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Abstract

The ESPRIT algorithm has proved to be a robust solution to exploit single in-
variance structure in array elements. However, ESPRIT is not flexible to incorporate
multiple invariances. A closed form solution to the problem of estimating eigenvalues in
multiple invariant structures is presented in this paper. It is shown that the algorithm
is comparable in complexity to ESPRIT but performs better than ESPRIT especially
when only a limited number of signal samples are available. In addition, the algorithm
is shown to be feasible even for single array elements sharing multiple invariance. Index
Terms-SPECC, ESPRIT, subspace methods, multiple invariance.
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1 Introduction

The ESPRIT [1] algorithm has proved to be a powerful technique for the estimation of
unknown parameters by exploitation of the rotational invariance property in the eigenstruc-
ture of the measured data. Originally developed for the estimation of the directions-of-
arrivals (DOA’s), ESPRIT finds widespread applications in radar, sonar, global positioning
systems(GPS), wireless communications and even image analysis. Conventionally, ESPRIT
obtains closed-form estimates of the DOA’s of narrow-band signals and results in robust per-
formance by exploiting single invariance structures. Unfortunately, ESPRIT is not flexible
enough to incorporate multiple invariances in the data. In [2], Swindlehurst et al. proposed
the multiple invariance ESPRIT (MI-ESPRIT) which provided better estimates. The main

drawback of MI-ESPRIT is that the algorithm involves a multidimensional minimization.

In this paper, we state and prove a theorem based on the Cayley-Hamilton theorem for
square matrices and propose an algorithm for parameter estimation based on this result.
Referred to as the Signal Parameter Estimation via Cayley-Hamilton Constraint (SPECC),

our algorithm provides a closed-form estimation that exploits multiple invariance structures.

2 Problem Formulation

Consider the reception of a narrow-band signal vector s(t) € C¢ at an array of M sensors.
The measured data at the sensors is to be used to estimate the DOA of each of the d sources.

The response at the sensor array represented by z(t) € CM is given by
z(t) = Gs(t) + n(t), G =la(6,)...a(,)], (1)

where a(f) is the array response vector to a unit amplitude narrow-band signal in the direc-

tion # and n(¢) is additive white Gaussian noise. In this paper, we assume a uniformly spaced



linear array although the proposed algorithm can be extended to a more general setting [3].

Consider selection matrices Jg, J1,...,J, of size m x M. As in [2], the selection matrices
each pick m out of the M sensors in the uniform linear array and introduce the following

rotational invariance structure

JoG =A, J G =A%, J,G = A®P”. (2)
Here @ is a unitary diagonal matrix with diagonal elements ¢; given by

¢; = exp{—j2nAsin(0;)/A}, i=1,...,d, (3)

where A is the wavelength and A ~ )\ is the spacing between array elements. ESPRIT
exploits this structure for p = 1 and estimates ¢; based on which the DOA’s 6#; can be
estimated. The complex vector space C*™ of the received signal z(¢) needs to be separated
into the signal and noise subspaces which are orthogonal to each other. This is accomplished
by considering the eigen-decomposition of the covariance matrix Rz of the received signal.
We have

Rz, = E[z(t)z" (t)] = GRssGH + 01, (4)

where o2 is the noise variance. We assume that the covariance matrix Rgg of the signal vector
is of full rank d (no fully correlated signals) and the columns of G are linearly independent.

The eigen-decomposition of the covariance matrix results in
Rz, = USUY = UgESUY + 0*UyUY, (5)

where Ug = [e; ...€4], Uy = [e441 ... en] represent the signal space and noise space
respectively. Subspace techniques are based on the observation that span{Ug} = span{G}.
This implies the existence of a d x d full rank matrix T satisfying Ug = GT. The signal

subspace corresponding to the subarrays are defined by {U; = J;Ug, ¢ = 0,...,p}. The



subspaces are related as
U, =A®T =BT, i=0,...,p, (6)

where B = AT and ¥ = T '®T. In the presence of noise and a finite data set, we can only

obtain estimates ﬂi of U;, and the multiple invariance problem becomes

(o, ] | B |

_ U, BY¥

min T : (7)
\_fj,,_ | BY? | ) .

where the notation ||.||r indicates Frobenius norm. The problem here is to obtain estimates
of the eigenvalues of ¥ which are the diagonal elements of ®. When p = 1, the problem
reduces to ESPRIT and the single invariance structure can be exploited by a least squares
approach [1] or a total least squares approach [4] to estimate the eigenvalues of ¥. However,
for multiple invariance, no closed form solution exists and the proposed algorithm in [2] is to

perform a Newton search with the single invariance ESPRIT solution as the starting point.

3 The Cayley-Hamilton Constraint

An alternate solution to the problem is proposed in this section by reposing the problem in
a different way. The solution is based on the following observation. Let p(\) = 3. b;\’ be
the characteristic polynomial of the d x d square matrix ¥. The Cayley-Hamilton theorem

enforces the following constraint on ¥

p(¥) = boly + by¥ + ... +b¥? =0, (8)



where I; is the identity matrix of size d. This, along with (6), translates to the following

constraint on the signal space
bQUQ + ...+ ded =0. (9)

Since the eigenvalues of ¥ can be obtained as roots of p(A) if the coefficients {b;, i =0, ..., d}
are known, it remains to be shown that given U;, the characteristic polynomial is uniquely

determined from (9).

Theorem 1 Let U;, B and ¥ be defined as in (6). Let p(\) be the characteristic polynomial
of ®. Let Z(g) be the notation to denote the set of roots of a polynomial g(\). So the set

Z(p) ={A1,..., Aa} is the set of eigenvalues of ®. Consider the minimization

{CLZ'} = arg mn% ) ||040U0 + ...+ a/dUd”F- (10)

Qi) o=

Let a(\) = ag + ai) + ... + ag\?. Assume that ¥ is diagnolizable as ¥ = MDM™'. If in

addition, ¥ has distinct eigenvalues and BM has no zero columns, then Z(p) = Z(a).

Remarks:

1. The condition Y a? = 1 is required to avoid the trivial solution a; = 0 to the mini-
mization problem. It can be replaced by other similar conditions without affecting the
conclusions of the theorem since we are concerned about the roots of the polynomial

rather than the polynomial coefficients.

2. Z(p) = Z(a) tells us that Equation (9) implies Equation (8). This can be expected
to be true if B is invertible. However, the theorem presents a much weaker condition
under which this holds. The invertibility of B is not required. It suffices to have the
row space of B orthogonal to no eigen-vectors of ¥ which translates to the no zero

column condition on BM.



3. This implies that the theorem holds even when the rank of the matrix B is less than
d, the number of sources. This removes the ESPRIT restriction that the invariance be
present among at least d subarray elements and makes it possible to exploit invariances
even among subarrays with single elements.
Proof: Let p(\) = Z?:o b;\'. Since {ay,...,aq} is a minimizer of (10), we have
HCI,()UO + CL1U1 + ...+ adUd||F
S |‘bOU0+b1U1++dedHF :O,
where the equality follows from (9). Since the norm is non-negative, we have
HCL()UO + CL1U1 + ...+ adUdH
= ||laoB +a;B¥ + ... + a;B¥¢|| =0,
which implies

B(agly+ a1 ¥ + ... + ag¥%) = 0. (11)

If B is invertible, it immediately follows that a(\) is an annihilating polynomial of ¥. An
annihilating polynomial of a square matrix is simply a polynomial that reduces the matrix
to zero [5, page 221]. It can be shown that the invertibility condition is not a requirement.

To see that, diagonalize ¥ in (11) to obtain
BM(agly + ;D + ... + ¢;DYM™! = 0.
Since M is full rank, we can write this as
BMD =0,

where D = (agIy+a;D+...+a4D?) is also diagonal. f BM = [c; ...cq)and {8;,i =1,...,d}

are the diagonal elements of D then we have

[Bicy ... Baca] = 0, (12)



which indicates that if none of the columns of BM are zero, then we have
D = (agly + ;D + ... + agD?) = 0. (13)

(From this, we conclude that a(\) is an annihilating polynomial of ¥. Since ¥ has distinct
eigenvalues, a(\) is the minimal polynomial of ¥ where the minimal polynomial is defined
as the annihilating polynomial of minimal degree. Notice that the characteristic polynomial
is also an annihilating polynomial of the matrix. Also notice that a()) is of the same degree
as the characteristic polynomial p()). Since the minimal polynomial is unique [5, page 240],
it follows that a()) and p(\) are the same up to a constant. This concludes the proof of the

theorem.

4 SPECC Algorithm and Results

A description of the SPECC algorithm based on the theorem just stated is provided in this

section. We solve for the following minimization

{ao,...,as} = min |JaoUs + ...+ agUq||p. (14)

{a0,aa}
The minimization leads to a unique solution up to a constant. The roots of the resulting
polynomial a(x) = ag+ a1z +. .. + agz? represented by {q@z,z =1,...,d} are approximations
to {¢i,i = 1,...,d}, the eigenvalues of ¥. The DOA’s {6;} can be estimated now just as
in the ESPRIT case. Note that (14) involves minimization of a term quadratic in the pa-
rameters and can be accomplished by a singular value decomposition(SVD). The polynomial
rooting involved in the SPECC algorithm suggests similarities to the root-MUSIC algorithm.
However, SPECC exploits a structure similar to the one that ESPRIT exploits and provides

a solution comparable in complexity to the ESPRIT algorithm. Also note that we have not



solved the multiple invariance minimization problem. Rather, we have provided a solution

that exploits an alternate structure in the signal subspace.

Before we compare SPECC with ESPRIT, it would be prudent to list the possible ad-
vantages and disadvantages. SPECC assumes the availability of at least d invariances while
ESPRIT exploits a single invariance. But ESPRIT can do no better in presence of more
than one invariance whereas SPECC can be extended to yield results even in the presence
of more than d invariances [3]. But it has to be noted that SPECC cannot function in the
presence of single invariance unless a single parameter is to be estimated. A crucial factor
in favor of SPECC is that it can exploit invariances even among single element subarrays
whereas ESPRIT demands at least d elements in the two subarrays that share the invariance.
Hence, in situations where it is easier to have a small number of elements sharing multiple
invariance rather than a large number of them sharing a single invariance, SPECC would be

preferable over ESPRIT.

To compare the two, we assumed an array of M = 12 equispaced sensor elements, the
same setup as in [2]. Two sources (d = 2) at #; = 10° and #, = 13° were assumed. The
array elements were assumed to be separated by A = A\/2. Since SPECC exploits a multiple
invariance structure, we provide comparison against the corresponding MI-ESPRIT results
as well. Labeling the array elements as {1,2,3...,12}, we exploit the following invariance

in the three algorithms considered.

e ESPRIT:{1,2,...,11} and {2,3,...,12}
e SPECC: {1,2,3,4}, {5,6,7,8}, {9,10,11,12}

e MI-ESPRIT: {1,2,3,4}, {5,6,7,8}, {9,10,11, 12}

The invariance structure exploited for ESPRIT is the one with the best performance among



the structures considered in [2]. We exploit the same multiple invariance structure for both

the SPECC and the MI-ESPRIT algorithm.

Fig.1 shows a comparison of the three schemes by plotting the root mean square values
for one of the two sources against SNR. The SNR we consider is the one at each array element
due to all sources. The comparison was done by considering 10 snapshots of the received
signal at each array element. The estimation of the signal subspaces can be expected to be
quite inaccurate with just 10 snapshots of each signal. The plot shows that SPECC is more
robust against inaccurate subspace estimation compared to both the ESPRIT as well as the
MI-ESPRIT algorithm. The effect is pronounced at low SNRs and brings out limitations of

the ESPRIT algorithm.

Fig.2 is a similar comparison with 100 snapshots of the received signal. The MI-ESPRIT
scheme performs the best of three algorithms considered but the SPECC algorithm achieves
a performance close to the MI-ESPRIT scheme. When the subspace estimation is accurate,
the performance of the three algorithms are comparable with the MI-ESPRIT algorithm
performing slightly better. We note again that the ESPRIT algorithm structure exploited
here is the best possible case from amongst those given in [2] and the MI-ESPRIT algorithm
exploits the same structure as the SPECC algorithm. Performance across different possible

structures for the SPECC algorithm remains to be investigated.

As the number of snapshots considered increases, better performance can be expected by
the ESPRIT algorithm. Fig.3 shows comparison of the three algorithms for different number
of snapshots. The simulation was done at an SNR of 0dB. Only with increasing number
of snapshots does the performance of ESPRIT approach that of SPECC. The simulation
also brings out the limitations of the MI-ESPRIT algorithm. The MI-ESPRIT algorithm

can search for the best possible parameters that fit into the estimated subspace but can do



nothing to improve the subspace estimation itself.

5 Conclusion

The rotational invariance in an array structure has been exploited by invoking a linear
constraint on the subspaces in the form of Cayley-Hamilton theorem. It is shown that the
constraint leads to a closed form algorithm to exploit multiple invariance for estimation of
parameters. Although SPECC has been formulated for the DOA estimation problem in this
paper, it applies to a broader class of problems. Specifically, the technique can be applied

to estimate the eigenvalues of ¥ from an invariant structure of the kind
U; = BUH (15)

where {k1, ko, ...} are positive integers that satisfy certain conditions. The robustness of
SPECC makes it particularly attractive to those applications where there is a large number
of invariances but only a small number of samples (snapshots) available. One such application
is in the estimation of delays for a frequency hopping system using samples from the header

part of data packets [6].
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Figure 1: Comparison of SPECC with ESPRIT and MI-ESPRIT: Plot of mean square error

for directions in degrees against SNR. 0 = [10° 13°] (@ = 10° plotted), 10 snapshots



12

Snapshots = 100
0.9 T T T T

I
—%— SPECC

q
-6 ESPRIT
0.8 —— MI-ESPRIT |
0.7 |
0.6 B
-
OEE 9=10°
[r
005 |
-
o
-
I
041
(0p)]
=
e
0.3
0.2+
0.1
0
0 5 10 15 20 25 30

SNR(in dB)

Figure 2: Comparison of SPECC with ESPRIT and MI-ESPRIT: Plot of mean square error

for directions in degrees against SNR. 0 = [10° 13°] (@ = 10° plotted), 100 snapshots
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Figure 3: Comparison of SPECC with ESPRIT and MI-ESPRIT against number of snap-

shots, 6 = [10° 13%)(0 = 10° plotted), SNR=0dB



