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The LiftLT: Fast-Lapped Transforms via Lifting Steps
Trac D. Tran, Member, IEEE

Abstract—This paper introduces a class of multiband linear
phase-lapped biorthogonal transforms with fast, VLSI-friendly
implementations via lifting steps called the LiftLT. The transform
is based on a lattice structure that robustly enforces both linear
phase and perfect reconstruction properties. The lattice coeffi-
cients are parameterized as a series of lifting steps, providing fast,
efficient, in-place computation of the transform coefficients. The
new transform is designed for applications in image and video
coding. Compared to the popular 8 8 DCT, the 8 16 LiftLT
only requires one more multiplication, 22 more additions, and
six more shifting operations. However, image coding examples
show that the LiftLT is far superior to the DCT in both objective
and subjective coding performance. Thanks to properly designed
overlapping basis functions, the LiftLT can completely eliminate
annoying blocking artifacts. In fact, the novel LT’s coding per-
formance consistently surpasses that of the much more complex
9/7-tap biorthogonal wavelet with floating-point coefficients.
More importantly, the transform’s block-based nature facilitates
one-pass sequential block coding, region-of-interest coding/de-
coding, and parallel processing.

I. INTRODUCTION

M ULTIBAND transforms have long found applications in
image coding. For instance, the JPEG image compres-

sion standard [1] employs the 8 8 discrete cosine transform
(DCT) at its transformation stage. At high bit rates, JPEG offers
almost visually lossless reconstruction image quality. However,
when more compression is needed, annoying blocking artifacts
appear since the DCT bases are short and do not overlap,
creating discontinuities at block boundaries. The wavelet
transform with long overlapping bases has elegantly solved
the blocking problem. However, the transform’s complexity is
significantly higher than the DCT’s. Except for a few special
cases, the wavelet transform generally requires many more op-
erations per output coefficient, and it may need a large memory
buffer in its implementation. Another interesting alternative is
the lapped transform [2], where only a small number of pixels
from adjacent blocks are borrowed to produce the transform
coefficients of the current block. Lapped transforms outperform
the DCT on two counts. From the analysis viewpoint, it takes
into account interblock correlation and hence provides better
energy compaction, and from the synthesis viewpoint, its basis
functions decay asymptotically to zero at the ends, reducing
blocking discontinuities.

Nevertheless, lapped transforms have not yet been able to
replace the DCT in international standards. One reason is that
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the modest improvement in coding performances is not enough
to justify the increase in computational complexity. In this
paper, we introduce a family of lapped biorthogonal transforms
based on a minimal number of dyadic-rational lifting steps.
The resulting transform called LiftLT is not only fast-com-
putable and VLSI-suited, but it also consistently outperforms
state-of-the-art wavelets given the same quantizer and entropy
coder. Despite its simplicity, the LiftLT provides a significant
improvement in reconstructed image quality over the tradi-
tional DCT: blocking is completely eliminated, while ringing is
reasonably contained at medium and high compression ratios.

II. REVIEW

We limit the discussions on lapped transforms to-channel
uniform linear phase-perfect reconstruction filter banks (LP-
PRFB’s), where analysis and synthesis filters have the same
length . The most general lattice for -channel linear
phase-lapped biorthogonal transforms (GLBT) is presented in
[3], [4]. The polyphase matrix can be factorized as

(1)

(2)

and

(3)

This lattice results in all filters having length .
is often called the overlapping factor. Each cascading struc-

ture increases the filter length by . All and ,
are arbitrary invertible

matrices. These free invertible matrices hold the free design pa-
rameters, and they can be parameterized by the singular value
decomposition (SVD) [3], [4]. The complete lattice of the anal-
ysis bank is depicted in Fig. 1.

III. COMPLETE LT LATTICE VIA LIFTING

As previously mentioned, an -channel LT with overlapping
factor can be completely parameterized by invertible ma-
trices of size . Under the SVD, as in [3], [4], each invertible
matrix can be completely characterized by a diagonal matrix and
two orthogonal matrices. The SVD parameterization of an arbi-
trary invertible matrix is shown in Fig. 2(a) (drawn for
8). Since each orthogonal matrix can be fac-
torized into plane rotations, the most general
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Fig. 1. The most general lattice structure for linear phase-lapped transforms with filter lengthL = KM .

(a)

(b)

Fig. 2. Parameterization of an invertible matrix (a) via the SVD and (b) via
lifting steps.

LT lattice consists of rotations and
diagonal scaling factors .

One disadvantage of the aforementioned SVD-based parame-
terization is the redundancy in computational complexity. Since
each rotation angle takes four multiplications and two additions
(some manipulations yield three multiplications and three ad-
ditions), the actual cost of performing a matrix multiplication
in the SVD structure actually surpasses that of direct multipli-
cation. In this paper, we propose to characterize these invert-
ible matrices using shears (also known as the lifting steps or
the ladder structures). It is not too difficult to prove that any

invertible matrix can be completely characterized by
shears, diagonal scaling factors, and possibly per-

mutation matrices (this simply follows from the Gauss–Jordan
elimination process). The final ladder-based parameterization
is illustrated in Fig. 2(b). Under this parameterization, the com-
putational complexity is, at most, equal to that of direct multi-
plication. In most cases, the computational complexity can be
reduced significantly by setting the diagonal scaling factors to
unity and/or choosing the lifting coefficients to be dyadic, as
described in the next section. The most general LT lattice now
consists of lifting steps and di-
agonal scaling factors .

IV. FAST LIFTLT

This section is devoted to the design of a high-performance
yet low-complexity lapped transform based on fast-lifting steps
called LiftLT that can hopefully replace the DCT in the near fu-
ture. To minimize the transform’s complexity, we choose a small
overlapping factor 2 and set the initial stage to be the

Fig. 3. VVV matrix of the generalM -channel LiftLT.

DCT itself, where is even. Following the excellent
observation in [6], we apply a scaling to the first DCT’s anti-
symmetric basis to generate synthesis LT-basis functions whose
end values decay smoothly to zero—a crucial requirement in
blocking artifacts elimination. However, instead of scaling the
analysis by and the synthesis by ( ), we opt for ( )
and its inverse ( ) since they allow the implementation of
both the analysis and synthesis bank in integer arithmetic. An-
other nice value that also works almost as well as ( ) is
( ).

After two series of 1 butterflies and the delay chain
, the LT symmetric basis functions already have good at-

tenuation, especially at DC ( 0). Hence, we can comfortably
set . Now, there is only the parameterization of
left. There are free lifting steps and
free diagonal scaling factors here. However, we propose to con-
struct by cascading lifting steps. Each can be
implemented using only one simple bit shift and one addition,
as shown in Fig. 3.

The final LiftLT’s lattice structure is presented in Fig. 4.
The frequency and impulse responses of the 816 LiftLT’s
basis functions are depicted in Fig. 5. The LiftLT should be
sufficiently fast for many applications, especially in hardware,
since most of the additional computation comes from the two
butterflies and the six shift-and-add lifting steps. It is even
faster than the type-I fast LOT [2]. Besides its low complexity,
the LiftLT also possesses many desirable characteristics such
as high energy compaction, low attenuation near DC, and
smoothly-decaying synthesis basis functions to eliminate
blocking artifacts completely. For the AR(1) image model with

0.95, the eight-channel LiftLT in Fig. 4 achieves a coding
gain of 9.54 dB. The comparison of complexity between the
LiftLT and other popular transforms is tabulated in Table I.
Notice that the LiftLT’s performance is already very close
to that of the optimal GLBT (9.63 dB coding gain) [3], [4],
whereas its complexity is the lowest among the transforms in
comparison, excluding the DCT’s. The 1224 and the 16
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Fig. 4. Complete analysis/synthesis unnormalized LiftLT lattice (drawn forM = 8).

Fig. 5. Frequency and time responses of the8� 16 LiftLT. Left: analysis bank. Right: synthesis bank.

TABLE I
COMPARISON OFTRANSFORMCOMPLEXITY: NUMBER OF OPERATIONSNEEDED PEREIGHT TRANSFORMCOEFFICIENTS

32 fast LiftLT’s improve the coding gain to 9.75 dB and 9.83
dB, respectively.

V. APPLICATION IN IMAGE CODING

To be fair, the same set partitioning in hierarchical trees
(SPIHT) algorithm’s quantizer and entropy coder [7] is utilized
to encode the coefficients of every transform. The transforms
in comparison are the 8 8 DCT, the new 8 16 LiftLT,
and the popular 9/7-tap biorthogonal wavelet with a six-level
decomposition. In the two block-transform cases, we use
the modified zerotree structure in [8], where each block of
transform coefficients are treated analogously to a full wavelet
tree, and three more levels of decomposition are employed
to decorrelate the DC subband further. The objective coding
results (PSNR in dB) for standard 512512 Lena, Goldhill,
and Barbara test images are tabulated in Table II.

The LiftLT outperforms its block transform relatives for all
test images at all bit rates. The visual quality of its reconstructed
images is also superior, as demonstrated in Fig. 6. Blocking is
completely avoided, whereas ringing is reasonably contained.
Compared to the wavelet transform, the LiftLT is quite compet-
itive on smooth images (about 0.2 dB below on Lena). How-

TABLE II
OBJECTIVE CODING RESULT COMPARISON(PSNRIN dB)

ever, for more complex images such as Goldhill or Barbara, the
LiftLT consistently surpasses the 9/7-tap wavelet. The PSNR
improvement can reach as high as 1.5 dB.

VI. CONCLUSIONS

We have presented in this paper the theory, design, and
implementation of the LiftLT. The LiftLT is based on a fast,
efficient, robust, and modular lattice structure. With only one
more multiplication (which can also be implemented with
shift-and-add operations), 22 more additions, and four more
delay elements comparing to the DCT, our novel transform
offers a fast, low-cost, VLSI-friendly implementation while
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Fig. 6. Quarter portions of reconstructed Barbara images at 1 : 32 compression ratio. From left to right: 8� 8 DCT, 27.28 dB; 8� 16 LOT, 28.71 dB; 9/7-tap
wavelet, 27.58 dB; and 8� 16 LiftLT, 28.93 dB.

providing high quality reconstructed images, both objectively
and subjectively. The LiftLT even surpasses the 9/7-tap
biorthogonal wavelet with irrational coefficients.
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