
Content-Based
Classification,
Search, and
Retrieval of Audio

Many audio and
multimedia
applications would
benefit from the
ability to classify and
search for audio
based on its
characteristics. The
audio analysis,
search, and
classification engine
described here
reduces sounds to
perceptual and
acoustical features.
This lets users search
or retrieve sounds by
any one feature or a
combination of
them, by specifying
previously learned
classes based on
these features, or by
selecting or entering
reference sounds and
asking the engine to
retrieve similar or
dissimilar sounds.

Erling Wold, Thorn Blum, Douglas Keislar,
and James Wheaton

Muscle Fish

he T rapid increase in speed and capacity
of computers and networks has
allowed the inclusion of audio as a data
type in many modern computer appli-

cations. However, the audio is usually treated as an
opaque collection of bytes with only the most prim-
itive fields attached: name, file format, sampling
rate, and so on. Users accustomed to searching,
scanning, and retrieving text data can be frustrated
by the inability to look inside the audio objects.

Multimedia databases or file systems, for exam-
ple, can easily have thousands of audio record-
ings. These could be anything from a library of
sound effects to the soundtrack portion of a news
footage archive. Such libraries are often poorly
indexed or named to begin with. Even if a previ-
ous user has assigned keywords or indices to the
data, these are often highly subjective and may be
useless to another person. Searching for a partic-
ular sound or class of sound (such as applause,
music, or the speech of a particular speaker) can
be a daunting task.

How might people want to access sounds? We
believe there are several useful methods, all of
which we have attempted to incorporate into our
system.

I Simile: saying one sound is like another sound
or a group of sounds in terms of some charac-
teristics. For example, “like the sound of a herd
of elephants.” A simpler example would be to

say that it belongs to the class of speech sounds
or the class of applause sounds, where the sys-
tem has previously been trained on other
sounds in this class.

I Acoustical/perceptual features: describing the
sounds in terms of commonly understood
physical characteristics such as brightness,
pitch, and loudness.

I Subjective features: describing the sounds using
personal descriptive language. This requires
training the system (in our case, by example)
to understand the meaning of these descriptive
terms. For example, a user might be looking for
a “shimmering” sound.

I Onomatopoeia: making a sound similar in some
quality to the sound you are looking for. For
example, the user could making a buzzing
sound to find bees or electrical hum.

In a retrieval application, all of the above could
be used in combination with traditional keyword
and text queries.

To accomplish any of the above methods, we
first reduce the sound to a small set of parameters
using various analysis techniques. Second, we use
statistical techniques over the parameter space to
accomplish the classification and retrieval.

Previous research
Sounds are traditionally described by their

pitch, loudness, duration, and timbre. The first
three of these psychological percepts are well
understood and can be accurately modeled by
measurable acoustic features. Timbre, on the other
hand, is an ill-defined attribute that encompasses
all the distinctive qualities of a sound other than
its pitch, loudness, and duration. The effort to dis-
cover the components of timbre underlies much
of the previous psychoacoustic research that is rel-
evant to content-based audio retrieval.*

Salient components of timbre include the
amplitude envelope, harmonicity, and spectral
envelope. The attack portions of a tone are often
essential for identifying the timbre. Timbres with
similar spectral energy distributions (as measured
by the centroid of the spectrum) tend to be judged
as perceptually similar. However, research has
shown that the time-varying spectrum of a single
musical instrument tone cannot generally be
treated as a “fingerprint” identifying the instru-
ment, because there is too much variation across

1070-986X/96/$5.00 6 1996 IEEE

the instrument’s range of pitches and across its
range of dynamic levels.

Various researchers have discussed or proto-
typed algorithms capable of extracting audio
structure from a sound.z The goal was to allow
queries such as “find the first occurrence of the
note G-sharp.” These algorithms were tuned to
specific musical constructs and were not appro-
priate for all sounds.

Other researchers have focused on indexing
audio databases using neural nets.3 Although they
have had some success with their method, there
are several problems from our point of view. For
example, while the neural nets report similarities
between sounds, it is very hard to “look inside” a
net after it is trained or while it is in operation to
determine how well the training worked or what
aspects of the sounds are similar to each other.
This makes it difficult for the user to specify which
features of the sound are important and which to
ignore.

Analysis and retrieval engine
Here we present a general paradigm and spe-

cific techniques for analyzing audio signals in a
way that facilitates content-based retrieval.
Content-based retrieval of audio can mean a vari-
ety of things. At the lowest level, a user could
retrieve a sound by specifying the exact numbers
in an excerpt of the sound’s sampled data. This is
analogous to an exact text search and is just as
simple to implement in the audio domain.

At the next higher level of abstraction, the
retrieval would match any sound containing the
given excerpt, regardless of the data’s sample rate,
quantization, compression, and so on. This is
analogous to a fuzzy text search and can be imple-
mented using correlation techniques. At the next
level, the query might involve acoustic features
that can be directly measured and perceptual (sub-
jective) properties of the sound.+5 Above this, one
can ask for speech content .or musical content.

It is the “sound” level-acoustic and perceptu-
al properties-with which we are most concerned
here. Some of the aural (perceptual) properties of
a sound, such as pitch, loudness, and brightness,
correspond closely to measurable features of the
audio signal, making it logical to provide fields for
these properties in the audio database record.
However, other aural properties (“scratchiness,”
for instance) are more indirectly related to easily
measured acoustical features of the sound. Some
of these properties may even have different mean-
ings for different users.

We first measure a variety of acoustical features
of each sound. This set of N features is represented
as an N-vector. In text databases, the resolution of
queries typically requires matching and compar-
ing strings. In an audio database, we would like to
match and compare the aural properties as
described above. For example, we would like to
ask for all the sounds similar to a given sound or
that have more or less of a given property. To
guarantee that this is possible, sounds that differ
in the aural property should map to different
regions of the N-space. If this were not satisfied,
the database could not distinguish between
sounds with different values for this property.
Note that this approach is similar to the “feature-
vector” approach currently used in content-based
retrieval of images, although the actual features
used are very different.6

Since we cannot know the complete list of
aural properties that users might wish to specify,
it is impossible to guarantee that our choice of
acoustical features will meet these constraints.
However, we can make sure that we meet these
constraints for many useful aural properties.

Acoustical features
We can currently analyze the following aspects

of sound: loudness, pitch, brightness, bandwidth,
and harmonicity.

Loudness is approximated by the signal’s root-
mean-square (RMS) level in decibels, which is cal-
culated by taking a series of windowed frames of
the sound and computing the square root of the
sum of the squares of the windowed sample val-
ues. (This method does not account for the fre-
quency response of the human ear; if desired, the
necessary equalization can be added by applying
the Fletcher-Munson equal-loudness contours.)
The human ear can hear over a 120-decibel range.
Our software produces estimates over a lOO-
decibel range from 16-bit audio recordings.

Pitch is estimated by taking a series of short-
time Fourier spectra. For each of these frames, the
frequencies and amplitudes of the peaks are mea-
sured and an approximate greatest common divi-
sor algorithm is used to calculate an estimate of
the pitch. We store the pitch as a log frequency.
The pitch algorithm also returns a pitch confi-
dence value that can be used to weight the pitch
in later calculations. A perfect young human ear
can hear frequencies in the ZO-Hz to ZO-kHz
range. Our software can measure pitches in the
range of 50 Hz to about 10 kHz.

Brightness is computed as the centroid of the

short-time Fourier magnitude spec-
tra, again stored as a log frequency.
It is a measure of the higher fre-
quency content of the signal. As an
example, putting your hand over
your mouth as you speak reduces the
brightness of the speech sound as
well as the loudness. This feature
varies over the same range as the
pitch, although it can’t be less than the pitch esti-
mate at any given instant.

Bandwidth is computed as the magnitude-
weighted average of the differences between the
spectral components and the centroid. As exam-
ples, a single sine wave has a bandwidth of zero
and ideal white noise has an infinite bandwidth.

Harmonicity distinguishes between harmonic
spectra (such as vowels and most musical sounds),
inharmonic spectra (such as metallic sounds), and
noise (spectra that vary randomly in frequency
and time). It is computed by measuring the devl-
ation of the sound’s line spectrum from a perfect-
ly harmonic spectrum. This is currently an
optional feature and is not used in the examples
that follow. It is normalized to lie in a range from
zero to one.

All of these aspects of sound vary over time.
The trajectory in time is computed during the
analysis but not stored as such in the database.
However, for each of these trajectories, several fea-
tures are computed and stored. These include the
average value, the variance of the value over the
trajectory, and the autocorrelation of the trajec-
tory at a small lag. Autocorrelation is a measure of
the smoothness of the trajectory. It can distin-
guish between a pitch glissando and a wildly vary-
ing pitch (for example), which the simple variance
measure cannot.

The average, variance, and autocorrelation
computations are weighted by the amplitude tra-
jectory to emphasize the perceptually important
sections of the sound. In addition to the above
features, the duration of the sound is stored. The
feature vector thus consists of the duration plus
the parameters just mentioned (average, variance,
and autocorrelation) for each of the aspects of
sound given above. Figure 1 shows a plot of the
raw trajectories of loudness, brightness, band-
width, and pitch for a recording of male laughter.

After the statistical analyses, the resulting
analysis record (shown in Table 1) contains the
computed values. These numbers are the only
information used in the content-based classifica-
tion and retrieval of these sounds. It is possible to

see some of the essential characteris-
tics of the sound. Most notably, we
see the rapidly time-varying nature
of the laughter.

Training the system
It is possible to specify a sound

directly by submitting constraints on
the values of the N-vector described
above directly to the system. For
example, the user can ask for sounds
in a certain range of pitch or bright-
ness, However, it is also possible to
train the system by example. In this
case, the user selects examples of
sounds that demonstrate the proper-
ty the user wishes to train, such as
“scratchiness.”

For each sound entered into the
database, the N-vector, which we
represent as a, is computed. When
the user supplies a set of example
sounds for training, the mean vector
,U and the covariance matrix R for
the a vectors in each class are calcu-
lated. The mean and covariance are
given by

0.00 0.50 1.00 0.00 1 so
X

--... LaughterYoungMale.bright

Figure 1. Male laughter.

where A4 is the number of sounds in the summa-
tion. In practice, one can ignore the off-diagonal
elements of R if the feature vector elements are
reasonably independent of each other. This sim-
plification can yield significant savings in com-
putation time. The mean and covariance together
become the system’s model of the perceptual
property being trained by the user.

Classifying sounds
When a new sound needs to be classified, a dis-

tance measure is calculated from the new sound’s
a vector and the model above. We use a weighted

D = ((a - p)T R1 (a - p))”

Again, the off-diagonal elements of R can be
ignored for faster computation. Also, simpler mea-
sures such as an L, or Manhattan distance can be
used. The distance is compared to a threshold to
determine whether the sound is “in” or “out” of
the class. If there are several mutually exclusive
classes, the sound is placed in the class to which
it is closest, that is, for which it has the smallest
value of D.

If it is known a priori that some acoustic fea-
tures .are unimportant for the class, these can be
ignored or given a lower weight in the computa-
tion of D. For example, if the class models some
timbral aspect of the sounds, the duration and
average pitch of the sounds can usually be
ignored.

We also define a likelihood value L based on
the normal distribution and given by

L = exp(-D2/2)

This value can be interpreted as “how much” of the
defining property for the class the new sound has.

Retrieving sounds
It is now possible to select, sort, or classify

sounds from the database using the distance mea-
sure. Some example queries are

I Retrieve the “scratchy” sounds. That is, retrieve
all the sounds that have a high likelihood of
being in the “scratchy” class.

I Retrieve the top 20 “scratchy” sounds.

I Retrieve all the sounds that are less “scratchy”
than a given sound.

I Sort the given set of sounds by how “scratchy”
they are.

I Classify a given set of sounds into the follow-
’ ing set of classes.

any desired hyper-rectangle of sounds in the data-
base by requesting all sounds whose feature val-
ues fall in a set of desired ranges. Requesting such
hyper-rectangles allows a much more efficient
search. This technique has the advantage that it
can be implemented on top of the very efficient
index-based search algorithms in existing com-
mercial databases.

As an example, consider a query to retrieve the
top M sounds in a class. If the database has MO
sounds total, we first ask for all the sounds in a
hyper-rectangle centered around the mean ,U with
volume V such that

V/v, = M/n/i,

For small databases, it is easiest to compute the
distance measure(s) for all the sounds in the data-
base and then to choose the sounds that match
the desired result. For large databases, this can be
too expensive. To speed up the search, we index
(sort) the sounds in the database by all the

and try again.
Note that the above discussion is a simplifica-

tion of our current algorithm, which asks for big-
ger volumes to begin with to correct for two
factors. First, for, our distance measure, we really
want a hypersphere of volume V, which means we
want the hyper-rectangle that circumscribes this
sphere. Second, the distribution of sounds in the
feature space is not perfectly regular. If we assume
some reasonable distribution of the sounds in the
database, we can easily compute how much larger
V has to be to achieve some desired confidence
level that the search will succeed.

Quality measures
The magnitude of the covariance matrix R is a

measure of the compactness of the class. This can
be reported to the user as a quality measure of the
classification. For example, if the dimensions of R
are similar to the dimensions of the database, this
class would not be useful as a discriminator, since
all the sounds would fall into it. Similarly, the sys-
tem can detect other irregularities in the training
set, such as outliers or bimodality.

The size of the covariance matrix in each
dimension is a measure of the particular dimen-

sion’s importance to the class. From this, the user
can see if a particular feature is too important or
not important enough. For example, if all the
sounds in the training set happen to have a very
similar duration, the classification process will
rank this feature highly, even though it may be
irrelevant. If this is the case, the user can tell the
system to ignore duration or weight it differently,
or the user can try to improve the training set.
Similarly, the system can report to the user the
components of the computed distance measure.
Again, this is an indication to the user of possible
problems in the class description.

Note that all of these measures would be diffi-
cult to derive from a non-statistical model such as
a neural network.

Segmentation
The discussion above deals with the case where

each sound is a single gestalt. Some examples of
this would be single short sounds, such as a door
slam, or longer sounds of uniform texture, such as
a recording of rain on cement. Recordings that
contain many different events need to be seg-
mented before using the features above.
Segmentation is accomplished by applying the
acoustic analyses discussed to the signal and look-
ing for transitions (sudden changes in the mea-
sured features). The transitions define segments of
the signal, which can then be treated like individ-
ual sounds. For example, a recording of a concert
could be scanned automatically for applause
sounds to determine the boundaries between
musical pieces. Similarly, after training the system
to recognize a certain speaker, a recording could
be segmented and scanned for all the sections
where that speaker was talking.

Performance
We have used the above algorithms at Muscle

Fish on a test sound database that contains about
400 sound files. These sound files were culled from
various sound effects and musical instrument sam-
ple libraries. A wide variety of sounds are represent-
ed from animals, machines, musical instruments,
speech, and nature. The sounds vary in duration
from less than a second to about 1.5 seconds.

A number of classes were made by running the
classification algorithm on some perceptually sim-
ilar sets of sounds. These classes were then used to
reorder the sounds in the database by their likeli-
hood of membership in the class. The following
discussion shows the results of this process for sev-
eral sound sets. These examples illustrate the char-

acter of the process and the fuzzy
nature of the retrieval. (For more
information, and to duplicate these
examples, see the “Interactive Web
Demo” sidebar.)

Example 1: Laughter. For this
example, all the recordings of laugh-
ter except two were used in creating
the class. Figure 2 shows a plot of the
class membership likelihood values
(the Y-axis) for all of the sound files
in the test database. Each vertical
strip along the X-axis is a user-
defined category (the directory in
which the sound resides). See the
“Class Model” sidebar on p. 32 for
details on how our system comput-
ed this model.

The highest returned likelihoods
are for the laughing sounds, includ-
ing the two that were not included
in the original training set, as well as
one of the animal recordings. This animal record-
ing is of a chicken coop and has strong similari-
ties in sound to the laughter recordings,
consisting of a number of strong sound bursts.

Example 2: Female speech. Our test database
contains a number of very short recordings of a

- Laughter.order
not in training set

m Animals
+---..-.. Bells
*---- Crowds
*.. k2000
s_-- Laughter
--- Telephone
--....- Water
- Mcgill/altotrombone
o.. Mcgill/cellobowed
c I - - - - - Mcgill/oboe
----- Mcgill/percussion
.- . Mcgill/tubularbells
I-- Mcgill/violinbowed
--- Mcgill/violinpizz
-- Speech/female
- Speech/male

Figure 2. Laughter
classification.

Table A. Class model for laughter example.

Feature
Duration

Mean
2.71982

Variance
0.191312

Importance
6.21826

Loudness: Mean -45.0014 18.9212 10.3455
Variance 200.109 1334.99 5.47681
Autocorrelation 0.955071 7.71106e-05 108.762

Brightness: Mean 6.16071 0.0204748 43.0547
Variance 0.0288125 0.000113187 2.70821
Autocorrelation 0.715438 O.O,lO8014 6.88386

Bandwidth: Mean 0.363269 0.000434929 17.4188
Variance 0.00759914 3.57604e-05 1.27076
Autocorrelation 0.664325 0.0122108 6.01186

Pitch: Mean 4.48992 0.39131 7.17758
Variance 0.207667 0.0443153 0.986485

5.00 10.00 15.00
X

Figure 3. “Teargas” ,

- /w,1171615
~ Bells

------- Crowds
_---- k2000
---- Laughter
--- Telephone
-- - Water
-- Mcgill/altotrombone
___ Mcgill/cellobowed
~ ______._...._ Mcgill/oboe

e------ Mcgill/percussion
----- Mcgill/tubularbells
---- Mcgill/violinbowed
a...-- Mcgill/violinpizz
c- - Speech/female
-’ - Speech/male

matrix R. The highest likelihoods are
for the other female speech record-
ings, with the male speech record-
ings following close behind.

Example 3: Touchtones. A set of
telephone touchtones was used to
generate the class in Figure 4. Again,
the touchtone likelihoods are clear-
ly separated from those of other cat-
egories. One of the touchtone
recordings that was left out of the
training set also has a high likeli-
hood, but notice that the other one,
as well as one of those included in
the training set, returned very low
likelihoods. Upon investigation, we
found that the two low-likelihood
touchtone recdrdings were of entire
seven-digit phone numbers, where-
as all the high-likelihood touchtone
recordings were of single-digit tones.
In this case, the automatic classifica-
tion detected an aural difference that
was not represented in the user-sup-
plied categorization.

Applications
The above technology is relevant

to a number of application areas.
The examples in this section will
show the power this capability can
bring to a user working in these
areas.

Audio databases and file systems
Any audio database or, equiva-

lently, a file system designed to work
with large numbers of audio files,
would benefit from content-based
capabilities. Both of these require
that the audio data be represented or
supplemented by a data record or
object that points to the sound and
adds the necessary analysis data.

When a new sound is added to
the database, the analyses presented
in the previous section are run on
the sound and a hew database record

similarities. group of female and male speakers. For this exam- or object is formed with this supplemental infor-
ple, the female-spoken phrase “tear gas” was used. mation. Typically, the database would allow the
Figure 3 shows a plot of the similarity (likelihood) user to add his or her own information to this
of each of the sound files in the test database to record. In a multiuser system, users could have
this sound using a default value for the covariance their own copies of the database records that they

could modify for their particular requirements.
Figure 5 shows the record used in our sound

browser, described in the next section. Fields in
this record include features such as the sound file’s
name and properties, the acoustic features as com-
puted by system analysis routines, and user-
defined keywords and comments.

Any user of the database can form an audio
class by presenting a set of sounds to the classifi-
cation algorithm of the last section. The object
returned by the algorithm contains a list of the
sounds and the resulting statistical information.
This class can be private to the user or made avail-
able to all database users. The kinds of classes that
would be useful depend on the application area.
For example, a user doing automatic segmenta-
tion of sports and news footage might develop
classes that allow the recognition of various audi-
ence sounds such as applause and cheers, referees’
whistles, close-miked speech, and so forth.

The database should support the queries
described in the last section as well as more stan-
dard queries on the keywords, sampling rate, and
so on.

An audio database browser
In this section, we present a front-end database

application named SoundFisher that lets the user
search for sounds using queries that can be con-
tent based. In addition, it permits general main-
tenance of the database’s entries by adding,
deleting, and describing sounds.

Figure 6 shows the graphical user interface
(GUI) for the application during the formation of
a query. The upper window is the Query window.
The Search button initiates a search using the
query and the results are then displayed in the
Current Sounds window. Initially, the Results
window shows a listing of all the sounds in the
database.

A query is formed using a combination of con-
straints on the various fields in the database
schema and a set of sounds that form a training
set for a class. The example in Figure 6 is a query
to find recent high-fidelity sounds in the database
containing the “animal” or “barn” keywords that
are similar to goose sounds, ignoring sound dura-
tion and average loudness.

The top portion of the Query window consists
of a set of rows, each of which is a component of
the total query. Each component includes the
name of the field, a constraint operator appropri-
ate for the data type of that field, and the value to
which the operator is applied. Pressing one of the

2.80 : j ;
2.60 .,,..,,,.. .: ..f i... .:
2.40 ,,,.. ..; . I.. .;

l-----l

2.20 ..;... .: 1 I
2.00 ;i ;. ..i
1.33 ,.. ..jI.. ;
, .60

g 1.40

j..j

....................... !
4 3 , JO ; .A.. j..

1 .o() j.. ;j.
0.80 i’. i.. ~ .. ;. ;...; . ..‘.

I I

5.00 10.00 15.00

- Touchtones not
training set

~ ..______. Animals
-----’ Bells
_--- Crowds
- - - k2000
- - Laughter
+- - Telephone
)- - Water
- Mcgill/altotrombone
m...------. Mcgill/cellobowed
-----. Mcgill/oboe
_--- McgilVpercussion
(_- - Mcgill/tubularbells
- - Mcgill/violinbowed
- - Mcgilllviolinpiu
-- Speech/female
- Speech/male

Figure 4. Touchtone
classification.

\ I
A

buttons in the row pops soun$~,$~~
up a menu of possibili- Sample rate
ties or a slider and entry
window combination
for floating-point val-
ues. In Figure 6, there is
one component that
constrains the date to
be recent, one that con-
strains the keywords,
and one that specifies a
high sampling rate. The
OR subcomponent on

Sample size
Sound file format
Number of channels
Creation date
Analysis date

User attributes
Keywords
Comments

Analysis feature vector
Duration
Pitch [mean, variance, autocorrelation]
Amplitude [mean, variance, autocorrelation]
Brightness [mean, variance, autocorrelation]
Bandwidth [mean, variance, autocorrelation]

the keyword field is Figure 5. Database
added through a menu record.
item. There are also menu items for adding and
deleting components. All the components are
ANDed together to form the final query.

The bottom portion of the Query window con-
sists of a list of sounds in the training set. In this
case, the sounds consist of all the goose recordings.
We have brought up sliders for duration and loud-
ness and set them to zero so that these features will
be ignored in the likelihood computation.

Although not shown in this figure, some of the
query component operators are fuzzy. For exam-
ple, the user can constrain the pitch to be approx-
imately 100 Hz. This constraint will cause the
system to compute a likelihood for each sound
equal to the inverse of the distance between that
sound’s pitch feature and 100 Hz. This likelihood
is used as a multiplier against the likelihood com-
puted from the similarity calculation or other
parts of the query that yield fuzzy results. Note

Figure 6. SoundFisher
browser. that ANDing two fuzzy searches is accomplished

by multiplying the likelihoods and ORing two
fuzzy searches by adding the likelihoods.

There are a number of ways to refine searches
through this interface, and all queries can be
saved under a name given by the user. These
queries can be recalled and modified. The
Navigate menu contains these commands as well
as a history mechanism that remembers all the
queries on the current query path. The Back and
Forward commands allow navigation along this
path. An entry is made in the path each time the
Search button is pressed. It is, of course, possible
to start over from scratch. There is also an option
to apply the query to the current sounds or to the
entire database of sounds.

Any saved query can be used as part of a new
query. One of the fields available for constructing
query components is “query,” meaning “saved
query.” This lets the user perform complex search-
es that combine previous queries in Boolean
expressions. It also lets the user train the system
with a class of sounds embodying a concept such

as “scratchiness,” save that model under a name,
then reuse that concept in future queries.

Audio editors
Current audio editors operate directly on the

samples of the audio waveform. The user can spec-
ify locations and values numerically or graphical-
ly, but the editor has no knowledge of the audio
content. The audio content is only accessible by
auditioning the sound, which is tedious when
editing long recordings.

A more useful editor would include knowledge
of the audio content. Using the techniques pre-
sented in this article, a variety of sound classes
appropriate for the particular application domain
could be developed. For example, editing a con-
cert recording would be aided by classes for audi-
ence applause, solo instruments, loud and soft
ensemble playing, and other typical sound fea-
tures of concerts. Using the classes, the editor
could have the entire concert recording initially
segmented into regions and indexed, allowing
quick access to each musical piece and subsections
thereof. During the editing process, all the types
of queries presented in the preceding sections
could be used to navigate through the recording.
For example, the editor could ask the system to
highlight the first C-sharp in the oboe solo section
for pitch correction.

A graphical editor with these capabilities would
have Search or Find commands that functioned
like the query command of the SoundFisher audio
browser. Since it would often be necessary to build
new classes on the fly, there should be commands
for classification and analysis or tight integration
with a database application such as the Sound-
Fisher audio browser.

Surveillance
The application of content-based retrieval in

surveillance is identical to that of the audio editor
except that the identification and classification
would be done in real time. Many offices are
already equipped with computers that have built-
in audio input devices. These could be used to lis-
ten for the sounds of people, glass breaking, and
so on. There are also a number of police jurisdic-
tions using microphones and video cameras to
continuously survey areas having a high inci-
dence of criminal activity or a low tolerance of
such activity. Again, such surveillance could be
made more efficient and easier to monitor with
the ability to detect sounds associated with crim-
inal activity.

Automatic segmentation of audio and video
In large archives of raw audio and video, it is

useful to have some automatic indexing and seg-
mentation of the raw recordings. There has been
quite a bit of work on the video side of the seg-
mentation problem using scene changes and cam-
era movement.7 The audio soundtrack of video as
well as audio-only recordings can be automatical-
ly indexed and segmented using the analysis
methods discussed previously.

This is accomplished by analyzing the record-
ing and extracting the trajectories for loudness,
pitch, brightness, and other features. Some seg-
mentation can be done at this level by looking at
transitions and sudden changes in the analysis
data. We used this technique to develop the
Audio-to-MIDI conversion system that is part of
the Studio Vision Pro 3.0 product from Opcode
Systems. In this product, the raw trajectories are
segmented by amplitude and pitch and convert-
ed into musical score information in the form of
MIDI data. This is a convenient representation for
understanding and manipulating the musical con-
tent of the audio recording. This product assumes
musical instrument recordings, so pitch is very
important. In a more general context, it might be
more appropriate to segment the sound by ampli-
tude or spectral changes.

You could treat these segments as individual
sounds that can then be analyzed for their statis-
tical features, as we have described above.
Alternately, you could arbitrarily look at overlap-
ping windows of the raw analysis data as the indi-
vidual sounds. Once this is done, each of these
sounds can be classified and thus indexed.

Future directions
In our current work, we are focusing on sever-

al areas to improve and refine the performance of
our search, analysis, and retrieval engine.

Additional analytic features
An analysis engine for content-based audio

classification and retrieval works by analyzing the
acoustic features of the audio and reducing these
to a few statistical values. The analyzed features
are fairly straightforward but suffice to describe a
relatively large universe of sounds. More analyses
could be added to handle specific problem
domains.

General phrase-level content-based retrieval
Our current set of acoustic features is targeted

toward short or single-gestalt sounds. Matching

sets of our features as trajectories in time or
matching segmented sequences of single-gestalt
sounds would allow phrase-level audio content to
be stored and retrieved. For example, the Audio-
to-MIDI system referenced above could be used to
do matching of musical melodies. As with all
media search, a fuzzy match is what is desired.

Source separation
In our current system, simultaneously sound-

ing sources are treated as a single ensemble. We
make no attempt to separate them, as source sep-
aration is a difficult task. Approaches to separat-
ing simultaneous sounds typically involve either
Gestalt psycholo& or non-perceptual signal-pro-
cessing techniques. g~lo For musical applications,
polyphonic pitch-tracking has been studied for
many years, but might well be an intractable prob-
lem in the general case.

Sound synthesis
Sound synthesis could assist a user in making

content-based queries to an audio database. When
the user was unsure what values to use, the syn-
thesis feature would create sound prototypes that
matched the curremset of values as they were
manipulated. The user’could then refine the syn-
thesized example until k bore enough similarity
to the desired sort of sound.

Our examples show the efficacy and useful fuzzy
nature of the search. The results of searches are
sometimes surprising in that they cross semantic
boundaries, but aurally the results are reasonable.
This is work in progress. Further implementation
and testing of the system will reveal whether the
chosen acoustical features are sufficient or exces-
sive for usefully analyzing and classifying most
sounds. We believe, however, that the basic
approach presented here works well for a wide vari-
ety of audio database applications. MM

Acknowledgments
We would like to thank Dragutin Petkovic at

IBM Almaden for encouraging us to write this arti-
cle. We have had helpful discussions with Stephen
Smoliar and Hong Zhang at the Institute for
Systems Science in Singapore and with Mike
Olson and Chuck O’Neill at Illustra Information
Technologies. We also thank the anonymous ref-
erees for their helpful comments and suggestions.

References
1. R. Plomp, Aspects of Tone Sensation: A Psychophysical

Study, Academic Press, London, 1976.

2. S. Foster, W. Schloss, and A.J. Rockmore, “Towards
an Intelligent Editor of Digital Audio: Signal
Processing Methods,” Computer Musicj., Vol. 6, No.
1, 1982, pp. 42-51.

3. B. Feiten and S. Gunzel, “Automatic Indexing of a
Sound Database Using Self-Organizing Neural
Nets,” Computer Music]., Vol. 18, No. 3, Summer
1994, pp. 53-65.

4. T. Blum et al., “Audio Databases with Content-Based
Retrieval,“workshop on Intelligent Multimedia
Information Retrieval, 1995 Int’l Joint Conf. on
Artificial Intelligence, available at http://www.
musclefish.com.

5. D. Keislar et al., “Audio Databases with Content-
Based Retrieval,” Proc. /nt’/ Computer Music
Conference 1995, International Computer Music
Association, San Francisco, 1995, pp. 199-202.

6. H. Zhang, B. Furht, and S. Smoliar, Video and Image
Processing in Multimedia Systems, Kluwer Academic
Publishers, Boston, 1995.

7. H. Zhang, A. Kankanhalli, and S. Smoliar,
“Automatic Partitioning of Full-Motion Video,”
Multimedia Systems, Vol. 1, No. ,I, 1993, pp. 1 O-28.

8. S. McAdams, “Recognition of Sound Sources and
Events,” Thinking in Sound: The Cognitive Psychology
of Human Audition, Clarendon Press, Oxford, 1993.

9. J. Moorer, “On the Transcription of Musical Sound
by Computer,” Computer Music/., Vol. 1, No. 4,
1977, pp. 32-38.

IO. E. Wold, Noniinear Parameter Estimation ofAcoustic
Models, PhD Thesis, University of California at
Berkeley, Berkeley, Calif., 1987.

Erling Wold earned a PhD in EECS
at the University of California,
Berkeley in 1987 where he did
research in source separation, FFT
computer architectures, and sto-
chastic sampling. Since that time,

he has concentrated on signal processing and software
architectures for music applications.‘He is a prolific com-
poser and has written music for a variety of ensembles
as well as for several feature films and theatrical works,
including two operas. With the co-authors, he founded
Muscle Fish, a software engineering firm specializing in
audio and music.

Thomas Blum received a BA in
Computer Applications to Music
Synthesis from Ohio State in 1978.
He creates software to help manage
complex data, like sound, and cre-
ative tasks, like music composition.

In 1978, he cofounded the Computer Music Association
and served for roughly 10 years as an associate editor of
Computer Music Journal (MIT Press).

Douglas Keislar received a PhD in
Music from Stanford University,
where he conducted psycho-
acoustical research at the Center for
Computer Research in Music and
Acoustics (CCRMA). He is an asso-

ciate editor of Computer Music Journal (MIT Press).

James A. Wheaton is president of
Harmonic Systems, Inc. He received
his BS in Philosophy from MIT in
1980. His research interests include
new musical instruments, interac-
tive music, and Internet audio
applications.

Readers may contact Erling Wold at Muscle Fish LLC,
2550 Ninth Street, Suite 207B, Berkeley, CA 94710,
e-mail erling@musclefish.com.

