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Abstract

This paper combines techniques of potential shap-
ing with those of kinetic shaping to produce some new
methods for stabilization of mechanical control systems.
As with each of the techniques themselves, our method
employs energy methods and the LaSalle invariance
principle. We give explicit criteria for asymptotic sta-
bilization of equilibria of mechanical systems which, in
the absence of controls, have a kinetic energy function
that is invariant under an Abelian group.

1 Introduction

The method of controlled Lagrangians is a construc-
tive approach to the derivation of stabilizing control
laws for underactuated Lagrangian mechanical systems
with symmetry and with broken symmetry (Bloch,
Leonard and Marsden [1997,1998,1999a,1999b,1999c] ,
Bloch, Chang, Leonard and Marsden [1999], Bloch,
Chang, Leonard, Marsden and Woolsey [2000]). As
part of this method, we consider control laws that yield
closed-loop dynamics in Lagrangian form so that stabi-
lization can be understood in terms of energy shap-
ing. Other relevant work involving energy methods
in control and stabilization includes Wang and Krish-
naprasad [1992], Koditschek and Rimon [1990], Bail-
lieul [1993], Spong [1996], Åström and Furuta [1996],
Leonard [1997], Auckly, Kapitanski and White [1998]
and Hamberg [1999].

This paper combines methods for control of under-
actuated systems that involve Lie bracket computations
(Poisson brackets in the case of Hamiltonian systems)
with the controlled Lagrangian technique. In particu-

lar, we explore how potential shaping in the sense of
van der Schaft [1986] and Jalnapurkar and Marsden
[1999,2000] can be combined with kinetic shaping using
controlled Lagrangians.

Assume the given mechanical system has configu-
ration space Q and that a Lie group G acts freely and
properly on Q. An important special case is that where
Q = S × G with G acting only on the second factor by
left group multiplication. For example, for the inverted
planar pendulum on a cart, Q = S1×R with G = R, the
group of reals under addition (corresponding to trans-
lations of the cart). We are interested in the underactu-
ated problem in which the controls act directly only on
the variables lying in G, but all variables in the state
space are to be controlled. We suppose that G is a
symmetry group for the kinetic energy of the system
but the potential energy V need not be G invariant.

Let θa be coordinates for G and xα be coordinates
for Q/G. Let the metric tensor g(·, ·) define the kinetic
energy 1

2g(q̇, q̇) and let L : TQ → R be the original
Lagrangian given by the kinetic minus potential energy:

L(xα, θa, ẋα, θ̇a) =
1
2
gαβẋαẋβ + gαaẋαθ̇a +

1
2
gabθ̇

aθ̇b

− V (xα, θa); (1.1)

(xe, θe, 0, 0) ∈ TQ is the equilibrium of interest where
(xe, θe) is a critical point of the original potential V .

2 Potential Shaping.

We first review some of the techniques of potential
shaping. To illustrate these, we consider a case where
potential shaping alone is sufficient to achieve asymp-
totic stabilization.



Assume the following definiteness condition:

∂2V

∂xα∂xβ
(xe, θe) > 0, (2.1)

i.e., the equilibrium is a minimum of the original po-
tential energy in the xα variables. Notice that this
excludes the examples treated in the method of con-
trolled Lagrangians where the equilibrium is a maxi-
mum of the given potential energy. If (2.1) holds, the
Lyapunov stabilization of the equilibrium (xe, θe, 0, 0)
can be achieved by potential shaping. Indeed, choose
any function Vε : G → R with a minimum at θe and let
the control input u be of the form

ua = −∂Vε

∂θa
+ ũa. (2.2)

Then, we can check that the Euler-Lagrange equations
of the given Lagrangian L with the force u are equal to
those of the new Lagrangian L̃ defined by

L̃(xα, θ, ẋα, θ̇) = L(xα, θ, ẋα, θ̇) − Vε(θa)
= K(xα, θa, ẋα, θ̇a) − Ṽ (xα, θa)

with the force ũ where Ṽ = V +Vε. Let Ẽ be the energy
from the Lagrangian L̃ defined by Ẽ = K + Ṽ . By the
choice of Vε, (xe, θe, 0, 0) is a critical point of Ẽ. The
second derivative of Ẽ at ze = (xe, θe, 0, 0) is

D2Ẽ(ze) =
[
D2Ṽ 0

0 D2K

]∣∣∣∣
z=ze

(2.3)

where D2Ṽ is given by

D2Ṽ =




∂2V
∂xα∂xβ

∂2V
∂xα∂θa

∂2V
∂θa∂xα

∂2V
∂θa∂θb + ∂2Vε

∂θa∂θb




and D2K denotes the second derivative of the kinetic
energy K with respect to (ẋα, θ̇). We already know that
D2K(xe, θe, 0, 0) is a positive definite matrix. By linear
algebra and (2.1), we can make D2Ṽ (xe, θe) positive
definite by choosing Vε such that its second derivative
at (xe, θe) is positive definite and the magnitudes of
its eigenvalues are large. Thus, Ẽ has a minimum at
(xe, θe, 0, 0), so it can be used as a Lyapunov function.
We introduce the following input term

ũa = cb
agbcθ̇

c (2.4)

where cb
a is a negative definite matrix with respect to

the gab metric. Then, we have

d

dt
Ẽ = cb

agbcθ̇
aθ̇c ≤ 0. (2.5)

Hence, (xe, θe, 0, 0) is still an equilibrium of the closed-
loop system and becomes Lyapunov stable.

To prove the asymptotic stability of the equilib-
rium, we use the LaSalle invariance principle. By (2.5)

and the fact that Ẽ has a minimum at (xe, θe, 0, 0),
there exists a number c ∈ R such that the set Ωc :=
{z = (xα, θa, ẋα, θ̇a) ∈ TQ | Ẽ(z) ≤ c} becomes a
nonempty, compact and positively invariant set. Define
E :=

{
z = (xα, θa, ẋα, θ̇a) ∈ Ωc

∣∣∣ d
dt Ẽ(z) = 0

}
= {z =

(xα, θa, ẋα, θ̇a) ∈ Ωc | θ̇a = 0}. Let M be the largest
invariant subset of E . Instead of directly looking into
the dynamics on M, we follow the approach given in
van der Schaft [1986] and Jalnapurkar and Marsden
[1999,2000]. Let FL̃ : TQ → T ∗Q be the Legendre
transform induced from the Lagrangian L̃ (see, e.g.,
Marsden and Ratiu [1999]). Since the Lagrangian L̃ is
regular, we can define H̃ : T ∗Q → R by H̃ = Ẽ ◦FL̃−1.
Define Gb : TQ → R by Gb(xα, θa, ẋα, θ̇a) = θ̇b and
Fb : T ∗Q → R by Fb = Gb ◦FL̃−1. Let (q(t), q̇(t)) ∈ TQ
be a trajectory of the closed-loop Lagrangian system
with the force ũ. Then it is well known that the curve
(q(t), p(t)) ∈ T ∗Q defined by

(q(t), p(t)) = FL̃(q(t), q̇(t))

satisfies the following Hamiltonian equations:

q̇i =
∂H̃

∂pi

ṗi = −∂H̃

∂qi
+ ũi (2.6)

where ũi is short for ũi ◦ FL̃−1. Notice that
FL̃(xe, θe, 0, 0) becomes an equilibrium of the system
(2.6) and that Ωc, E and M are diffeomorphically
mapped into T ∗Q via FL̃, if necessary after shrinking
Ωc into the domain of FL̃. Let { , } be the Poisson
bracket on T ∗Q induced from the standard symplectic
form on T ∗Q (see Marsden and Ratiu [1999] for the
definition). Consider the set of functions defined by

C = span{Fb, {H̃, Fb}, {H̃, {H̃, Fb}}, . . . }, (2.7)

b = 1, . . . ,dimG, where the span is over the collection
of all linear combinations with real coefficients. Define
the codistribution dC = span{dg | g ∈ C }.

The equilibrium (xe, θe, 0, 0) is an isolated equilib-
rium by the Morse Lemma since every equilibrium is a
critical point of the energy Ẽ and (xe, θe, 0, 0) is a non-
degenerate critical point. Theorem 2.2 in Jalnapurkar
and Marsden [2000] implies that the only trajectory in
M is the equilibrium itself when the dimension of dC
is 2n in a neighborhood of FL̃(xe, θe, 0, 0), where n is
the dimension of the configuration space Q. Now, con-
sider a more general case where there is a subcodistribu-
tion of dC whose locally constant dimension is (2n− 1)
around the equilibrium. The subcodistribution defines
a one-dimensional (regular) submanifold of T ∗Q, which
contains the invariant set FL̃(M) as well as the equilib-
rium. Since the equilibrium is stable and isolated, the
flow in the one-dimensional submanifold should con-
verge to the equilibrium if necessary after shrinking the



domain. Thus the (bi-)invariant set M is the equi-
librium itself. By the LaSalle invariance principle, the
equilibrium is asymptotically stable. We have proved
the following theorem.

Theorem 2.1 If (2.1) holds, then (xe, θe, 0, 0) is Lya-
punov stabilizable. If in addition, dim dC ≥ (2n − 1)
in a neighborhood of FL̃(xe, θe, 0, 0), where n = dim Q,
then (xe, θe, 0, 0) becomes an asymptotically stable equi-
librium of the closed-loop system with the input u given
by (2.2) and (2.4).

We can also do the above process on the Lagrangian
side without explicitly using the symplectic structure
on T ∗Q. The set C corresponds, under the Legendre
transformation, to the set D = {(d/dt)kGb|k ∈ 0 ∪ N}
where we regard (d/dt)kGb’s as functions defined on
TQ by using the given differential equations. Then,
Theorem 2.1 still holds with dC replaced by dD. The
difference is a matter of computational convenience.

3 Kinetic and Potential Shaping.

In this section we prove an asymptotic stabilization
theorem that is analogous to that in Bloch, Chang,
Leonard and Marsden [1999] by combining the previous
potential shaping technique with that of kinetic shap-
ing; however, instead of assuming that the potential
has the special form V (xα, θa) = V1(xα) + V2(θa), we
assume a more general form and make hypotheses ap-
propriate to the bracketing methodology.

Bloch, Chang, Leonard and Marsden [1999] consid-
ered an equilibrium that is a maximum of the original
potential energy in the xα variables, i.e.,

∂2V

∂xαxβ
(xe, θe) < 0. (3.1)

In (2.3) we cannot make D2Ẽ(xe, θe, 0, 0) definite by
any choice of the function Vε : G → R. Hence, un-
der such circumstances, potential shaping alone cannot
succeed. We use kinetic shaping and potential shaping
to stabilize such an equilibrium.

We assume that the simplified matching assump-
tions SM-1 – SM-5 as defined in Bloch, Chang, Leonard
and Marsden [1999] hold. That is, we assume that gab

is constant, gαa,δ = gδa,α and V satisfies

∂2V

∂xα∂θa
gadgβd =

∂2V

∂xβ∂θa
gadgαd.

These imply that the one form gacgαcdxα is locally ex-
act; therefore, there is a function h : U → g for an open
subset U in S = Q/G such that ha(xe) = 0 and

∂ha

∂xα
=

(
ρ − 1

ρ
− 1

σ

)
gacgαc. (3.2)

Define a new coordinate chart for Q by:

(Xα, Y a) = (xα, θa + ha(xα)). (3.3)

This coordinate change induces the following new local
coordinates for TQ:

(Xα, Y a,Ẋα, Ẏ a)

=
(

xα, θa + ha(xα), ẋα, θ̇a +
∂ha

∂xβ
ẋβ

)
.

Notice that this change of coordinates leaves the equi-
librium (xe, θe, 0, 0) fixed.

According to the method of controlled Lagrangians,
the controlled Lagrangian Lτ,σ,ρ,ε and the controlled
energy Eτ,σ,ρ,ε (i.e., the Lagrangian and the energy for
the closed-loop system) are given as

Lτ,σ,ρ,ε =
1
2

(
gαβ −

(
ρ − 1

ρ
− 1

σ

)
gabgαagβb

)
ẊαẊβ

+ gαaẊαẎ a +
1
2
ρgabẎ

aẎ b − V ′(Xα, Y a), (3.4)

and

Eτ,σ,ρ,ε =
1
2

(
gαβ −

(
ρ − 1

ρ
− 1

σ

)
gabgαagβb

)
ẊαẊβ

+ gαaẊαẎ a +
1
2
ρgabẎ

aẎ b + V ′(Xα, Y a), (3.5)

where

V ′(Xα,Y a) = V (Xα, Y a) +
∫

C

∂V

∂Y a

∂ha

∂Xα
dXα

+ Ṽε(Y a). (3.6)

Ṽε is an arbitrary function with Ye as a critical point
and σ and ρ are constant control gains. The curve C is
defined as follows. Fix (Xα

e ) ∈ S. For each (Xα, Y a) ∈
S × G, we choose any curve C ∈ S × {(Y a)} joining
(Xα

e , Y a) and (Xα, Y a). We can check that (Xe, Ye)
becomes a critical point of V ′. Notice that we have
slightly abused notation in (3.6). V (Xα, Y a) denotes
the originally given potential energy V expressed in the
new coordinates.

If we define the control law to be

ua = − d

dt
(κgαaẋα) +

ρ − 1
ρ

∂V

∂θa
− 1

ρ

∂Vε

∂θa
+

1
ρ
udiss

a

(3.7)

where Vε = V ′−V and udiss is the dissipative part of the
control law to be determined, then in the new coordi-
nates, the Euler-Lagrange equations for the controlled
system are

d

dt

∂Lτ,σ,ρ,ε

∂Ẋα
− ∂Lτ,σ,ρ,ε

∂Xα
= 0,

d

dt

∂Lτ,σ,ρ,ε

∂Ẏ a
− ∂Lτ,σ,ρ,ε

∂Y a
= udiss

a . (3.8)

The expression for ua as a function of positions and
velocities only is given in Bloch, Chang, Leonard and
Marsden [1999].



Notice that (xe, θe, 0, 0) = (Xe, Ye, 0, 0) ∈ TQ is a
critical point of Eτ,σ,ρ,ε by choosing Ṽε : G → R such
that Ye is a critical point of Ṽε. The second derivative
of Eτ,σ,ρ,ε at ze = (Xe, Ye, 0, 0) is given by

D2Eτ,σ,ρ,ε(ze) =
[
D2V ′ 0

0 D2K

]∣∣∣∣
z=ze

(3.9)

where

D2V ′(Xe, Ye) =


∂2V
∂Xα∂Xβ + ∂V

∂Y a∂Xβ
∂ha

∂Xα
∂2V

∂Xα∂Y a + ∂2V
∂Y a∂Y b

∂hb

∂Xα

∂2V
∂Xα∂Y a + ∂2V

∂Y a∂Y b
∂hb

∂Xα
∂2V

∂Y a∂Y b + ∂2Ṽε

∂Y a∂Y b




(3.10)

and D2K denotes the second derivative of the kinetic
energy K with respect to (Ẋα, Ẏ a). Notice that in
(3.10) we used the fact that (Xe, Ye) is a critical point
of V and Ye is a critical point of Ṽε. The first block
(D2V ′)11(Xe, Ye) of D2V ′(Xe, Ye) can be expressed in
the old coordinates as

(D2V ′)11(Xe, Ye) =

∂2V

∂xα∂xβ
−

(
ρ − 1

ρ
− 1

σ

)
∂2V

∂xα∂θa
gacgβc

∣∣∣∣
(xe,θe)

.

(3.11)

Because of (3.1) we can find ρ and σ such that
(D2V ′)11(Xe, Ye) is negative definite. Then, by sim-
ple linear algebra, we can find a function Ṽε which
has a maximum at Ye such that D2V ′(Xe, Ye) becomes
negative definite. Now, we consider the definiteness of
D2K(Xe, Ye, 0, 0). As shown in Bloch, Chang, Leonard
and Marsden [1999], D2K(Xe, Ye, 0, 0) becomes nega-
tive definite if SM-6 holds (i.e., the matrix gaα(xα

e ) is
one-to-one), ρ is negative and σ satisfies

1 − 1
σ

> max λ(xe). (3.12)

where

λ(xe) = {λ | det
(
gαβ(xe) − λgαa(xe)gabgbβ(xe)

)
= 0 }.

Hence, D2Eτ,σ,ρ,ε(Xe, Ye, 0, 0) becomes negative defi-
nite and thus Eτ,σ,ρ,ε has a maximum at (Xe, Ye, 0, 0).
Accordingly, we can use Eτ,σ,ρ,ε as a Lyapunov func-
tion.

Suppose we introduce the dissipative input

udiss
a = cb

agbcẎ
c (3.13)

where cb
a is a positive definite matrix in the gab metric.

Then, (Xe, Ye, 0, 0) is still an equilibrium of the closed-
loop system. The time derivative of Eτ,σ,ρ,ε is given
by

d

dt
Eτ,σ,ρ,ε = cb

agbcẎ
bẎ c ≥ 0

which implies that (Xe, Ye, 0, 0) is Lyapunov stable in
the closed-loop system.

The next step is to prove asymptotic sta-
bilization. Since Eτ,σ,ρ,ε has a maximum at
(Xe, Ye, 0, 0) and it is non-decreasing, we can
find c ∈ R such that the set Ωc = {z =
(Xα, Y a, Ẋα, Ẏ a) ∈ TQ |Eτ,σ,ρ,ε(z) ≥ c} is nonempty,
compact and positively invariant. Define E ={

z = (Xα, Y a, Ẋα, Ẏ a) ∈ Ωc

∣∣ d
dtEτ,σ,ρ,ε(z) = 0

}
=

{z = (Xα, Y a, Ẋα, Ẏ a) ∈ Ωc | Ẏ a = 0}. Let M be the
largest invariant subset of E .

Let FLτ,σ,ρ,ε : TQ → T ∗Q be the standard Leg-
endre transform induced from the Lagrangian Lτ,σ,ρ,ε.
Since the Lagrangian Lτ,σ,ρ,ε is regular, we can define
Hτ,σ,ρ,ε : T ∗Q → R by Hτ,σ,ρ,ε = Eτ,σ,ρ,ε ◦ FL−1

τ,σ,ρ,ε.

Define Gb : TQ → R by Gb(Xα, Y a, Ẋα, Ẏ a) = Ẏ b.
Let Fb : T ∗Q → R be defined by Fb = Gb ◦ FL−1

τ,σ,ρ,ε.
Consider the set of functions defined by

C = span{Fb, {Hτ,σ,ρ,ε, Fb}, {Hτ,σ,ρ,ε, {Hτ,σ,ρ,ε, Fb}}, . . . },

where the span is over b = 1, . . . ,dimG, where { , } is
the standard Poisson bracket on T ∗Q. Then, we can
prove the following theorem.

Theorem 3.1 If SM-1 – SM-6 hold and there exist ρ <
0 and σ satisfying

∂2V

∂xα∂xβ
−

(
ρ − 1

ρ
− 1

σ

)
∂2V

∂xα∂θa
gacgβc

∣∣∣∣
(xe,θe)

< 0

and

1 − 1
σ

> max λ(xe)

where

λ(xe) = {λ | det
(
gαβ(xe) − λgαa(xe)gabgbβ(xe)

)
= 0 },

then (xe, θe, 0, 0) is Lyapunov stabilizable. If in addition
to the above assumptions, the dimension of the codistri-
bution dC is greater than or equal to (2n−1) in a neigh-
borhood of FL̃(xe, θe, 0, 0), where n is the dimension of
the configuration space Q, then (xe, θe, 0, 0) becomes an
asymptotically stable equilibrium of the closed-loop sys-
tem with the input u given by (3.7) and (3.13).

Generally, the bracket condition is computationally
hard to check. Thus, sometimes, it is better to look into
the dynamics on M case by case as we did in Bloch,
Chang, Leonard and Marsden [1999].

Notice that (3.1) is not a part of the hypothesis of
Proposition 3.1. Thus, using a similar argument, we
can prove a variant of the above theorem:

Theorem 3.2 Assume that SM-1 – SM-5 hold,
and that there exist ρ > 0 and σ such that(
gαβ −

(
ρ−1

ρ − 1
σ

)
gabgαagβb

)
(xe) > 0 and

∂2V

∂xα∂xβ
−

(
ρ − 1

ρ
− 1

σ

)
∂2V

∂xα∂θa
gacgβc

∣∣∣∣
(xe,θe)

> 0.



Then, (xe, θe, 0, 0) is Lyapunov stabilizable. If ad-
ditionally the dimension of the codistribution dC is
greater than or equal to (2n − 1) in a neighborhood of
FL̃(xe, θe, 0, 0), where n is the dimension of the con-
figuration space Q, then there exists a feedback control
law u such that (xe, θe, 0, 0) becomes an asymptotically
stable equilibrium of the closed-loop system.
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