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Abstract: The fault detection and isolation of redundant 
sensor systems based on B-spline neural networks is 
presented in this paper. The network is trained using an 
algorithm with an adaptive learning rate. To further save 
computation time, the residual vector is transformed from a 
multivariate B-spline function to an univariate B-spline 
function. The detection of abrupt and drifting faults using 
the proposed method is discusses. The performance of the 
proposed method is illustrated by an example involving a 
redundant system consisting of six sensors. 
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1. Introduction 
In many aerospace applications, reliability is a critical issue. 
To enhance reliability, redundant sensors are often used. For 
example, redundant of gyroscopic sensors arranged in a 
dodechedron are common in navigation systems. In order 
that the reliability of inertial measurement systems with 
redundant sensors is significantly higher than that of 
systems with no redundant sensors, the redundant systems 
need to have a high degree of fault tolerance, which can be 
achieved passively using data selection techniques, or 
actively using fault detection and isolation (FDI) techniques 
[l]. Several FDI methods have been proposed, e.g., the well 
known Generalized Likelihood Test (GLT) [I], and the the 
Optimal Parity Test (OPT). The OPT is more efficient in 
detecting and isolating faults as it is designed to be more 
sensitive to designated sensor faults, and less sensitive to 
other sensors faults in a redundant system [2][3]. However, 
a common assumption in both techniques is that the sensor 
mounting configuration is known [2]. Further, the statistical 
distribution of noise in the model is assumed known in order 
that the threshold to detect faults can be determined. In 
practice, mounting errors always exist, and these errors can 
reduce the reliability of these methods. To improve the 
reliability of fault detection in a redundant system, it is 
proposed in [4], that the estimate of the state should be 
compensated first before applying FDI techniques. 

In recent studies of FDI, a popular approach is to use neural 
networks in fault detection, e.g., see [5,6]. In [5],  multilayer 
feedforword neural networks are used, whilst in [6], 
associative B-spline networks are used to integrate 
quantitative and qualitative information. In this paper, an 
FDI technique based on the B-Spline neurofuzzy network 
(BSNN) is proposed. The main advantage of the BSNN is 
that computation time is much less the multilayer 
feedforward neural networks, since only local adjustment 
are required [7]. 

2. Fault detection of systems with redundant sensors 
Let the measurement of a system with redundant sensors be 
given by 

A4 = H X + E  ( 1 )  
where XER" is the state vector, H ,  the measurement matrix 
for given a sensor configuration, MER"', the measurement 
vector for m sensors, and m>n, E, the zero mean noise with a 
covariance matrix dI,,,, and 0, a positive constant, I,,,, the 
mxm identity matrix. To determine the threshold in fault 
detection, E is assumed to be a Gaussian noise, 

When there are sensor faults, the measurement equation ( 1 )  
becomes 

M = H x + b + E  (3) 
where 6 = (bl, ..., b,) is the fault vector, bi, the magnitude 
of the fault of the ith sensor. Let H be full column rank, i.e., 
runk(H) = n, then there exists an mx(m-n) matrix V of full 
column rank satisfying the orthogonal condition: 

Let each column vector of V be defined as a parity vector, 
and the space spanned by the columns of V be the parity 
space [8]. The orthogonal projection matrix, Pv, on the 
parity space is given by, 

(5 )  
A popular method to compute V is that proposed by Potter, 
and that V satisfies [I], 

E - N ( 0 , 0 2 1 , , , )  (2) 

V'H = 0 (4) 

Pv = V( v'v)-' V' 

V'V = I (6 )  
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A brief discussion of the generalized likelihood test (GLT), 
and the optimal parity test in fault detection is presented 
here. 

2.1 The generalized likelihood test [1,8] 
For a given V, the measurement M is transformed yielding 
the residual vector 

The fault detection decision function is given by 

The detection threshold TO is chosen for a given probability 
of false alarm. Then 

p = V’M (7) 

(8) OFD = p’Cov-’ (p )p  = ~ - ‘ p ’ (  V’V)-’ p 

(i) if DFD > T o ,  fault has occurred, or 
(ii) if DFD I To,  there are no faults. 

2.2 The optimal parity test [ 3 ]  
Let vi be chosen such that it is more sensitive to faults in the 
ith sensor than that in the other sensors [ 3 ] .  The optimal 
parity vecors for the other sensors are similarly chosen. The 
scaled residuals p i  = v ! M ,  i=l, ..., m are computed, and 
normalized 

p; =pi/(ollvill) (9) 
such that the variance of pf is 1 .  Select a detection 
threshold T for a given probability of false alarm. Determine 
the largest absolute value of the scale residual, p i ,  

I p i  I = maxl p;  I . Then 

(i) if I p i  I > T , a fault occurred in the kth sensor, or 

(ii) if I pi  I I T , there is no fault. 

i 

2.3 Remarks 
The GLT and OPT are derived under two conditions: 

(i) o is assumed known, as otherwise, DFD in the GLT, 
and pr in the OPT cannot be computed, and 
(ii) E is assumed to be Gaussian in determining the 
thresholds TO in the GLT, and Tin the OPT. 

Since these two conditions are restrictive, hence the 
application of these methods in practice can be limited. In 
this paper, BSNNs are proposed to improve the 
performance of these techniques. In the following 
discussion, it is assumed that E is a zero mean noise with a 
covariance matrix dZ, where o is unknown, but satisfies 
o E [a ,b ]  ; where a and b are respectively the lower and 
upper bounds. 

3. B-Spline neurofuzzy networks 
For completeness, a brief discussion of the BSNN is given 
here, and the reader is referred to [7] for further details. 
Under certain condtions, the output, j ( t ) ,  of a BSNN 
shown in Fig. 1 is given by, 

i, = c;=, W j S j ( X )  (10) 

where (wj,  j=1, q ) ,  are the weights, X E R“, the input 
vector, and {s,{x), j= l ,  q ) ,  the transformed of X using B- 
spline function. 

3.1 Training of the BSNN 
The weights, {wj ,  j=1, q ) ,  are obtained by minimizing the 
performance index, 

(11) 
where y ( i )  is the reference value, and L is the number of 
training samples. Since the weights are independent of the 
transformed input {sj(x), j=1, q ) ,  they can be obtained by 
the least square method. Let 

E = xi1 (Jy(0 - Y(i)(I2 

S’(X(1)) Sl(X(1)) ... S q ( X ( I ) )  

“L)) S,(X(L)) ... S , ( X ( L ) )  
s=[ i ]=[ ... ... ... ] 

The estimate of the weights 6 is given by 

where Y=(y( l ) ,  ..., y(L))’. If S is full column rank, then 6 
can be determined uniquely. However, if S’S is singular, 
e.g., q > L, then some components of w cannot be 
determined uniquely, then6 can be computed from the 
pseudo-inverse of S’S. When q is large, the computation of 
the inverse or the pseudo-inverse of S‘S can be complex. In 
this case, the following numerical methods can be used. 

G=(ss)-’s’y (12) 

3. I .  1 Steepest decent gradient method 
The weights are computed by 

where I) is the learning rate, k, the training cycle, 
w ( k )  = w(k - l )+qS’Af(k-’ )  (13) 

= Y - f ( k ) ,  and f ( k )  = ( j ( k ) ( l )  ... j ( k ) ( L ) ) ’ .  A 

main problem here is the choice of q. For a small q, the 
convergence of the weights is slow, though the learning 
algorithm is more stable. However, increasing the learning 
rate by increasing q can lead to an unstable learning 
algorithm. 

3.1.2 Adaptive learning rate 
An adaptive learning rate (ALR) is proposed in 191, which is 
obtained by maximizing the reduction in the cost function E 
at each iteration, and given below. 

(14) 
where 

ej = I 1  s’~If~(~-’) 112 /I1 ,Cj”Afj(k-’) 11: 

A<(k) = Y j  - f (k)  , 
J 

=($)(1) $)(L))’,  and G = S’S. 

ej = I I S ’AfjCk-’) I I* / I  I S ’Afj(k-’) I I’, 

3.1.3 Normalized least mean square method 
In the normalized least mean square method, the weights are 
updated as follows, 

(15) w(t + 1) = w( t )  + ,u[y(r> - s’(t)w(t)]s(t)  
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where w(t), y(t), and s(t) are defined previously, and p, the 
feedback coefficient. It is _proposed in [lo] to update p 
recursively as follows. 

where q is the dimension of s(t), p~ > 0 is a constant. The 
maximum value of p~ is given by 

p, < 211s(t)1I2/q 

4. Fault detection procedure 

4.1 Training of the BSNN 
For a given V with full column rank, there exists a 
nonsingular matrix U such that 

Let 
V'V = UU' (17) 

v* = VU-T (18) 

where V =  [ '! 1, V* =[ v[).From(18), 
V m  " m  

v' 1 1  = v .u-T (19) 

For a given constant c, {cvf } is taken as input data for all i .  

The constant c is chosen depending on the range of 6. Since 
the dimension of V is m x ( m  - n)  , the number of the input 
of BSNN is m-n. Note that the last training input is a zero 
vector, representing no sensor fault in the system. 

Since the number fault models is identical to the number of 
sensors, m, hence the number of output neurons of the 
BSNN is m+l with the last one associated with the fault-free 
system. When the system is operating normally, all the 
output of the network are zero, except the last element. 
However, when a fault occurs, say in the ith sensor, the i" 
element of the output becomes 1, whilst the last element 
becomes zero, indicating that a fault has occurred. Let e, be 
the ith column of the ( m + l ) x ( m + l )  identity matrix. Note 

that for an input training vector cvl* , the output vector is e , ,  
i.e., a vector with zeros everwhere, but unity at the ith 
element. If the input vector is zero, the output vector is em+', 
i.e., unity at the (m+l)" element. 

A problem in this approach is the choice of V, since there 
exists an arbitrary large number of choices. Indeed, V can be 
constructed by any linear combination of (m-n) columns of 
Pv. Consequently, there are infinite number of choice of the 
orthogonalized matrix v*, implying the the training may be a 
function of the choice of V. However, it is shown below that 
the angle < vf , v/: > is independent on the choice of V. 

Let l l V , * l l = , / ~ ,  where Pv(i, j)  is the ith row and jth 
column element of Pv. If the diagnal elements of PV are 

identical and equal to 2, i.e., F'di,i) = 2, then the end point 
of G: is on a hyper-sphere with the center at the original 
and a radius of r. 

-1 - *  
I *  vi ' V j  Pv ( i ,  j )  C0S<Vi,Vj >= 

I I  V' II . II Vi' II = J- 
and Pv is independent on the choice of V [8], hence the 

angle < v,*, v/: > is independnet of  V.  

4.2 Fault detection 
From (7) and (4), the residual vector ((m-n)xl), p, is 

p = V'b + V% (20) 
which is not a direct function of the system state. Note that 
the variance of V'& is dV'V,  hence p is a correlated vector. 
The computation of the multivariate B-spline function of p 
can be time-consuming. To save computing time, p is 
transformed as follows. From eqns. (17) and (18), p is 
tramsfromed by 

From (7), 

p* is the input of the BSNN in fault detection. It can be 
readily verified that v' satisfies Potter's condition given by 
(6) from (17). Since v' is orthogonal to H ,  such that Cov(p*) 
= dI, i.e., each element of p* is uncorrelated to each other, 
and has the same variance d, hence only a univariate B- 
spline function needs to be computed, giving a significant 
saving in computing time. Further, it can be readily shown 
that v' satisfies the orthgonal condition given by (4). From 
(4) and (221, 

p* = u - ' p  (21) 

p* = V * M  (22) 

m 

,=I 
p* =(V*) 'b+&* = C(vl*) 'b ,  + E *  (23) 

where F is mean-zero with a covariance matrix of 021. 
When the i'h sensor fails, then b, f 0, and bj = 0, for j f i .  
Eq.(23) can be rewritten as 

Taking expection of Eq. (24), p* has a bias of bi(vl*)' . If 
bi is large compared with 0, sensor fault can be detected and 
properly isolated. Hence, vl* can be considered as the fault 
input vector of the i" sensor in the space of the residual. 

p* = b,(V1*)' + E *  (24) 

4.3 Computation of the transformed input vector 
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Without loss of generality, let X = (xl, .-., x,,)’ be the input 

of the BSNN (e.g. X =p* in section 4.2), and assume that 
each element of X is uncorrelated with others. The 
transformed input vector of X can be expressed directly as a 
vector consists of the transformed input vectors with n 
elements, i.e., 

(25) 
where, s(xi) is defined previously. Let the dimension of s(xi) 

be mi, then the dimension of s (X)  is: ~ ~ ‘ I q  , instead of 

nblm, . The later is the number of multivariate spline 
functions obtained from the tensor operation. It indicates 
that the computing time decreases drastically using the 
proposed transformation. 

s ( X )  = ( S ‘ ( X I ) ,  ..., s’(x,))’  

H =  

- - 
052573 0 0.85065 

-052573 0 0.85065 
0.85065 052573 0 
0.85065 -052573 0 

0 0.85065 052573 
- 0 0.85065 -052573 - 

5.1 Using the proposed method 
( i )  Constant fault 
In the simulation, the standard deviation of (3 is set to 0.01. 
For the trainig period from 40 to 80, a fault of magnitude 2 
occurred in the first sensor. For the testing period from 120 
to 160, the magnitude of first sensor constant fault reduces 
to 1, whilst other sensors are working normally. The output 
of the first, the second and the seventh output neurons of the 
BSNN using the proposed method are shown in Fig. 2. The 
output of the other output neurons are not shown as they are 
similar to that of the second neuron. Clearly, for the periods 
from 40 to 80, and from 120 to 160, the output of the first 
output neuron is significantly larger than the output of the 
other output neurons, which are close to zero. Therefore, 
sensor faults can be detected from the seventh output 
neuron, whilst the ouput from the other output neurons to 
isolate sensor faults. 
(ii) Drifing fault 
Assume that the drifting fault bl of sensor 1 is given by, 

0.01(k -50) k > 50 
b1 = {  0 others 

In Fig. 3, the output of the first output-neuron using the 
proposed method is shown, illustrating that drifting fault can 
be detected shortly after it occurred in sensor 1. 

5.2 Using the modified Krogmann’s method 
In Krogmann’s method, only six vectors are considered, 
obtained from c P ~ . ,  i) ,  for i = 1, .. ., 6, where c is constant. 
In this example, the Krogmann’s method is modified as 
follows. 
(1) The constant c is chosen similar to the proposed 

method. 
(2) A zero vector is added to the input of the network, such 

that there are 7 instead of 6 output neurons. Now, the 
output neurons are the same in both the proposed and 
the modified Krogmann’s method. 

(3) The BSNN, instead of BP neural network is used. 
(4) The testing input is PvM. 

For the drifting fault of the sensor 1 described by (26), the 
output of the first output-neuron using the modified 
Krogmann’s method is shown in Fig. 4. The reason for 
adding a zero vector is clear from Fig. 5 ,  as the output 
without the zero vector is biased. 

From the discussion in Section 4.1, the choice of V has no 
effect in the fault detection in the proposed method. To 
illustrate this point, another V is chosen from the 3-5th 
columns of Pv. For the drifting fault of the sensor 1, the 
fault is similarly detected as shown in Fig. 6. 

6. Conclusion 
A technique for the detecting and isolating faults in 
redundant systems based on B-spline neurofuzzy networks 
is presented. It is shown that abrupt and drifting faults can 
be detected, and hence isolated for systems with redundant 
sensor based on a uncertainty measurement model. Another 
advantage of the proposed method is that its reliability can 
be improved using several models computed by severval 
different choice of V. The performance of the proposed 
technique is illustrated by an simulation example, and 
compared with the Krogmann’s method. 
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Fig.2 FDI of a constant fault using the proposed method 
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Fig.3 FDI of drifting fault using proposed method 
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method with 6160 BSNN 

0 50 100 150 200 

I .2 

1 -  

0.8 . 

Output of output-neuron 1 . 

-0.2 
0 50 100 150 200 
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