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Stability of Active Noise Control Algorithms
Clas A. Jacobson, C. Richard Johnson, Jr., Duane C. McCormick, and William A. Sethares

Abstract—This paper provides a stability analysis of a class
of acoustic noise control algorithms by showing that the adapted
models have more in common with (nonlinear, finite impulse
response [FIR]) equation error models than with the infinite
impulse response (IIR) output error models they superficially
resemble. Stability results from the adaptive control literature
are applied to show global stability in the noise free case, and to
show exponential stability when the input is persistently excited.
The latter demonstrates a robustness to mismodeling errors,
disturbances such as noises, and allows results to be applied to the
tracking of time-varying systems.

Index Terms—Acoustic noise, adaptive control, exponential sta-
bility, parameter estimation.

I. INTRODUCTION

T HIS note presents a stability analysis of a class of algo-
rithms used in acoustic noise control. Adaptive control

techniques which concentrate on studying stability issues in
systems with feedback and adaptation will be shown to be
relevant to acoustic noise control problems due to the presence
of acoustic feedback loops. Application areas include HVAC
(heating, ventilation, and air conditioning) noise control and
enclosure noise control for automobiles, aircraft, and elevators.
The preferred compensator structure for parameter adaptive,
feedforward, active noise control in ducts is a direct form
infinite impulse response (IIR) model. Thus, adaptation algo-
rithms and their analytical justification and interpretation have
been sought among those intended for adaptive IIR filters in a
parallel system identification configuration. Indeed, [1, p. 200]
writes

The properties of such adaptive algorithms for IIR filters
are still not fully understood, especially when complicated
by the physical feedback path present in this case.

The discussion of and modifications recommended in [2], [3]
suggest an analysis concentrating on the IIR structure of the
filter to be adapted. The point of this paper is to show that the IIR
structure may be misleading and that the stability analysis can
proceed by rewriting the problem in a nonlinear equation error
formulation. This allows direct application of previous theoret-
ical results from the adaptive control literature.
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Fig. 1. Duct block diagram description.

II. A STABILITY PERSPECTIVE ONALGORITHM DEVELOPMENT

Active noise cancellation schemes such as those from [2], [4]
can be portrayed as in Fig. 1. The following assumptions specify
the problem setting in terms of the variables defined in Fig. 1.

A1) Disturbance. The source signalis uniformly bounded

(1)

A2) Feedback. The detection microphone signal is de-
scribed by

(2)

where the coefficients are bounded

(3)

A3) Error Signal. The source propagated to the error mi-
crophone plus yields (for 1 the error signal

(4)

where the coefficients are bounded

(5)

A4) Control Output. The output of the adaptive filter is

(6)

When 1, the order of the adaptive filter is assumed
to match the order of the error signal (for the moving
average portion) and the order of the feedback path plus
the error signal (for the autoregressive portion), that
is, . When is order , then

.
A5) Adaptive Algorithm. The algorithm for updating the

filter coefficients in (6) is based on the recursive least
mean square (LMS) algorithm ([1, equation (6.15.5)]),
modified by a “normalized” stepsize, which is common
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practice in both signal processing and control applica-
tions. The parameter adaptation algorithm is

(7)

(8)

where the time-varying, normalized stepsize is

(9)

for small fixed positive values of and .
The problem set up A1–A5 captures a fairly typical, if some-

what simplified adaptive noise cancellation setting. As shown
below, this can be rewritten as an “adaptive control” problem in
which the adaptation of thes and s are viewed as an implicit
identification of an unknown system . For instance, when

1, causes the error signalto be
identically zero and hence, and de-
fine the system to which the and must converge in order to
minimize the squared error.

Accordingly, define the “unknown” parameter vector

(10)

(for the 1 case, and ). The
“parameter estimates” are defined to be

and the parameter error vector is . Also, define
the “regressor vector”

and the prediction error

(11)

The “projection algorithm” from Goodwin and Sin [5] is then

(12)

Theorem 2.1:Consider the acoustic noise control problem as
shown in Fig. 1 with 1 under assumptions A1–A5. Then,
the following applies.

1) The error signal converges to zero for all initial condi-
tions, that is,

as

2) The regressor is uniformly bounded.
Proof: In order to apply [5, Lemma 3.3.2], it is only nec-

essary to show that of (4), (7) and (8) is equal to of
(11) and (12). Combining (6) and (4) gives

(13)

Equation (2) can be rewritten as

which can be used in (13) to give

Since and , this can be rewritten

To apply the “key technical lemma” 6.2.1 of [5], observe that
the bounds in (1) and (5) can be substituted into (4) to give

(14)

Similarly, the bounds (3) and (5) are substituted into (2) to give

(15)

Merging (14) and (15) shows that
and hence, [5, Lemma 6.2.1]

provides the desired conclusions.
Remarks:

1) This stability result applies to “recursive LMS” algo-
rithms based on a (nonlinear) equation error, rather
than an output error, problem formulation. The nominal
behavior is that of a globally stable algorithm.

2) The uniform boundedness of the regressor is with respect
to any norm in over time.

3) Theorem 2.1 also shows that , that is, the pre-
diction error sequence is square summable.

This result can be generalized to the case whenis any
strictly positive real (SPR) transfer function. To see this, redraw
the block diagram, pulling through the summation node on
the right and replacing with to compensate. Then the
error signal is precisely zero when
and hence, and define the system
to which the and must converge in order to minimize the
squared error. Accordingly, redefine of (6) to be the max-
imum of the order of and the order of the feedback path plus
the error signal.

Corollary 2.1: Consider the acoustic noise control problem
as shown in Fig. 1 under assumptions A1–A5 and withSPR.
Then the error signal converges to zero for all initial conditions,
that is, as , and the regressor is uniformly
bounded.

Proof: Follows exactly as in Theorem 2.1 but with re-
defined as . The use of in-
stead of as the error term in the algorithm does not effect
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the convergence and stability properties as long asis SPR, as
shown in the lemma proven in [6].

Remarks:

1) The case when is not SPR remains an open issue.
2) Because of the equation error structure, regressor and/or

error filtering such as that used in [7] are not needed in
the adaptive algorithm.

The conclusions of Theorem 2.1 imply that
for all . Hence, once an estimate of a given

quality is made, the algorithm never makes a worse estimate.
However, the theorem does not imply that the parameter esti-
mates converge to their desired values. But if an assump-
tion of richness or complexity of the regressor is made, then this
convergence can be guaranteed. Moreover, because the conver-
gence is exponential, it implies a certain robustness to noises or
disturbances that are inevitably present in any implementation.

A6) Persistence of Excitation. Assume that the unknown
system represents a stable linear filter and that the
regressor vector satisfies

(16)

for some 0, some 0, and all .
Theorem 2.2:Consider the acoustic noise control problem as

shown in Fig. 1 under assumptions A1)–A6) and withSPR.
Then the parameter estimates converge exponentially to
from any initial condition.

Proof: With 1, this is a straightforward application
of [8, Th. 3.5.19]. With SPR, [7, Appendix] guarantees that

whenever (16) holds. Combining these two gives the desired
exponential stability.

Remarks:

7) The persistence of excitation condition on the regressor
vector can be transferred to a similar condition on the
signals (and hence ultimately onto) following the de-
velopment in [9].

8) Exponential stability is a strong property. It guarantees
that the algorithm (12) remains stable even under per-
sistent perturbations, that is, it guarantees robustness to
small noises or disturbances in the inputs, outputs, mea-
surements, and modeling parameters that inevitably arise
in implementation.

9) Theorem 2.2 also guarantees that if the underlying sys-
tems (the , , and transfer functions) change slowly,
then the algorithm will track the changes. (see [8, Th.
3.5.29] for a detailed statement). Hence, robustness to
time variations is also guaranteed.

III. CONCLUSION

This note has presented a stability analysis of commonly used
recursive algorithms for active acoustic noise control. The anal-
ysis exploits adaptive control techniques by showing that the al-
gorithms have stability properties closer to those of a nonlinear
equation error (the projection algorithm) than to the output error
form often associated with IIR adaptive filtering [10].
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