
age scheme. InProceedings of the 1998 Custom Integrated
Circuits Conference, pages 495–498, 1998.

[10] F. Hamzaoglu, Y. Ye, A. Keshavarzi, K. Zhang,
S. Narendra, S. Borkar, M. Stan, and V. De. Dual-Vt SRAM
cells with full-swing single-ended bit line sensing for high-
performance on-chip cache in 0.13um technology generation.
In Proceedings of the 2000 International Symposium on Low
Power Electronics and Design (ISLPED), July 2000.

[11] C. Hu. Low Power Design Methodologies, chapter Device
and technology impact on low power electronics, pages 21–
35. Kluwer Publishing, 1996.

[12] M. B. Kamble and K. Ghose. Analytical energy dissipation
models for low power caches. InProceedings of the 1997 In-

ternational Symposium on Low Power Electronics and D
sign (ISLPED), Aug. 1997.

[13] J. Kin, M. Gupta, and W. H. Mangione-Smith. The filter
cache: An energy efficient memory structure. InProceedings
of the 30th Annual IEEE/ACM International Symposium o
Microarchitecture (MICRO 30), pages 184–193, Dec. 1997.

[14] S. Manne, A. Klauser, and D. Grunwald. Pipline gating
Speculation control for energy reduction. InProceedings of
the 25th Annual International Symposium on Computer A
chitecture, pages 132–141, June 1998.

[15] J. Montanaro, R. T. Witek, K. Anne, A. J. Black, E. M. Coo
per, D. W. Dobberpuhl, P. M. Donahue, J. Eno, G. W. Hoe
pner, D. Kruckemyer, T. H. Lee, P. C. M. Lin, L. Madden
D. Murray, M. H. Pearce, S. Santhanam, K. J. Snyde
R. Stephany, and S. C. Thierauf. A 160-MHz, 32-b, 0.5-W
CMOS RISC microprocessor.IEEE Journal of Solid-State
Circuits, 31(11):1703–1714, 1996.

[16] S. Mutoh, T. Douskei, Y. Matsuya, T. Aoki, S. Shigematsu
and J. Yamada. 1-V power supply high-speed digital circu
technology with multithreshold-voltage CMOS.IEEE Jour-
nal of Solid-State Circuits, 30(8):847–854, 1995.

[17] J.-K. Peir, Y. Lee, and W. W. Hsu. Capturing dynamic mem
ory reference behavior with adaptive cache topology. InPro-
ceedings of the Eighth International Conference o
Architectural Support for Programming Languages and Op
erating Systems (ASPLOS VIII), pages 240–250, Oct. 1998.

[18] M. D. Powell, S.-H. Yang, B. Falsafi, K. Roy, and T. N. Vi-
jaykumar. Gated-Vdd: A circuit technique to reduce leakag
in cache memories. InProceedings of the 2000 International
Symposium on Low Power Electronics and Design (IS
LPED), pages 90–95, July 2000.

[19] J. M. Rabaey.Digital Integrated Circuits. Prentice Hall,
1996.

[20] Semiconductor Industry Association. The Internation
Technology Roadmap for Semiconductors (ITRS). http
www.semichips.org, 1999.

[21] D. Singh and V. Tiwari. Power challenges in the interne
world. Cool Chips Tutorial in conjunction with the 32nd An-
nual International Symposium on Microarchitecture, Novem
ber 1999.

[22] L. Su, , R. Schulz, J. Adkisson, K. Byer, G. Biery, W. Cote
E. Crabb, D. Edelstein, J. Ellis-Monaghan, E. Eld, D. Foste
R. Gehres, and et. al. A high performance sub-0.25u
CMOS technology with multiple thresholds and copper inte
connects. InIEEE Symposium on VLSI Technology, 1998.

[23] K. Usami and M. Horowitz. Design methodology of ultra
low-power mpeg4 codec core ecploiting voltage scaling tec
niques. InProceedings of the 35th Design Automation Con
ference, pages 483–488, 1998.

[24] L. Wei, Z. Chen, M. Johnson, K. Roy, and V. De. Design an
optimization of low voltage high performance dual threshol
CMOS circuits. InProceedings of the 35th Design Automa
tion Conference, pages 489–494, 1998.

[25] L. Wei, Z. Chen, and K. Roy. Double gate dynamic thresho
voltages (DGDT) SOI MOSFETs for low power high perfor
mance designs. InIEEE International SOI Conference, pages
82–83, 1997.

[26] L. Wei and K. Roy. Design and optimization for low-leakag
12

Appears inIEEE TVLSI special issue on low-power design, February 2001.
with multiple threshold CMOS. InIEEE Workshop on Power
and Timing Modeling, pages 3–7, Oct. 1998.

[27] S. J. E. Wilson and N. P. Jouppi. An enhanced access and cy-
cle time model for on-chip caches. Technical Report 93/5,
Digital Equipment Corporation, Western Research Laborato-
ry, July 1994.

[28] Y. Ye, S. Borkar, and V. De. A new technique for standby
leakage reduction in high performance circuits. InIEEE Sym-
posium on VLSI Circuits, pages 40–41, 1998.
13

	Abstract
	1 Introduction
	2 DRI I-cache: Reducing Deep-submicron I-cache Leakage
	2.1 Basic DRI I-Cache Design
	FIGURE 1: Anatomy of a DRI i-cache.

	2.2 Implications on Cache Lookups
	2.3 Impact on Energy and Performance
	2.3.1 Controlling Extra Misses
	FIGURE 2: 6-T SRAM cells connected to a gated-Vdd transistor (typical transistor W/L ratios).

	3 Gated-Vdd: Circuit-level Supply-Voltage Gating
	4 Methodology
	Table 1: System configuration parameters.
	FIGURE 3: Layout of 64 SRAM cells connected to a single gated-Vdd NMOS transistor.

	5 Results
	5.1 Circuit Results
	5.1.1 Impact of Lowering Threshold Voltage
	Table 2: Lowering transistor threshold voltages.

	5.1.2 Impact of Various Gated-Vdd Implementations
	Table 3: Widening the gated-Vdd transistor.
	Table 4: Energy, speed, and area of various gated-Vdd implementations.

	5.2 Energy Calculations
	5.2.1 Leakage and Dynamic Energy Trade-off

	5.3 Overall Energy Savings and Performance Results
	FIGURE 4: Base energy-delay and average cache size measurements.
	FIGURE 5: Impact of varying the miss-bound.
	5.3.1 Impact of Varying Miss-Bound
	5.3.2 Impact of Varying Size-Bound
	FIGURE 6: Impact of varying the size-bound.

	5.3.3 Impact of Varying Sense-Interval Length and Divisibility

	6 Conclusions
	Acknowledgements
	References

