Incremental System Verification
and Synthesis of Minimally Restrictive Behaviours

B. Brandin and R. Malik
Software and Engineering

Siemens Corporate Research, ZT SE 4

81730 Munchen, Germany

Abstract

An incremental approach to system verification is pro-
posed, for system behaviours and safety properties de-
scribed by means of finite-string languages and finite-
state automata. Properties are verified with respect to
subsystems of the overall system, nevertheless allowing
assertions to be made about the entire system satisfy-
ing such properties. The proposed approach considers
satisfaction of properties, controllability, and synthe-
sis as successive verification steps. Furthermore, it al-
lows the incremental augmentation of the system to be
verified: after each verification step, either the desired
property is verified, or a counter example is obtained,
which, together with heuristics, provides the basis for
the augmentation of a given subsystem for the next
verification step.

1 Introduction

The aim of system verification is to check whether a
given system behaviour satisfies certain properties! 6,
9]. Typically, such a system behaviour consists of as-
sumptions about an environment under control and of
a control program acting upon this environment. Both
parts of such a system behaviour can be conveniently
described by means of finite-state automata.

Often, system behaviours to be verified are not de-
scribed fully, but only specific behavioural aspects are
considered. This is where the idea of incremental ver-
ification comes into play. Assume given a system be-
haviour and a property to be verified. Further assume
that the system behaviour cannot be shown to satisfy
the property. This could be for two reasons, either the
system considered does not satisfy the property, or the
system considered does satisfy the property, but the
description of its behaviour is too incomplete to allow
the property to be shown to be satisfied.

Two questions then arise: can the description of
the system behaviour be completed somehow to show
whether the property is satisfied or not, and if so, how?

I Properties often are also referred to as requirements or com-
mitments.

P. Dietrich
Fachbereich Informatik
Universitat Kaiserslautern
67653 Kaiserslautern, Germany

At this point, we may use results from supervisory con-
trol theory [5, 10]. Supervisory control theory allows,
given a physically possible system behaviour and a de-
sirable system behaviour, i.e. a desired property, to
check whether candidate supervisory control strategies
guarantee the desired behaviour, or to synthesize min-
imally restrictive supervisory control strategies. Using
such control theoretic results, it is possible to (a) de-
termine whether given additional system behaviours
coupled with the initially given system behaviours,
guarantee that the desired property is always satisfied,
or (b) synthesize additional system behaviours which,
coupled with the initially given system behaviours, can
guarantee that the property is satisfied.

In this paper, only the verification of so-called safety
properties is considered. Such properties can be de-
scribed modularly by automata or sets of automata
states. In this case, the results presented herein pro-
vide a powerful verification setting, which allows sys-
tem behaviours to be incrementally augmented in order
to verify whether given behavioural requirements are
satisfied, thus allowing for very efficient computation.

Based on the above, an incremental procedure is pre-
sented which considers the notions of property satisfac-
tion, controllability and synthesis as successive verifica-
tion steps. After each step, either the given behavioural
requirements are verified or counter examples are ob-
tained, which provide the basis, together with automat-
ically implementable heuristics, for the augmentation
of given subsystems for verification purposes.

The following references present a number of ap-
proaches to compositional verification and synthesis.
Halbwachs [8] discusses the application of synchronous
observers for the modular verification of safety proper-
ties, and in his synchronous framework, obtains similar
theoretical results as those discussed herein within the
discrete-event systems framework of [11]. An alterna-
tive approach to the simplification of large systems of
automata for proving purposes is discussed in [7], using
user-supplied interface specifications, and in [2]. The
synthesis of maximally permissible behaviours of sub-
systems has also been suggested in [1, 12]. The use of
counter examples for the model-checking of ADA pro-
grams has also been suggested in [3].

2 Preliminaries

The results presented herein stem from the supervisory
control theory for discrete-event systems (DES) [11].
These are dynamic systems that evolve in accordance
with the abrupt occurrence of physical events. Such
systems generally encompass processes that are discrete
in time and state space, often asynchronous, and typ-
ically nondeterministic. To ensure the orderly occur-
rence of events in such systems, i.e. according to given
behavioural specifications, some degree of supervision
and control is generally required [5, 11].
Discrete-event systems are controlled as generators of a
formal language. The adjunction of a control structure
allows varying the language generated by the system
within certain limits by accordingly enabling and dis-
abling events. The desired behaviour, i.e. the desired
properties, of such controlled generators is specified by
stating that their generated language must belong to
some specification language [5, 11].

Two main design approaches are possible, either can-
didate supervisory control strategies are checked to
be strategies which guarantee that given properties
are never violated, or minimally restrictive supervisory
control strategies are synthesized which also guarantee
that the properties are never violated.

The reader is referred to [5, 10, 11, 13] for notation and
background literature.

3 Incremental Verification

We present here the notion of incremental verifica-
tion by considering a system G composed of automata
G;,1 € 1, for some index set I, and a behavioural re-
quirement R to be satisfied by G, and composed of
automata Ry, k € K, for some index set K.

3.1 Basic Notions

We will say a system G satisfies the requirements em-
bodied by R, or simply that G satisfies R, if L(G) C
L(R). Thus, G satisfies R, if every string of events
accepted by the automaton G is also accepted by the
automaton R. Since we only consider prefix-closed lan-
guages, we can say equivalently that G satisfies R if
Elig;(g)(s) C Eligyg)(s), for all s € L(R), where
Eligy(g)(s) defines the set of eligible events® after the
occurrence of s in L(R).

Let the system G be composed by a number of subsys-
tems: G = [[;.; G, for some index set I. Let E consti-
tute a subsystem of G' composed by a number of G;’s,
ie. B = [[;c;Gj,J C I. Given the modular struc-
ture of G, it becomes of interest, for computational
reasons, to be able to verify whether given behavioural
requirements R are satisfied by the subsystem E of G,

2For L C ©* and s € X% define Elig; (s) = {0 € X | sc € L }.

and infer from the result whether the same require-
ments R are satisfied by the system G itself. In other
words, we would like to define conditions under which
the satisfaction by E of given requirements R implies
the satisfaction of the same requirements R by G. We
observe that subsystem composition always restricts
and never enlarges the behaviour of the composed sys-
tem E. Consequently, behavioural requirements satis-
fied by the subsystem E should also be satisfied by the
complete system G.

Proposition 3.1 Let G = [[;c;Gi, E = [[;¢; Gy,
J C I, and R be automata sharing the alphabet X. If
FE satisfies R, then G satisfies R.

Thus, in order to show that the system G satisfies
the constraints R, it is enough to show that a subsys-
tem E of G satisfies R. If the requirement R is given
as the synchronous product of several automata, i.e.
R = []pck Rk, then the above satisfaction check may
be carried out sequentially by considering in turn each
Ry, ke K.

3.2 Implementable System Behaviours

System behaviours cannot always be shown to satisfy
given behavioural requirements. This can be for two
reasons: (i) the system considered does not satisfy
the requirements, or (ii) the system considered does
satisfy the requirements but the description of its be-
haviour is too incomplete to allow the requirements to
be shown to be satisfied. In order to understand why
behaviours do not satisfy given behavioural require-
ments, it becomes important to determine whether and
which additional system behaviours, coupled with the
initially given system behaviours, guarantee that the
behavioural requirements are not violated. In other
words, it becomes of interest to determine whether
through some degree of supervision and control, given
system behaviours can be modified to guarantee that
given behavioural requirements are not violated.

The adjunction of a control structure to a discrete-
event system allows varying the language generated
by the system within certain limits by accordingly en-
abling and disabling controllable events®. The concept
of language controllability [11] allows us to character-
ize exactly the languages which may be kept within an-
other language by means of control. A language L(R),
embodying given required behaviours, is said to be con-
trollable with respect to the language L(G), embody-
ing the behaviour of a system G, exactly when the be-
haviour of G can be kept within L(R) through control,
notwithstanding the possible occurrence of uncontrol-
lable events.

More precisely, an automaton R is said to be control-
lable with respect to an automaton G, if Elig; (s) N

3We distinguish controllable events, which can be disabled by
control action, and uncontrollable events, which occur sponta-
neously and cannot be disabled [11].

¥y C Eligy (g)(s), for all s € L(R), i.e. if the behaviour
of R can never be exited by the occurrence of an un-
controllable event possible after s in L(G) [11].

Thus, if R is controllable with respect to G, we can use
R itself as an additional system which, coupled with G,
guarantees that the behavioural requirements R are not
violated.

Again, recall that subsystem composition always re-
stricts and never enlarges the behaviour of the com-
posed system. If through supervision and control, given
behavioural requirements can be imposed on a subsys-
tem E of G, then it should also be possible to impose
these requirements on G itself through the same super-
vision and control means. The following result shows
that, if behavioural requirements R are controllable for
a subsystem E of G, these are also controllable for G.

Proposition 3.2 Let G = [[;.;Gi, E = [[;¢; Gy,
J C I, and R be automata sharing the alphabet ¥. If R
is controllable with respect to E, then R is controllable
with respect to G.

Proposition 3.3 Let G = [[;c;Gi, Ri1, and Ry be
automata sharing the alphabet ¥. Then R; X R» is
controllable with respect to G if R; and R, are con-
trollable with respect to G.

Thus, the composition of two controllable properties
with respect to G is itself controllable with respect
to G. This result is particularly helpful since it shows
that controllability checks may be carried out in se-
quence by considering in turn each Ry, k € K, consti-
tuting R. Nevertheless, it is important to note that
not all Ry may themselves be controllable with respect
to G. Since the composition of an uncontrollable prop-
erty with another may be itself controllable, the follow-
ing corollary becomes of interest.

Corollary 3.4 Let G = [[;c; Gi, E = [l,cqg Gn, H C
I, E' = [l;c;Gi,J CI, P = [l,e, Ri, and P' =
[1,.car Bm be automata sharing the alphabet . If P
is controllable with respect to E, and P’ is controllable
with respect to E', then P x P’ is controllable with
respect to G.

This is paraphrased by saying that given properties can
be shown to be controllable with respect to G if these
can be grouped into sets of properties, each set being
controllable with respect to some subsystem of G.

3.3 Synthesis of Implementable Minimally Re-
strictive System Behaviours

In case the requirements R are not controllable with
respect to G, it is possible to synthesize an additional
system R’ controllable with respect to G which coupled
with G guarantees that R’ x G satisfies R.

Machinel Machine2
S1 1
f 1@732 bil 82 ba 2
Buffer Supervisorl Supervisor2

Figure 1: Small factory example.

Proposition 3.5 Let G and R be automata shar-
ing the alphabet X. Let R’ be such that L(R') =
supC (L(R) N L(G@)). Then R’ is controllable with re-
spect to G, and R’ x G satisfies R.

Here, sup C (L(R)N L(G)) represents the supremal con-
trollable sublanguage of L(R) N L(G), i.e. the largest
possible controllable sublanguage in the intersection
L(R)N L(G) [11]. Therefore, R' can be thought of em-
bodying the minimally restrictive behaviour of G satis-
fying R. Note that L(R') may be empty, implying that
there exists no additional system, controllable with re-
spect to G, which is able to guarantee that R' x G
satisfies R.

The following result shows that a synthesized system
R' controllable with respect to a subsystem E of G is
controllable with respect to the entire system G.

Proposition 3.6 Let G = [[,c;Gi, E = [[;c; Gy
J C I, and R be automata sharing the alphabet ¥. Let
R’ be such that L(R') = supC (L(R) N L(E)). Then,
R' is controllable with respect to G.

3.4 Behavioural Requirements

The setting proposed here only considers safety be-
havioural requirements, i.e. desired behaviours which
must never be exited by the system considered.

For illustration purposes, a simple manufacturing sys-
tem consisting of two machines and a buffer of size one
is used. The parts of the system are modelled in form
of automata (figure 1). Machinel, e.g., is initially in its
idle state I. It may be put into operation by event s,
entering its working state W. When working, the ma-
chine may finish operation (f;) and return to its idle
state, or it may break down (b;) and be repaired (r1)
later. Whenever Machinel finishes operation, it places
a workpiece into the Buffer, changing the state from
empty (E) to full (F). Starting Machine2 removes the
piece from the buffer.

The machines’ operation and repair has to be coordi-
nated according to the following specifications. Firstly,
the buffer should never overflow or underflow, i.e.
Machinel may not finish operating while a workpiece
is present in the buffer, and Machine2 may not start
operating unless a workpiece is present in the buffer.
Secondly, Machine2 has repair and return-to-service
priority over Machinel, i.e. in case both machines are
down, Machine2 must be repaired and returned to ser-
vice first. The two modular supervisory control strate-
gies Supervisorl and Supervisor2 are assumed to im-
plement these specifications.

Language-Based Requirements. It is often possi-
ble and convenient to express behavioural requirements
in language-form represented by a corresponding gener-
ating automaton. In the above manufacturing example,
the requirement that the buffer does never overflow or
underflow can easily be represented in this manner and
is shown in figure 1 as Buffer. In order to verify that
G = Machinel x Machine2 x Supervisorl X Supervisor2
satisfies R = Buffer, it is enough to find a subsystem E
of G satisfying R, e.g. E = Supervisorl, for which it
can be checked that L(E) C L(R).

State-Based Requirements. It is also often pos-
sible and convenient to express behavioural require-
ments in the form of a set of system states [4]. We
consider the following behavioural requirement: “the
buffer must be empty (E) whenever Machinel is work-
ing (W)”. Note that this requirement only consid-
ers the states of different automata constituting the
system G and is difficult to describe in language-
form. Typically, state predicates describing the set
of system states which satisfy the behavioural require-
ments, can be easily defined. For example, for the be-
havioural requirement above, a suitable state predicate
could be given by S = {(q1,2,43,04,95) € [[5-, Qi |
if gy = W then g3 = E}, where @1 corresponds to the
state set of Machinel, ()5 corresponds to the state set
of Machine2, (Q3 corresponds to the state set of Buffer,
Q4 corresponds to the state set of Supervisor!, and Qs
corresponds to the state set of Supervisor2.

Such requirements are stated formally using a property
automaton E = (E,Q,(SE,qO,Qm), with event alpha"
bet X, state set @), transition function dg: Q@ X ¥ — Q,
initial state ¢o € @, and marked state set @, C Q.
Typically this is a subsystem E =[], G; of G.

Now let S C @ be a set of safe system states repre-
senting given behavioural requirements such that g €
S. Intuitively, the state-based requirements embod-
ied by S can be transformed into language-based re-
quirements by constructing a subautomaton R of E,
in which only the states of E, which are also in S,
are reachable. Then, the language L(R) of R char-
acterizes in language-form the original state-based be-
havioural requirements. R is called the legal sub-

automaton of E with respect to S, and defined as
R = (EJQJ(SR)qO)Qm)J where

— (SE(qa 0) if 5E(q’ 0) €S
0r(g,0) { undefined otherwise.

Proposition 3.7 Let £ = (2,Q,0E,9,Qm) be an
automaton. Let S C @), and let R be the legal sub-
automaton of E with respect to S. Then we have
0r(qo,s) € S for all s € L(E) if and only if L(E) C
L(R).

Thus, in order to check whether all reachable states
of the system G satisfy the property given by S, it
suffices to check language inclusion for the legal subau-
tomaton R.

As an extension to the above, behavioural requirements
may be expressed as a set S C @ x ¥ of automaton
states and events exiting such states. The intended
semantics of such requirements is that, in each state
of @, only the events explicitly considered in S are
allowed.

4 Application of the Theoretical Results

State-of-the-art verification tools do not only verify
properties, but typically provide counter examples as
diagnostic for the user in case the property is not sat-
isfied. In the present setting, counter examples consti-
tute the basis for incremental verification by allowing
to judiciously augment a subsystem in order to satisfy
a property of interest.

Now let E be a subsystem not satisfying a property R,
and s be a counter example, i.e. a string of events vio-
lating R but accepted by E. Furthermore, let G; be a
component which accepts s. Then, £ augmented with
Gi, i.e. E x G;, will also accept s. Consequently, given
a counter example string s not satisfying a property of
interest, and a set G;, i € I, of candidate components
to augment FE, only the G;’s which do not accept s
should be considered to augment E. FE is iteratively
checked to verify the property of interest, and aug-
mented when needed: if the property is not verified,
i.e. a counter example is found, F is augmented with
components not accepting the counter example. The
procedure is repeated until, either the property consid-
ered is verified, or all candidate components accept the
counter example obtained. In the first case, a subsys-
tem FE is found which satisfies the property considered,
allowing us to conclude from Proposition 3.1 that the
overall system G satisfies this property. Otherwise, the
counter example considered is accepted by the over-
all system G, which therefore cannot satisfy the prop-
erty considered. This counter example, together with
the information about which components constitute E,
may be used for diagnosis, in order to understand why
the property is not satisfied.

Please note that E such that L(E) = X*, i.e. the au-
tomaton accepting all possible strings in ¥*, can be
considered initially: during the first verification itera-
tion, E will be verified not to satisfy the property of
interest, thereby producing a counter example s violat-
ing the property considered; subsequently components
not accepting s can chosen to augment E.

In order to illustrate the above, we show that our
manufacturing examples satisfies the property R =
Buffer, i.e. that the buffer of the controlled work-
cell never overflows or underflows. We begin with
R = Buffer and E such that L(E) = ¥*, and ac-
cordingly try to show that X* C L(Buffer). As ex-
pected, we obtain a counter example s = fifi not
accepted by Buffer. Consequently, we search for a
component G; not accepting s. Since both Machinel
and Supervisor! do not accept s, we arbitrarily select
Machinel, let E := E x Machinel = Machinel, and
try to show L(Machinel) C L(Buffer). The counter
example s' = s f181f1 is obtained. Again, we search
for a component G; not accepting s’. This time, the
only candidate turns out to be Supervisor!. We let
E .= E x Supervisor] = Machinel X Supervisorl and
establish that L(E) C L(Buffer). By proposition 3.1
we conclude that L(G) C L(Buffer), i.e. the overall
system satisfies the requirement, considered.

Similarly, counter examples to R is controllable with re-
spect to E can be used to determine which automata G;
not considered in E should be considered. Again, FE
such that L(E) = ¥£* can be considered initially. If R
is not controllable with respect to E, E is augmented
with a G; which does not accept the counter example
obtained. This step is repeated until either R is shown
to be controllable with respect to E, or until £ = G.
As seen in the above example, it is possible that several
components G; do not accept a given counter example.
For computational reasons, it may not be interesting
to augment F with all such G;’s, but to select one, ac-
cording to some heuristic aimed at focusing the search
for “relevant” components.

The synthesis result R' for E and R can also be
used to determine which automata G; not considered
in E should be considered. In the above example, let
E = Machinel x Machine2 and R = Buffer. FE is
not controllable with respect to R. The synthesis re-
sult R' = Supervisord for E and R is shown in fig-
ure 2. The string s = s fis1 possible in L(E) is seen
not belong to L(R') which indicates that the event s;
should be disabled after the occurrence of the string
s1f1- Consequently, an additional component which
does not accept s must be found to augment E. As
above, Supervisorl is seen not to accept s = sy f1s1,
since it disables s; after the occurrence of s1fi;. By
letting £ = Supervisorl, it can be shown that R is
controllable with respect to E, so that R is control-
lable with respect to G.

The steps of property satisfaction and controllability

Supervisord

Figure 2: Synthesis result for small factory.

Problem Size LCE MCE MB
Train testbed | 10%7 — 84259 | 152716
Car-locking 1032 13524 6052 6981
Workeell 1054 975 | 81646 —

Figure 3: Experimental results.

checking, and synthesis can be combined to form an in-
cremental approach to controller synthesis. After each
step, either the behavioural requirements are verified
or counter examples are obtained, which provide the
basis for the augmentation of the subsystem E of G.
If a given subsystem E of G does not satisfy a given
property R, E can be extended by comprising more
subsystems, or R can be checked to be controllable with
respect to E, so that E composed with R satisfies R.
In case R is not controllable with respect to E, E can
again be extended by comprising more subsystems, or
an additional component R’ can be synthesized, which
composed with E satisfies R.

5 Experimental Results

The incremental verification approach has been applied
to a number of complex examples. Significant improve-
ments in computation times were achieved in compar-
ison to other non-incremental verification methods.
Figure 3 shows the results obtained for three exam-
ples: a train coordination testbed, a central car-locking
system, and a complex manufacturing workcell. Non-
incremental verification failed in all three examples.
Incremental verification was successful, although dif-
ferent component-selection heuristics yielded very dif-
ferent results and did not always succeed. The Size
column shows the theoretical state-space size for each
example. The LCE, MCFE, and MB columns show for
the three different heuristics considered, the number of
states of E x R constructed* to prove property satisfac-
tion or controllability, using state-enumeration based
algorithms. Note that the number of constructed states
constitutes a good indicator, with respect to both time
and memory, of the computation effort required.

4over all iterations

Furthermore, in the context of the central car-locking
system example, a non-trivial safety requirement was
verified non-incrementally (using BDD-based algo-
rithms) using all 53 automata in approximately one
hour. The same requirement was verified incremen-
tally, in approximately fifteen seconds, by identifying
in four iterations a suitable subsystem E composed of
six automata.

The results obtained show that incremental verifica-
tion typically performs considerably better than non-
incremental verification, but also suggest that it may
be useful to test various heuristics in case a verification
attempt fails. Although the MCFE heuristic was the
only consistently successful heuristic in proving prop-
erty satisfaction or controllability, it was not always
seen to be the most efficient.

Independently of the issue of incremental vs. non-
incremental verification, experience shows that state-
enumeration based algorithms are often more efficient
than symbolic algorithms as long as the state space
considered remains small. This is typically the case
for the incremental verification of systems composed of
a number of smaller subsystems. Accordingly, state-
enumeration based algorithms were used in the above
examples. Symbolic approaches (e.g. BDD-based algo-
rithms) yielded qualitatively similar results.

6 Discussion and Conclusions

The theoretical results presented herein are shown
to provide a powerful setting for incremental verifi-
cation of safety properties. System behaviours can
be incrementally augmented to verify whether given
behavioural requirements are satisfied by the overall
system, thus allowing for efficient computation. Be-
havioural requirements are verified with respect to sub-
systems of the overall system, nevertheless allowing as-
sertions to be made about the overall system satisfying
these requirements.

Furthermore, the theoretical results presented provide
the setting for the synthesis of minimally restrictive
system behaviours which, coupled with initially given
system behaviours, guarantee that the behavioural re-
quirements are not violated.

An incremental procedure is presented which considers
satisfaction of properties, controllability and synthesis
as successive verification steps. After each step, either
the behavioural requirements are verified or counter ex-
amples are obtained, which provide the basis, together
with heuristics, for the augmentation of given subsys-
tems for verification purposes. If a given subsystem
does not satisfy a property of interest, the subsystem
can be extended, or the property can be checked to be
controllable, so that the subsystem, composed with the
property, satisfy the property. In case the property is
not controllable, the subsystem can again be extended

or an additional component can be synthesized, which
composed with the subsystem satisfies the property.
In a number of complex examples, significant improve-
ments in computation times have been achieved, using
the incremental approach proposed.

References

[1] A. Aziz, F. Balarin, R. K. Brayton, A. Sangio-
vanni-Vincentelli, “Sequential synthesis using S1S”,
Proc. Int. Conf. on CAD, 612-617, 1995.

[2] A. Aziz, V. Singhal, G. M. Swamy, R. K. Bray-
ton, “Minimizing Interacting Finite State Machines, A
Compositional Approach to Language Containment”,
Proc. IEEE Int. Conf. on Computer Design: VLSI in
Computers and Processors (ICCD ’94), 255-261, 1994.

[3] T.Bultan, J. Fischer, R. Gerber, “Compositional
verification by model checking for counter-examples”,
ACM SIGSOFT Software Engineering Notes, 21 (3),
224-238, 1996.

[4] B. A. Brandin, “Combined Language and State
Based Supervisory Control Synthesis”, Report ZFE T
SE 1-1996-BB-1, Siemens Corporate Research, 1996.

[5] B. A. Brandin, “The real-time supervisory con-
trol of an experimental manufacturing cell”, IEEE
Trans. Robotics and Automation, 12 (1), 1-14, 1996.

[6] E.M. Clarke, E. A. Emerson, A. P. Sistla, “Au-
tomatic verification of finite-state concurrent systems
using temporal logic specifications”, ACM Trans. Pro-
gramming Languages and Systems, 8 (2), 244-263,
1986.

[7] S. Graf, B. Steffen, “Compositional minimiza-
tion of finite state systems”, Proc. 1990 Workshop on
Computer-Aided Verification, 186-196, 1990.

[8] N. Halbwachs, “Synchronous observers and the
verification of reactive systems”, Proc. 3rd Int. Conf.
on Algebraic Methodology and Software Technology
(AMAST ’93), Springer, Twente, 1993.

[9] K. L. McMillan, “Symbolic Model Check-
ing”, Kluwer Academic Publishers, Dordrecht—-Boston—
London, 1993.

[10] P. J. Ramadge, W. M. Wonham, “Supervisory
control of a class of discrete-event systems”, STAM
J. Control and Optimization, 25 (1), 206-230, 1987.
[11] P. J. Ramadge, W. M. Wonham, “The control
of discrete-event systems”, IEEE Proceedings, 77 (1),
81-98, 1989.

[12] Y. Watanabe, R. K. Brayton, “The maximum
set of permissible behaviours for FSM networks”, Proc.
Int. Conf. on CAD, Santa Clara, 316-320, 1993.

[13] W. M. Wonham, P. J. Ramadge, “Modular su-
pervisory control of discrete event systems”, Maths. of
Control, Signals and Systems, 1 (1), 13-30, 1988.

