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A New Design Method for Two-Channel Perfect
Reconstruction IIR Filter Banks

S. C. Chan, J. S. Mao, and K. L. Ho

Abstract—In this paper, a new method for designing perfect
reconstruction (PR) two-channel causal stable IIR filter banks
is introduced. It is based on a structure previously proposed
by Phoong et al. [2]. By using a combination of allpass and
linear-phase FIR functions, the bumping problem found in the
conventional structural PR filter bank is significantly suppressed.
The design problem is formulated as a polynomial approximation
problem and is solved effectively using the Remez exchange algo-
rithm. Filter banks with flexible stopband attenuation and system
delay can readily be obtained using the proposed algorithm.

Index Terms—Design method, filter banks, IIR filters, perfect
reconstruction.

I. INTRODUCTION

PERFECT reconstruction (PR) IIR filter banks are very at-
tractive because of their potentially low system delay and

better frequency responses compared with their FIR counterpart
[1]. The two-channel IIR filter bank reported in [2] is particu-
larly useful because of its simple design procedure and good
performance. It is parameterized by two functions and

, which can be chosen as an allpass function to obtain fil-
terbanks with very high stopband attenuation. Unfortunately, a
bump of about 4 dB always exists near the transition band of
the analysis and synthesis filters. Moreover, the stopband atten-
uation of the analysis highpass filter is about 10 dB lower than
that of the lowpass filter. To overcome these problems, an im-
proved algorithm using general rational functions for and

, instead of the allpass function, was recently proposed in
[4]. The bumping problem in the transition band is consider-
ably suppressed, but the design procedure is considerably more
complicated and the stability of the IIR filters cannot be guar-
anteed. In this paper, and are chosen as allpass and
linear-phase FIR functions, respectively. One of the advantages
is that the high stopband attenuation, low implementation com-
plexity, and low coefficient sensitivity of the allpass function
are preserved. Moreover, the bumping can still be suppressed
with the use of a linear-phase FIR function. This has previously
been observed in [5], but no design procedure was given. In this
paper, we show that the design of such FIR functions can be for-
mulated as a polynomial approximation problem, which can be
solved readily using existing techniques. The new method also
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offers considerable freedom in controlling the stopband attenu-
ation and delay of the highpass filters.

II. THE PROPOSEDMETHOD

Consider a two-channel critically decimated multirate filter
bank, as shown in Fig. 1(a). The aliasing is eliminated if
the synthesis filters are chosen as and

, where and are, respectively,
the low-pass and high-pass analysis filters. In [2], the analysis
filters are chosen as

and

(2.1)

where and are identical and the delay is equal to
1. It is interesting to note that the system is PR for any

choices of and . Because of (2.1), can be chosen
as a polynomial or a rational function. In [2], IIR filter banks are
obtained by choosing as a causal stable allpass function.

In this paper, and are chosen as allpass and linear-
phase FIR functions, respectively, to realize PR filter banks with
approximately linear phase. Let’s assume that is prop-
erly designed so that is an approximately linear-phase
lowpass filter with reasonably good frequency response, i.e.,

in its passband and zero elsewhere. The de-
sign of such an allpass-based lowpass filter has previously been
addressed in [3], where the problem is formulated as an eigen-
value problem. From (2.1), it can be seen that the frequency re-
sponse of depends on and . Let and be
the passband and stopband cutoff frequencies of , respec-
tively. The error function of is

(2.2)

where is the desired response and is equal to
for and zero otherwise. Since the

minimization in (2.2) involves , which is periodic with
period , it is different from the conventional Chebyshev ap-
proximation. In fact, for a given value of ,
will affect the values of at as well as . If
is a reasonably good lowpass filter with in its
passband, then should approximate
for . If is a type-II FIR function, its mag-
nitude should be approximately equal to one, except around

, where it decreases to zero. It then follows from (2.1)
that the passband ripples of is approximately equal to
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Fig. 1. (a) Two-channel multirate filter bank. (b) Geometric interpretation of (2.5).

the stopband error of . This allows us to minimize only
the stopband attenuation of using , instead
of minimizing (2.2) over the pass- and stopbands, and relies
on the high stopband attenuation of to achieve a
small passband ripples. By increasing the length of , the
stopband attenuation of can be improved in exchange
for a greater delay. In fact, the total system delay is given by

. Let be a Type-II linear-phase FIR filter
given by

(2.3)

From (2.1) and (2.3), it can be seen that and should
be chosen as and ,
respectively. Let be written as , where

is a complex function but is approximately equal to one
if is of sufficiently high order. Together with (2.3), (2.2)
can further be simplified to

(2.4)

As is a real-valued function, the minimum value of
is attained when

Re

(2.5)

This is best explained geometrically as shown in Fig. 1(b).
and stand respectively for and . It
can be seen that is minimum when is the projec-
tion of 1 in the direction of . The corresponding value of
is determined to be Re which leads to (2.5). Writing

, the design problem becomes a polynomial ap-
proximation problem

(2.6)

The interval is an optional disjoint interval used to
control the values of in the transition band of

and is a positive weighting function. If ,

Fig. 2. Frequency responses of example 1. Magnitude responses ofH (z) and
H (z) proposed in this paper (solid lines); proposedĤ (z) in [2] (dashed line).

(2.6) reduces to the familiar Chebyshev approximation which
can be solved using the Remez exchange algorithm with ideal
frequency response given by (2.5) and weighting function

given by

(2.7)
Normally, the value of is very small and all the alternations
appear in the band edges and the interval . If 2, (2.6)
is simplified to the least square design problem, which again
can be solved by the function FIRLS in the signal processing
toolbox of MATLAB. We now illustrate the design algorithm
using the following examples. It should be noted that the pro-
posed method applies equally well to the design of two-channel
linear-phase FIR filter banks, as we shall see later in example 3.

III. D ESIGN EXAMPLES

Example 1: To compare the proposed method to that in [2],
the lowpass filter in example 1 of [2] is used here. The order of

is 3. is designed using the function Remez in the
signal processing toolbox of MATLAB. Its order is 11
and the delay parameter 8. Fig. 2 shows the frequency re-
sponses of the analysis filters designed by the proposed method
(solid lines) and highpass filter designed by [2] (dashed
line). The cutoff frequencies of are and

, which are identical to that reported in [2]. The stop-
band attenuation, however, is increased to about 40 dB and the
bumping of is also significantly suppressed. The system
delay on the other hand, is slightly increased from 17 to 23 sam-
ples. In this example, the weighting function is set to
one so that the stopband of is not equiripple. This shows
that the weighting function in (2.7) is useful in achieving an
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Fig. 3. Magnitude responses ofH (z) andH (z) in example 2.

equiripple response in the stopband, as we shall see later in Ex-
amples 2 and 3. It can also be seen that by increasing the length
of , the stopband attenuation of is improved. This
demonstrates that the proposed method is able to suppress the
bumping in and control its stopband attenuation in ex-
change for a greater system delay.

Example 2: In this example, the proposed method is com-
pared with the general IIR approach proposed in [4]. The or-
ders of and are chosen as 5 and 19,
respectively. The weighting function (2.7) is used to achieve
an equiripple response. Fig. 3 shows the frequency responses
of the analysis filters. It can be seen that they have a stopband
attenuation of approximately 52 dB, which is higher than that
reported in [4] (49 dB) with the same cutoff frequencies. The
system delay of the proposed method is also lower than that re-
ported in [4] (39 versus 43). In addition, both the design and
implementation complexities of the proposed method are much
lower than the general IIR approach in [4].

Example 3: In this example, we compare the proposed
method with the maximally flat FIR approach proposed in
[6]. In [6], and are chosen as the half-band and
maximally flat FIR filters, respectively. As is not opti-
mized using any measure, its performance is limited. For a
fair comparison, is chosen as a type-II FIR function with
order 15, which is the same as that in [6]. The order
of is chosen to be 15. The magnitude response of
designed by the proposed method is shown as solid line in
Fig. 4. The weighting function (2.7) is again used to achieve
an equiripple response. The dashed line in Fig. 4 shows the
magnitude response of the filter when is chosen as
a maximally flat FIR function with the same order. It can be
seen that the proposed method results in a much sharper cutoff
than the maximally flat FIR approach.

Fig. 4. Magnitude responses of example 3:H (z) (solid line); optimalH (z)
(solid line);Ĥ (z) based on maximally flat�(z) proposed in [7] (dashed line).

IV. CONCLUSION

A very simple algorithm for designing two-channel causal
stable PR IIR filter banks is presented. It is based on a struc-
ture previously proposed by Phoonget al. [2]. By using a com-
bination of allpass and linear-phase FIR functions, the bumping
problem found in the conventional structural PR filter bank is
significantly suppressed. The design problem is formulated as
a polynomial approximation problem and is solved effectively
using the Remez exchange algorithm. Filter banks with flexible
stopband attenuation and system delay can readily be obtained
using the proposed algorithm.
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