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Abstract

Linear systems with magnitude and rate constraints on both the state and control variables are considered. For such systems,
semi-global and global constrained stabilization problems are formulated when state feedback controllers are used. Necessary
and su3cient conditions for the solvability of the formulated problems are developed. Moreover, design methodologies for such
constrained stabilization problems are presented. An important aspect of our development here is a taxonomy of constraints to
show clearly for what type of constraints what can or cannot be achieved. ? 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

While much progress has been made in the devel-
opment of multivariable linear control theory, its ap-
plicability is often restricted by physical limitations.
A primary reason for this is that most practical con-
trol problems are dominated by constraints. Valves
can only be operated between fully open and fully
closed positions, pumps and compressors have :nite
throughput capacities, and a tank can only hold a cer-
tain volume. These constraints are typically ignored
in linear multivariable control theory. Ignoring such
constraints can be detrimental to the stability and per-
formance of control systems. A classical example for
the detrimental e<ect of neglecting constraints is the
Chernobyl unit four nuclear power plant disaster in
1986.
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Two most commonly encountered constraints in con-
trol engineering are

• Constraints which pertain to actuators and are typically
magnitude or rate constraints.

• Constraints which pertain to states and are typically
magnitude constraints on some part of the states.

Actuator constraints have been studied extensively in op-
timal control in the 1960s and also methods such as de-
scribing functions have been developed around that time.
But with the development of state space methods in the
1970s and 1980s, there was only a very limited research
e<ort in the e<ects of actuator saturation. During the
1990s we have witnessed a renewed and intense research
activity in the area of control of linear plants with satu-
rating actuators. The early phase of this research renewal
in the early 1990s was described in Bernstein and Michel
(1995) while Saberi and Stoorvogel (1999) captures the
recent research activities in this area.

State constraints are a major concern in many plants.
Nearly every application imposes constraints on state
as well as control variables. We observe that dynamic
models of physical systems are often nonlinear. Linear
approximations of such nonlinear systems are obviously
valid only in certain constraint regions of state and
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control spaces. In process control, state and control con-
straints arise from economic necessity of operating the
plants near the boundaries of feasible regions. In con-
nection with safety issues, state and control constraints
are a major concern in many plants. In certain possibly
hazardous systems, such as a nuclear power plant, safety
limits on some variables are often imposed. The viola-
tions of such predetermined safety measures may cause
system malfunction or even damage. This implies that
magnitude constraints or bounds on states must be taken
as integral parts of any control system design.

However, state constraints, unlike actuator constraints,
have not received much attention from a structural point
of view. There have been some e<orts to deal with state
and input constraints utilizing the concept of positive
invariant sets. A recent paper (Blanchini, 1999) gives
a good overview of these e<orts. The available tools
presented in this line of work, however, are compu-
tationally very demanding and yield highly complex
controllers. Model predictive control, which is a popular
design technique for industrial processes (Camacho &
Bordons, 1998; Maciejowski, 2002), also has been used
to deal with constraints on states as well as inputs
(Mayne, Rawlings, Rao, & Scokaert, 2000). However,
this technique is intrinsically computationally intensive
and therefore, not suitable for systems with fast dynamics.
Secondly, it is fundamentally a numerical tool and gives
only limited insight in the structural properties and e<ects
of constraints on a system.

The focus of this paper is on stabilization of linear sys-
tems with state and=or input magnitude constraints. Our
primary emphasis is on identifying the structural proper-
ties of linear plants under which the so-called constrained
semi-global and global stabilization problems are solv-
able. Whenever the required structural properties are sat-
is:ed, design methodologies for constrained semi-global
and global output regulation follow from the constructive
methods of proving the obtained results. These aspects
of our work distinguish us from other works dealing with
state and input constraints. One can view our work in the
same spirit as the pioneering work of Sontag and Suss-
mann (1990) which deals with input constraints only.

The paper is organized as follows. Section 2 consid-
ers some preliminaries and formal formulations of vari-
ous problems including the constrained semi-global and
global stabilization problems. Section 3 considers a tax-
onomy of constraints. Let us expand on this. Constraints
on the plant reHect in our model in an output of the plant
which we label as constraint output which is required
to lie in a prescribed constraint set. It turns out that the
mapping from the input to the constraint output vector
or more speci:cally its structural properties play domi-
nant roles. Based on their impact for control purposes,
we categorize these structural properties in two direc-
tions that have a profound impact on what can or can-
not be achieved. One direction of categorization is based

on the right invertibility or lack of it of the mapping
from the input to the constraint output vector. This direc-
tion of categorization delineates the constraints into two
mutually exclusive categories, (1) right invertible con-
straints representing the case when the mapping from the
input to the constraint output vector is right invertible,
and (2) non-right invertible constraints representing the
case when the mapping from the input to the constraint
output vector is not right invertible. Another direction of
categorization is based on so-called constraint invariant
zeros of the plant, i.e. the invariant zeros of the map-
ping from the input to the constraint output vector. Like
right-invertibility, this direction of categorization delin-
eates the constraints into two main mutually exclusive
categories, (1) at most weakly non-minimum phase con-
straints representing the case when the constraint invari-
ant zeros are in the closed left-half complex plane, and
(2) strongly non-minimum phase constraints represent-
ing the case when one or more of the constraint invari-
ant zeros are in the open right-half complex plane. The
above categorization of constraints dictates the taxonomy
of constraints and paves the architecture of our develop-
ment as given in Section 4 which presents our main re-
sults. In fact, the taxonomy of constraints becomes vivid
in Section 4 and displays clearly how each category of
constraints plays a role in constrained stabilization prob-
lems. Among many features discussed in Section 4, we
would like to emphasize here the following two impor-
tant and fundamental features:

• Neither the constrained semi-global nor the con-
strained global stabilization problem is solvable when-
ever the constraints are strongly non-minimum phase.

• There exists a perceptible demarkation line between
the right and non-right invertible constraints. In par-
ticular, the solvability conditions for the constrained
semi-global and global stabilization problems do not
depend on the shape of the constraint set(s) for right
invertible constraints whereas for non-right invertible
constraints they indeed do so.

In this paper we consider state feedback controllers. The
measurement feedback requires the study of some subtle
additional issues that goes beyond the scope of this paper.
We let C, C+, C− and C0 denote, respectively, the entire
complex plane, the open right-half complex plane, the
open left-half complex plane, and the imaginary axis.

2. Problem formulation

Consider a linear system:

�:

{
ẋ=Ax + Bu;

z=Czx +Dzu;
(1)
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Fig. 1. Closed-loop system subject to constrained output.

where x∈Rn; u∈Rm; z ∈Rp are, respectively, state, input
and constraint output (see Fig. 1). Without loss of gen-
erality we assume (Cz Dz) is surjective.

In this paper, for a system �, constrained stabilization
problems via state feedback are considered. Namely, for
two a priori given sets S ⊂ Rp and T ⊂ Rp which
we refer to as constraint sets, we are interested in sta-
bilization of the plant � subject to the requirement that
the constraint output z remains in the set S for all t¿ 0
while the derivative of the constraint output ż remains
in the set T for all t ¿ 0. In fact, we will only require
that the constraints be satis:ed for all t ¿ 0 and ignore
the constraints at time 0. This avoids technicalities due to
possible rate limits on the input which require a smooth
transition of the input for t6 0 and our to be designed
controller which is active for t ¿ 0.

In general, the constraint sets S and T discussed in
most literature are bounded and convex. In this paper, we
slightly extend this class of constraint sets and we make
the following fundamental assumption on the nature of
these constraint sets:

Assumption 1. The following conditions on S and T
are satis9ed:

(1) The sets S and T are closed; convex and contain
0 as an interior point.

(2) S ∩T is bounded.
(3) We have CT

z Dz =0 and

S=(S ∩ imCz) + (S ∩ imDz);

T=(T ∩ imCz) + (T ∩ imDz):

Remark 2. We observe that imCz reHects the state con-
straints while imDz reHects the input constraints. There-
fore the decomposition ofS andT as required in (3) only
implies that we have constraints on states and=or inputs.
If Cz =0, the problems studied in this paper are referred
to as input-constrained stabilization problems while if
Dz =0, the problems are referred to as state-constrained
stabilization problems.

Next, we observe that the initial state of the system
must obviously be restricted since we cannot satisfy the
constraints if the initial state of the system is arbitrary.
For this reason, we de:ne an admissible set of initial

conditions. It is straightforward to show that if the initial
state does not belong to this set, then we can never satisfy
our constraint requirements.

De�nition 3. Let system (1) and constraint sets S and
T be given. We de:ne

V(S;T) :={x0 ∈Rn | ∃ u0 such that Czx0 + Dzu0 ∈S

and Cz(Ax0 + Bu0)∈T}

as the admissible set of initial conditions.

Remark 4. In the derivative at time 0 we might expect
a term Dzu̇(0) since the derivative of the input a<ects
the derivative of the output z. However, we can omit this
term because part (3) of Assumption 1 implies Cz(Ax0 +
Bu0) + Dzu̇(0)∈T if and only if Cz(Ax0 + Bu0)∈T
and Dzu̇(0)∈T. However at time 0 we do not impose
rate constraints. Due to continuity we still need to have
Cz(Ax0 + Bu0)∈T but we do not need to impose a
condition on the derivative of u since that need not be
continuous.

Remark 5. Consider the case when there are no rate con-
straints, that is when T=Rp. Then, in view of Assump-
tion 1, the admissible set of initial conditions V(S;Rp)
can be rewritten as

V(S;Rp) :={x0 ∈Rn |Czx0 ∈S}:

We formulate our problems either in global or in
semi-global setting. In the global setting we consider
arbitrary initial conditions in the set of admissible ini-
tial conditions. In a semi-global setting we assume that
the initial conditions are in some arbitrary compact set
contained in the interior of the set of admissible initial
conditions.

Problem 6. Let the system (1) along with constraint sets
S ⊂ Rp and T ⊂ Rp be given. The global constrained
stabilization via state feedback is to 9nd; if possible;
a state feedback (possibly nonlinear and time-varying)
u(t)=f(x(t); t) such that the following conditions hold:

(1) The equilibrium point x=0 of the closed-loop sys-
tem is asymptotically stable with V(S;T) con-
tained in its basin of attraction.

(2) For any x0 ∈V(S;T);we have z(t)∈S for all t¿ 0
and ż(t)∈T for all t ¿ 0.

Problem 7. Consider the system (1) along with con-
straint sets S ⊂ Rp and T ⊂ Rp. The semi-global con-
strained stabilization via state feedback is to 9nd; for
any a priori given compact set W contained in the inte-
rior of V(S;T); if possible; a state feedback (possibly
nonlinear and time-varying) u(t)=f(x(t); t) such that
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the following conditions hold:

(1) The equilibrium point x=0 of the closed-loop sys-
tem is asymptotically stable with W contained in
its basin of attraction.

(2) For any x0 ∈W; we have z(t)∈S for all t¿ 0 and
ż(t)∈T for all t ¿ 0.

3. Taxonomy of constraints

Consider the system � given by (1) and characterized
by the quadruple (A, B, Cz, Dz). It turns out that certain
structural properties of this system play dominant roles in
the study of constrained semi-global and global stabiliza-
tion. Speci:cally, the right invertibility, the location of
invariant zeros, and the order of in:nite zeros determine
what can or cannot be achieved. This section is devoted to
a taxonomy of constraints in the context of stabilization.

The :rst category in the taxonomy of constraints
is based on whether the system � is right invertible
or not.

De�nition 8. The constraints are said to be

• right invertible constraints if the system � is right
invertible.

• non-right invertible constraints if the system � is
non-right invertible.

The second category in the taxonomy of constraints is
based on the location of the invariant zeros of the system
�. Because of its importance, we speci:cally label the
invariant zeros of the system� as the constraint invariant
zeros of the plant.

De�nition 9. The invariant zeros of the system � are
called the constraint invariant zeros of the plant associ-
ated with the constraint output z.

De�nition 10. The constraints are said to be

• minimum phase constraints if all the constraint invari-
ant zeros are in C−.

• weakly minimum phase constraints if all the con-
straint invariant zeros are in C− ∪C0 with the restric-
tion that at least one such constraint invariant zero is
in C0 and any such constraint invariant zero in C0 is
simple.

• weakly non-minimum phase constraints if all the con-
straint invariant zeros are in C− ∪ C0 and at least one
constraint invariant zero in C0 is not simple.

• at most weakly non-minimum phase constraints if all
the constraint invariant zeros are in C− ∪ C0.

• strongly non-minimum phase constraints if one or
more of the constraint invariant zeros are in C+.

The third categorization is based on the order of the
in:nite zeros of the system �. Because of its importance,
we speci:cally label the in:nite zeros of the system � as
the constraint in:nite zeros of the plant.

De�nition 11. The in:nite zeros of the subsystem � are
called the constraint in9nite zeros of the plant associated
with the constrained output z.

De�nition 12. The constraints are said to be type one
constraints if the order of all constraint in:nite zeros is
less than or equal to one.

4. Main results for semi-global and global stabilization

In this section we study in detail the constrained
semi-global and global stabilization problems utilizing
state feedback. We divide our development into two
subsections, one for right invertible constraints and the
other for non-right invertible constraints. The rational
for such a division lies in the fundamental way the study
of either semi-global or global stabilization problem
di<ers for these two categories of constraints. In fact,
there exists a clear demarkation line between the right
and non-right invertible constraints. For instance, as will
be evident soon, the solvability conditions for the con-
strained semi-global and global stabilization problems
do not depend on the shape of the constraint set for right
invertible constraints whereas for non-right invertible
constraints they indeed do so.

4.1. Right invertible constraints

In this section we provide necessary and su3cient con-
ditions for the solvability of Problems 6 and 7 whenever
the constraints are right invertible. It is worth noting here
that the right invertible constraints include as a special
case amplitude and rate constraints on actuators. When-
ever we have constraints only on the control variable u,
we have z= u implying that Cz =0 and Dz = Im. In other
words, since � characterized by (A; B; 0; Im) can easily be
veri:ed to be right invertible, we note that the amplitude
and rate constraints on actuators are indeed right invert-
ible constraints.

We :rst consider the case of utilizing state feedback
controllers. We have the following theorem concerned
with Problem 6.

Theorem 13. Consider the plant � as given by (1) and
constraint sets S and T that satisfy Assumption 1.
Assume that the set S is bounded. Assume also that
the constraints are right invertible. Then the global
constrained stabilization problem via state feedback as
de9ned in Problem 6 is solvable if and only if the
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following conditions hold:

(1) (A; B) is stabilizable.
(2) The constraints are at most weakly non-minimum

phase.
(3) The constraints are of type one.

Remark 14. Consider the case when S is not bounded
but S ∩T is bounded. For this case, the conditions (1)
and (2) are still necessary. On the other hand, the condi-
tion (3) will then be su3cient but not necessary. How-
ever, what is necessary is that the system characterized
by (A; B; Cz; Dz) has no in:nite zeros of order greater than
two. Obtaining the necessary and su3cient conditions
for this case depends on the precise shape of the sets S
and T.

We have the following theorem concerned with
Problem 7.

Theorem 15. Consider the plant � as given by (1) and
constraint sets S and T that satisfy Assumption 1. As-
sume that the constraints are right invertible. Then the
semi-global constrained stabilization problem via state
feedback as de9ned in Problem 7 is solvable if and only
if the following conditions hold:

(1) (A; B) is stabilizable.
(2) The constraints are at most weakly non-minimum

phase.

Remark 16. Consider the case when we have constraints
only on actuator amplitude and rate, i.e. let Cz =0. In
other words, a subset of the input channels is subject
to amplitude and rate constraints. Then, it is straight-
forward to show that the constraint invariant zeros of �
(i.e. the invariant zeros of the system � characterized by
(A; B; 0; Dz)) coincide with a subset of the eigenvalues
of A. This observation implies that the requirement of at
most weakly non-minimum phase constraints in Theo-
rems 13 and 15 is equivalent to requiring that a particular
subset of eigenvalues of A lies in the closed left-half
plane. Obviously, such a condition is always satis:ed if
we are dealing with asymptotically null controllable sys-
tems with bounded controls. It is interesting to consider
a special case which corresponds to Cz =0 and Dz = Im,
that is all the input channels are subject to amplitude and
rate constraints. In this case, the constraint invariant zeros
of � coincide with all the eigenvalues of A. Therefore, the
requirement of at most weakly non-minimum phase con-
straints in Theorems 13 and 15 is equivalent to requiring
that the given system be asymptotically null controllable
with bounded controls. Moreover the system (A; B; 0; Im)
has no in:nite zeros of order greater than 1 and hence
the condition (3) of Theorem 13 is automatically
satis:ed.

For systems with only input saturation, it is known
that global stabilization requires, in general, nonlinear
feedback while semi-global stabilization can be achieved
whenever it can be done by utilizing simply linear
time-invariant feedback laws. Therefore, a question that
arises naturally is whether an analogous result is valid
under a broad framework of constraints as formulated
here. The following theorem answers this question:

Theorem 17. Consider the plant � as given by (1) and
constraint sets S and T that satisfy Assumption 1. As-
sume that the constraints are right invertible. Then the
following hold:

(1) Under the condition that imCz ⊂ T (i.e. no rate
constraints on states); if a semi-global constrained
stabilization problem via state feedback as de9ned
in Problem 7 is solvable; then it is also solvable via
a linear time-invariant state feedback law.

(2) If imCz 
⊂ T (i.e. rate constraints on states are
present); whenever a semi-global constrained sta-
bilization problem via state feedback as de9ned in
Problem 7 is solvable; in general it might not be
solvable via a linear time-invariant state feedback
law. That is; there exist a plant � as given by (1)
and constraint sets S and T 
⊃ imCz that satisfy
Assumption 1 for which the semi-global stabiliza-
tion problem is solvable via a nonlinear feedback
law but for which there exists no linear feedback
law that solves the problem.

Remark 18. As will become clear from the proof, the
possibility of not having a linear time-invariant feedback
law solving a semi-global constrained stabilization prob-
lem (whenever the solvability conditions as given by
Theorem 15 are satis:ed) arises if the given plant has a
peculiar in:nite zero structure. More speci:cally, it arises
if the given plant has in:nite zeros of order 1 along with
higher order in:nite zeros. If the in:nite zeros of order
1 are not present but in:nite zeros of order greater than
1 are present, one can utilize linear time-invariant feed-
back laws to solve the posed problem. In other words,
in most practical cases one will be able to use linear
time-invariant feedback laws.

Theorems 13 and 15 tell us that the global and
semi-global constrained stabilization problems are solv-
able only for a system � which has at most weakly
non-minimum phase constraints. Suppose that the given
system � has strictly non-minimum phase constraints.
In this case, one cannot enlarge the domain of attraction
arbitrarily, and the domain of attraction is intrinsically
restricted. Our next goal is to obtain a maximally achiev-
able domain of attraction in an absolute sense (i.e. for
those initial conditions outside of such a set the given
system cannot be stabilized).
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The presentation of this result and also the proofs of
all major theorems rely on one speci:c decomposition
of the system. This decomposition is nothing else than
the decomposition related to the special coordinate ba-
sis (scb) as presented in Sannuti and Saberi (1987) and
Saberi and Sannuti (1990). As is well known by now,
the scb of a system displays clearly both the :nite and
in:nite zero structures of a given system. Also, the fa-
miliar properties of linear systems such as stabilizability,
controllability, detectability, observability, left and right
invertibility, can easily be ascertained from the scb. An
expanded form of scb plays a crucial role in the context
of proofs as well as in controller design, and it will be
presented later on. However, for the presentation of the
results related to non-minimum phase constraints, a com-
pact form of scb su3ces, and is given below.

Utilizing the state and input space coordinates of scb
for the quadruple (A; B; Cz; Dz) together with a prelim-
inary state feedback u=Fx + �uũ, one can rewrite the
general system � given by (1) as(
ẋ1
ẋ2

)
=

(
A11 0

0 A22

)(
x1
x2

)
+

(
0

B2

)
ũ+

(
K1

K2

)
z;

(2a)

z=(Cz;1 Cz;2)

(
x1
x2

)
+ D̃zũ: (2b)

Here, x1 ∈Rn1 and x2 ∈Rn2 with n1 + n2 = n. We em-
phasize that many submatrices given in (2) have de:nite
structure which we judiciously point out as the need
arises. At this time we point out that the subsystem
(A22; B2; Cz;2; D̃z) is strongly controllable and has no
invariant zeros (see Sannuti & Saberi, 1987; Saberi &
Sannuti, 1990). For the case of right invertible con-
straints, there is additional structure; in particularCz;1 = 0.

In the case of right-invertible constraints, the eigen-
values of A11 are equal to the invariant zeros of the
system �. In the case of non-right invertible constraints
(i.e when Cz;1 
=0), the unobservable eigenvalues of the
pair (Cz;1; A11) are precisely the invariant zeros of the
system �.

When we have right-invertible constraints, we extract
from (2) two subsystems. The :rst subsystem is given by

�s : ẋ1 =A11x1 + K1z; x1 ∈Rn1 : (3)

The above subsystem �s represents the zero dynam-
ics of the system � characterized by the quadruple
(A; B; Cz; Dz).

The second subsystem extracted from (2) is given
by

ẋ2 =A22x2 + B2ũ+ K2z; x2 ∈Rn2 ;

z=Cz;2x2 + D̃zũ:
(4)

We de:ne the following admissible set of initial condi-
tions for the above system:

V2(S;T) = {x2;0 ∈Rn2 | ∃u0 such that z0 ∈S

and Cz;2(A22x2;0 + B2u0 + K2z0)∈T};
(5)

where z0 =Cz;2x2;0 + D̃zu0.
Before stating our results for the case of non-minimum

phase constraints, we need to recall the following de:ni-
tion of the region of asymptotic null-controllability sub-
ject to input constraints:

De�nition 19. Consider the system:
M� : Ṁx= MA Mx + MBu; Mx∈Rn; u∈Rm: (6)

For any MS ⊂ Rm and MT ⊂ Rm, the region of asymptotic
null-controllability subject to the input constraint sets
MS and MT is the set of initial conditions de:ned by

Rc( M�; MS; MT)=
{
Mx0 ∈Rn | ∃u such that u(t)∈ MS and

Ṁu(t)∈ MT for all t ¿ 0 and

lim
t→∞ Mx(t)=0 where Mx(0)= Mx0

}
:

Viewing z as the input to the subsystem �s given
in (3) with z(t)∈S and ż(t)∈T for all t ¿ 0, and
in accordance with the above de:nition, we next
denote by Rc(�s;S;T) the region of asymptotic
null-controllability of system �s subject to input con-
straint sets S and T.

We have the following theorem:

Theorem 20. Consider the plant � as given by (1) and
constraint sets S and T that satisfy Assumption 1. As-
sume that the constraints are right invertible. Also; for a
given stabilizing controller u=f(x); denote its domain
of attraction as R

f
A (�). Then we have:

R
f
A (�) ⊆ Rc(�s;S;T)×V2(S;T): (7)

Under the additional constraint that T=Rp (i.e. no
rate constraint is present); for any compact set R satis-
fying R ⊂ �Rc(�s;S;Rp) for some �¡ 1; we can 9nd
a stabilizing controller for the complete system � with
domain of attraction containing R×V2(S;Rp) and for
all initial conditions in R×V2(S;Rp) satis9es the con-
straint z(t)∈S for all t ¿ 0.

Remark 21. We emphasize that the second part of the
above theorem does not hold if we have rate constraints
(i.e. if T 
=Rp).

4.1.1. Proofs and construction of controllers
Both for construction of controllers and the proof of

the results in the previous section, we use the decompo-
sition in the two subsystems (3) and (4) as de:ned in the
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previous section. We observe clearly that we can control
the :rst subsystem (3) only through z. Also, from the scb
decomposition it follows that the second subsystem char-
acterized by the quadruple (A22; B2; Cz;2; D̃z) has no :nite
invariant zeros and is right-invertible. This implies that
we can guarantee by suitable choice of ũ that z is arbi-
trary close to any desired signal. Therefore, we basically
design a controller in two phases:

• First design a desired feedback for the :rst subsys-
tem (3) using z as the (constrained) input signal such
that the :rst subsystem exhibits a desired closed-loop
behavior.

• Secondly, design a feedback for the second subsystem
with state x2, input u and output z such that
(1) the output z is close to the desired feedback for

the :rst subsystem,
(2) the output satis:es the constraints,
(3) the state x2 of the second subsystem exhibits a

desirable behavior.

All feedback designs in this paper are constructed in ac-
cordance with this two-phase design.

We need to discuss what kind of initial conditions can
be considered for the :rst subsystem (3). In fact, since we
have no state constraints on this subsystem, we can have
arbitrary initial conditions for it. Hence, we consider ar-
bitrary initial conditions in W1 =Rn1 in the global case
while in the semi-global case we consider initial condi-
tions in some arbitrary compact set W1.

Similarly, the initial conditions for the second subsys-
tem must be in some set W2. In the global case, we have
W2 =V2(S;T) using the de:nition in (5) while in the
semi-global case, we have thatW2 is an arbitrary compact
set contained in the interior of V2(S;T). Due to space
limitation we have omitted the proof of Theorem 17. The
interested reader can obtain the proof from Saberi, Han,
and Stoorvogel (2001).

4.1.1.1. Proof of Theorem 13.
We :rst show that the conditions of Theorem 13 are

necessary. The necessity of condition (1) of Theorem 13
is trivial. The necessity of condition (2) of Theorem 13
is a consequence of the results obtained in Shi, Saberi,
and Stoorvogel (2000) and the following lemma which
is a direct consequence of the decomposition given in (3)
and (4),

Lemma 22. Let the system (1) and constraint sets S
andT be given. There exists a state feedback that solves
the global constrained stabilization problem for the sys-
tem (1) only if the system (3) is globally stabilizable by
a constrained state feedback z=f(x1); i.e.

(1) The equilibrium point x1 = 0 of the closed-loop sys-
tem is globally asymptotically stable.

(2) For any initial condition; z(t)∈S and ż(t)∈T for
all t ¿ 0.

In order to complete the proof that the conditions of
Theorem 13 are necessary we need to prove the following
lemma which states that condition (3) is also a necessary
condition for solvability of Problem 6.

Lemma 23. Consider the plant � as given by (1). Let
the assumptions of Theorem 13 be satis9ed. Then the
global constrained stabilization problem as de9ned in
Problem 6 is solvable only if the system (A; B; Cz; Dz)
has no in9nite zeros of order greater than one.

Proof. First note that, since the system is right invert-
ible, having no in:nite zeros of order greater than one
is equivalent to (CzB Dz) being surjective. Therefore, if
the system has in:nite zeros of order greater than one,
then there exists a vector c 
=0 such that cTDz =0 and
cTCzB=0. Moreover, since T contains zero in its in-
terior, we can guarantee that c∈T. Let z0 ∈S be such
that 〈z; c〉6 〈z0; c〉 for all z ∈S. Since S is convex as
well as compact such a z0 always exists. Next, because
(A; B; Cz; Dz) is right invertible there exist initial condi-
tion x0 and input function Mu such that the output z satis:es
z(0)= z0 and ż(0)= c, i.e.

z0 =Czx0 +Dzu(0)∈S;

c=Cz(Ax0 + Bu(0)) +Dz Ṁu(0)∈T:

Clearly x0 ∈V(S;T). But if we start at time 0 in x0,
then we have for any input signal u

〈c; z(0)〉= 〈c; Czx0〉= 〈c; z0〉;
d
dt
〈c; z(t)〉|t=0 = 〈c; CzAx0〉= 〈c; c〉¿ 0:

Therefore 〈c; z(t)〉¿ 〈c; z0〉 for small t ¿ 0 and for any
input u. By de:nition of z0 this implies z(t) 
∈ S for small
t ¿ 0 and for any input u. Therefore, there exist initial
conditions in V(S;T) which cannot be stabilized with-
out violating our constraints which yields the required
contradiction.

This establishes the necessity of our conditions. The
next step is to prove su3ciency by explicitly designing
a suitable feedback. Before we do so, in view of scb, we
need to recall a :ner structure of (2), namely

Cz;2 =

(
C1

0

)
; D̃z =

(
0 0 0

D1 0 0

)
;

B2 = ( 0 B̃2 B̃3 )

(8)

with D1 invertible. Since we have no in:nite zeros of
order greater than 1, we have the additional structure
that C1B̃2 is invertible. Also, we decompose ũ and z
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to be compatible with the above: into z1; z2 and u1; u2; u3
respectively. We impose next a more stringent bound on
the rate by choosing T̃⊂T such that S and T̃ satisfy
Assumption 1 while T̃ is bounded. This is done to uti-
lize an upper bound on the rate which is needed in our
proof. We observe that the assumptions on the sets S
and T̃ guarantee that we can decompose the sets S and
T̃ compatible with the decomposition of z:

S=S1 ×S2; and T̃= T̃1 × T̃2 (9)

such that z ∈S if and only if z1 ∈S1 and z2 ∈S2. The
decomposition of T̃ is similar.

In our design for the :rst subsystem, we choose an
input z which satis:es the constraints such that z(t)∈
(1 − �)S and ż(t)∈ (1 − �)T̃, where the parameter
�∈ (0; 1). By choosing � close to 1, we have limited
control e<ort for the :rst subsystem but in our design for
ũ to track the desired output z, we have more Hexibility.
Conversely, choosing � small gives us more control ef-
fort for the :rst subsystem but in our design for ũ we
need to track the desired output z quite accurately. Based
on these arguments, we :x the parameter �∈ (0; 1). Next
we choose a �¿ 0 such that � MS1 ⊂ �T̃, where
MS1 = { z1 − z2 | z1 ∈S1; z2 ∈S1 }: (10)

Obviously, such a � always exists. We now focus our
design for the :rst subsystem (3) while viewing z as
an input variable. At :rst we let z= z0 + v and rewrite
subsystem (3) as

ẋ1 =A11x1 + K1z0 + K1v: (11)

We note that the conditions of the theorem imply that all
the eigenvalues of A11 are in the closed left-half plane.
Next, we would like to construct a state feedback law
z0 =f(x1) such that it satis:es the constraints z0(t)∈ (1−
�)S and ż0(t)∈ (1 − �)T̃ for all t ¿ 0 while rendering
the zero equilibrium point of the closed-loop system of
(11) and z0 =f(x1) globally attractive (i.e. x1(t) → 0 as
t → ∞) in the presence of signals v satisfying:

‖v(t)‖6Me−�t (12)

for some M ¿ 0. Moreover, the feedback law z0 =f(x1)
should render the zero equilibrium point of the closed-loop
system when v=0 locally exponentially stable. Such a
nonlinear feedback law z0 =f(x1) can be obtained from
Shi et al. (2000). Note that although Shi et al. (2000)
considers only the case v=0, the needed extension to
this more general case is quite straightforward.

Next we consider the second subsystem, namely (4).
The main design objective is to :nd a suitable input ũ to
the second subsystem (4) such that for any initial condi-
tion of the :rst subsystem (4) in W1 and for any initial
condition of the second subsystem (3) we have

‖z(t)− f(x1(t))‖6Me−�t (13)

for all t ¿ 0 and for any function f satisfying:

f(x1(t))∈ (1− �)S;
d
dt
f(x1(t))∈ (1− �)T̃

for all t ¿ 0. Obviously, we must also guarantee that
z(t)∈S and ż(t)∈T for all t ¿ 0.

To proceed, let us next partition f(x1) to be compatible
with the partitioning of z:

f(x1)=

(
f1(x1)

f2(x1)

)
:

We are now ready to construct the required feedback
laws for ũ. Our objective in designing it is to guarantee
that v :=z−f(x1) satis:es (12) while z satis:es the con-
straints. Knowing the properties of scb, it can be shown
that one can choose ũ 3 =Fx2 such that the system (2)
with inputs ũ 1 and ũ 2 and output z is invertible and more-
over the additional invariant zeros introduced by the feed-
back ũ 3 =Fx2 are placed in a desired location in the open
left-half plane. With this choice of ũ 3, we obtain:

z1 =C1x2; z2 =D1ũ 1;

ż1 =C1(A22x2 + B̃3Fx2 + K2z) + C1B̃2ũ 2:

Then choose the feedback laws,

ũ 1(t) =D−1
1 f2(x1(t))

ũ 2(t) = (C1B̃2)−1
(
−C1A22x2(t) + B̃3Fx2(t)

+K2z(t)− �(z1(t)− f1(x1(t)))

+ (1− e−�t)
d
dt
f1(x1(t))

)
:

We emphasize that the above feedback laws are
time-varying nonlinear state feedback laws. These feed-
back laws guarantee that z2 =f2(x1) and that z1(t) →
f1(x1(t)) as t → ∞ for all initial conditions in the set of
admissible set of initial conditions V(S;T). We show
next that z1 and z2 with the above feedback laws satisfy
all the constraints. We observe :rst that f(x1)∈S and
(d=dt)f(x1)∈ T̃ which guarantees that z2 =f2(x1)∈S2

and ż2 = (d=dt)f2(x1)∈ T̃2. This implies that z2 satis:es
all the constraints. We focus next on showing that z1
satis:es all the constraints, i.e. z1(t)∈S1 and ż1(t)∈ T̃1

for all t ¿ 0. We have:

ż1(t)=− �(z1(t)− f1(x1(t))) + (1− e−�t)
d
dt
f1(x1(t)):

(14)

Integrating this equation we obtain:

z1(t)= e−�tz1(0) + (1− e−�t)f1(x1(t)): (15)

Since f1(x1)∈S1 and z1(0)∈S1, we :nd, using the con-
vexity of S1, that z1(t)∈S1. We still need to guarantee
that z1 satis:es our rate constraints. We again use (14).
Since (d=dt)f1(x1(t))∈ (1 − �)T̃1, we obviously have
that

(1− e−�t)
d
dt

f1(x1(t))∈ (1− �)T̃1:
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Moreover

�(z1(t)− f1(x1(t)))∈ � MS1 ⊂ �T̃1:

This guarantees that ż1(t)∈ T̃1 as required. Next, note
that v1(t)= z1(t)− f1(x1(t)) satis:es according to (15):

v1(t)= e−�tz1(0)− e−�tf1(x1(t))∈ e−�t(S1 − T̃1)

for any t ¿ 0 and hence the error signal v= z − f(x1)
satis:es:

‖v(t)‖6Me−�t

for all t ¿ 0, where M is some positive constant. This
immediately shows that, for all initial conditions in
V(S;T), x1(t) → 0 as t → ∞ which in turn guarantees
that z(t) → 0 as t → ∞. Moreover, it is straightforward
to show that x2(t) → 0 as t → ∞ for all initial conditions
in V(S;T). Thus, we conclude that the zero equilib-
rium point of the closed-loop system is attractive for all
initial conditions in V(S;T). Finally, it is obvious that
the zero equilibrium point of the closed-loop system is
locally asymptotically stable. This concludes our proof.

Remark 24. If we have only amplitude constraints (i.e.
T=Rp), then it is clear that the time-invariant feedback

ũ 1(t) =D−1
1 f2(x1(t));

ũ 2(t) = (C1B̃2)−1
(
−C1A22x2(t) + B̃3Fx2(t) + K2z(t)

−�
(
z1(t)− f1(x1(t)) +

d
dt
f1(x1(t))

))
;

ũ 3(t) = Fx(t)

achieves stability and respects our constraints for a su3-
ciently large �. Obviously, a large � is not possible when-
ever rate-constraints exist.

4.1.1.2. Proof of Theorem 15.
Again, in view of the decomposition given in (3) and

(4), the following lemma is obvious:

Lemma 25. Let the system (1) and constraint sets S
andT be given. There exists a state feedback that solves
the semi-global constrained stabilization problem for the
system (1) only if the system (3) is semi-globally sta-
bilizable by a constrained state feedback; i.e. for any
compact set W1; there exists a state feedback z=f(x1)
such that

(1) The equilibrium point x1 = 0 of the closed-loop sys-
tem is asymptotically stable with W1 contained in
its basin of attraction.

(2) For any x1(0)∈W1; z(t)∈S and ż(t)∈T for all
t ¿ 0.

Note that (3) is semi-globally stabilizable by a con-
strained state feedback only if A11 has all its eigenval-
ues in the closed left-half plane. Secondly, if the system

(A; B; Cz; Dz) is right invertible then the eigenvalues of
A11 are the invariant zeros of the system (A; B; Cz; Dz)
and hence the above proves necessity of Theorem 15.
Remains to prove su3ciency of the conditions in Theo-
rem 15. We can hence assume that from now on A11 has
all its eigenvalues in the closed left-half plane. We prove
su3ciency by an explicit design of a suitable controller.
We begin with the design of a state feedback controller
as needed for Theorem 15.

The basic philosophy of our controller design as be-
fore is as follows. We :rst design a suitable stabilizing
controller z=f1(x1) for the subsystem (3). Next we con-
sider the subsystem (4). We need to design an input u
such that the output z tracks the desired feedback for the
:rst subsystem while avoiding constraint violation and
while guaranteeing stability of the second subsystem.

In our global design, we needed to guarantee stability
for all initial conditions for the :rst subsystem in Rn1

and for all initial conditions of the second subsystem
in V2(S;T). For our semi-global design, we need to
guarantee stability for all initial conditions for the :rst
subsystem in some compact subset W1 ⊂ Rn1 and for all
initial conditions of the second subsystem in a compact
subset W2, where W2 is such that there exists �∈ (0; 0:5)
such that W2 ⊂ (1 − 2�)V2(S;T). Our design has a
larger domain of attraction for smaller � but at the expense
of the need for a higher gain in the second subsystem.
Obviously, there exists a compact set S̃ ⊂ S such that
W2 ⊂ (1 − �)V2(S̃;T). We assume that S̃ and T
still satisfy assumption 1. We actually design a feedback
such that z(t)∈ S̃ for all t ¿ 0. Because we are proving
su3ciency, this restriction is without loss of generality
and enables a simpli:cation in the proof.

Assumption 1 enables us to decompose S̃ and T:

S̃ ∩ imCz = S̃1; S̃ ∩ imDz = S̃2;

T ∩ imCz =T1; T ∩ imDz =T2;

Step 1 (Controller design for the zero-dynamics): We
now focus our design for the :rst subsystem (3) while
viewing z as an input variable. As before, at :rst we let
z= z0 + v and rewrite subsystem (3) as

ẋ1 =A11x1 + K1z0 + K1v: (16)

We note again that the conditions of the theorem imply
that all the eigenvalues of A11 are in the closed left-half
plane. As will become transparent in the design for our
second subsystem, we need to choose �2 such that:

�2 MS1 ⊂ �
3
T1; (17)

where as before

MS1 = { z1 − z2 | z1 ∈ S̃1; z2 ∈ S̃1}: (18)

Clearly, such a �2 exists since MS1 is bounded.
Our objective is to design a stabilizing feedback

z0 =f(x1) such that the equilibrium point of the
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closed-loop system of (16) and z0 =f(x1) with v=0 is
asymptotically stable. Moreover, for all v satisfying the
bound

‖v(t)‖6Me−�2t (19)

for all t ¿ 0, and for all initial conditions in some arbi-
trarily large but compact subset W1 ⊂ Rn1 ; we satisfy
x1(t) → 0 as t → ∞. Finally, we need to guarantee also
that

z0(t)∈ (1− �)S̃1; ż0(t)∈ ��2
2e−1 S̃1 ∩ �

3
T1 (20)

for all t ¿ 0. Again, it will become clear in our design
for our second subsystem why it is desirable to guaran-
tee that z0 satis:es these bounds. One can design such
a suitable feedback law f(x1) as a linear state feedback
law as described below. For further details we refer to
Stoorvogel and Saberi (1999).

Let P be the solution of the continuous-time algebraic
Riccati equation:

AT
11P + P A11 − P K1KT

1 P +  2I =0:

It is well known that lim →0 P =0. It is also shown for
any compact subset W1, there exists a  ∗ such that for
all  ∈ (0;  ∗]:

(1) z0 = − KT
1 P x1 is a stabilizing controller for system

(16) with W1 contained in the domain of attraction.
(2) (20) is satis:ed for all t and for all v satisfying (19).

Hence we can choose f(x1)= − KT
1 P x1 for some

 ∈ (0;  ∗] to obtain a suitable feedback for this :rst sub-
system. In the rest of the proof, we assume in fact that f
is a linear function of the state as presented above.

Step 2 (Controller design for the second subsystem):
Our next design objective is to :nd a suitable input ũ to
the second subsystem (4) such that (19) is satis:ed where

v(t)= z(t)− f(x1(t))

for all t ¿ 0 and where z0(t)=f(x1(t)) satis:es (20).
Obviously, we must guarantee that also z(t)∈ S̃ for all
t¿ 0 and ż(t)∈T for all t ¿ 0 while assuring the stabil-
ity of the resulting closed-loop system with the desired
domain of attraction.

At this stage, in order to proceed with our design, we
need to reveal from scb certain :ner structure the matrices
A22, A21, B̃2, B̃3, and C1. Indeed we have A22 = Ã22+ B̃2G
for some compatible matrices G. Moreover, we have

Ã22 =




A1 0 · · · 0

0
. . . . . .

...
...

. . . As 0

0 · · · 0 Ac



; B̃2 =




B2;1 0 · · · 0

0
. . . . . .

...
...

. . . B2; s 0

0 · · · 0 0



;

B̃3 =




0
...

0

Bc


 ; C1 =




C11 0 · · · 0 0

0
. . . . . .

...
...

...
. . . . . . 0 0

0 · · · 0 C1s 0



;

and for i=1; 2; : : : ; s:

Ai =




0 1 0 · · · 0

0
. . . . . . . . .

...

0
. . . . . . . . . 0

...
. . . . . . . . . 1

0 · · · 0 0 0




∈Rki×ki ; B2; i =




0
...

0

0

1



;

C1i =(1 0 · · · 0):

Here, Ac and Bc are matrices of appropriate dimension
such that the pair (Ac; Bc) is controllable.

In view of the above and in view of (8), the system of
equations given in (4) can be rewritten as

ẋ2 = Ã22x2 + B̃2(ũ 2 +Gx2) + B̃3ũ 3 + K2z;

z=

(
z1
z2

)
=

(
C1x2
D1ũ 1

)
(21)

with D1 invertible. Next, we partition K2, x2, z1, ũ 2, and
f(x1) in conformity with the partitioning of matrices Ã22,
B̃2, etc. We have

K2 =




K2;1

...

K2; s

K2; c


 ; x2 =




x2;1
x2;2
...

x2; s
xc



; z1 =




z1;1
z1;2
...

z1; s


 ;

ũ 2 =




u2;1
u2;2
...

u2; s


 ; f(x1)=

(
f1(x1)

f2(x1)

)
;

f1(x1)=




f1;1(x1)

f1;2(x1)
...

f1; s(x1)


 ; G=



G1

...

Gs


 :

We are now ready to design ũ. We will :rst focus on ũ 1

and ũ 3. We choose ũ 1 =D−1
1 f2(x1). To get ũ 3, we choose

:rst a matrix Fc such that the eigenvalues of Ac+BcFc are
all at desired locations in the open left half plane. Such a
selection of Fc is possible since (Ac; Bc) is controllable.
We then choose ũ 3 =Fcxc.
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It remains to choose ũ 2. To do so, let us study the
system (21). By substituting for ũ 1 and ũ 3 as chosen, we
can rewrite (21) as

ẋ2; i =Aix2; i + B2; i(u2; i +Gix2) + K2; iz;

z1; i =C1ix2; i

for i=1; 2; : : : ; s; and

ẋc =(Ac + BcFc)xc + K2; cz:

(22)

Now our objective in designing ũ 2 is to guarantee
that z1; i − f1; i(x1) converges to zero exponentially
while making sure that the state constraints are
satis:ed. To proceed further, we de:ne functions
mi;j(x); i=1; : : : ; s; j=1; : : : ; ki+1 as follows:mi;1(x) :=
f1; i(x1), and for i=1; : : : ; s; j=2; : : : ; ki + 1

mi;j(x) :=−K2; i; j−1z − �j(x2; i; j−1 −mi;j−1(x))

+
d
dt

mi; j−1(x);

where the parameter �j is such that �2 is as chosen before,
and �3¿ 0; : : : ; �ki+1¿ 0 are to be chosen subsequently.
We would like to point out that mi;j(x) as de:ned above
are linear functions of x. We de:ne next certain variables,
%i; j, i=1; : : : ; s; j=2; : : : ; ki such that

%i; j(t) :=x2; i; j −mi;j(x):

We are now ready to choose the components of ũ 2,
namely u2; i, i=1; : : : ; s. If ki ¿ 1, we choose

u2; i =−Gix2 +mi;ki+1(x): (23)

If ki =1 for some i, say i= &, then u2; & is chosen as

u2; & =−G&x2 +m&;2(x) + %&;2(t); (24)

where %&;2(t) is to be chosen soon. We note that if ki 
=1
for any i=1; : : : ; s, obviously the system (22) with the
choice of u2; i as chosen in (23) is exponentially stable.
We de:ne next,

%2(t) :=



%1;2(t)

...

%s;2(t)


 :

Let us next focus on the behavior of the constraints un-
der the feedback laws chosen above. We observe that z2
satis:es the constraints due to the choice of ũ 1. Hence
we focus on z1. We have

z1 =C1x2(t) = e−�2tC1x2(0) + f1(x1(t))

− e−�2tf1(x1(0)) +
∫ t

0
e−�2(t−')%2(') d'

= e−�2tC1x2(0) + (1− e−�2t)f1(x1(t))

+ e−�2t
∫ t

0

d
dt
f1(x1(')) d'

+
∫ t

0
e−�2(t−')%2(') d':

Since z0 =f1(x1) satis:es (20) we get:

e−�2t
∫ t

0

d
dt

f1(x1(')) d'∈ �
2
S̃1:

Moreover,C1x2(0)∈ (1−�)S̃1 andf1(x1(t))∈ (1−�)S̃1.
Therefore, if we guarantee that∫ t

0
e−�2(t−')%2(') d'∈ �

2
S̃1; (25)

then we obtain C1x2(t)∈ S̃1 as required.
Next, we need to consider the rate constraint on z1.

ż1 =
d
dt

C1x2 =−�2(C1x2 − f1(x1))

+
d
dt

f1(x1) + %2(t); (26)

We know from (20) that (d=dt)f1(x1)∈ (�=3)T1. Since
�2 satis:es (17) combined with the fact that C1x2 −
f1(x1)∈ MS1 we :nd that �2(C1x2 − f1(x1))∈ (�=3)T1.
Hence, we obtain that (d=dt)C1x2 ∈T1, if we guarantee
that:

%2(t)∈
(
1− 2�

3

)
T1: (27)

Therefore, if we can guarantee (25) and (27), then we
satisfy our constraints. We still need to show that the
di<erence between z and f(x1), which is equal to the dis-
turbance v in the :rst subsystem, satis:es (19). We have

v=

(
v1
v2

)
;

where v2 = 0 and rewriting (26) we get

v̇1(t)=− �2v1(t) + %2(t)

with v1(0)∈ MS1. Therefore, v satis:es (19) if %2 satis:es:∫ t

0
e�2'%2(') d'∈ S̃1: (28)

We will next consider how we can guarantee that %2(t)
satis:es (25), (27) and (28). It is easy to see that these
three conditions are satis:ed if for all t ¿ 0 we have:

%2(t)∈ e−�3t
(
1− 2�

3

)
T1 (29)

for �3 large enough.
For ease of notation, we de:ne

A= {i | i=1; : : : ; s; ki =1};
Ac = {i | i=1; : : : ; s; ki ¿ 1}:
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With i∈Ac, we have

%i;2(t)= e−�3t%i;2(0) +
∫ t

0
e−�3(t−')%i;3(') d'

with %i;3(t)=0 if ki =2. For i∈A, we can obtain arbitrary
%i;2 by choosing u2; i as in (24). Assume for i∈A we
choose:

%i;2(t)= e−�3t%i;2(0) (30)

with %i;2(0) still to be chosen. If we guarantee:

(1) %2(0)∈ (1− �)T1,
(2)

∫ t
0 e�3t%i;3(') d' small enough for i with ki¿ 3,

then (29) is satis:ed. We will see later how, by choosing
�4; �5; : : : ;we can guarantee item (2). Let us next consider
item (1). We have

%2(0)= ż1(0) + �2(z1(0)− f1(x1(0)))− d
dt
f1(x1(0)):

We have:

�2(z1(0)− f1(x1(0)))∈ �2 MS1 ⊂ �
3
T1;

d
dt

f1(x1(0))∈ �
3
T1

and hence as soon as we guarantee that ż1(0)∈ (1−2�)T1

we know that item (1) is satis:ed.
However, because x2(0)∈ (1−2�)V2(S;T) there ex-

ists u(0) such that ż1(0)∈ (1−2�)T1. It is easily veri:ed
that the only components of u(0) which a<ect ż1(0) are
exactly the u2; i(0) with i∈A which, according to (24),
is equivalent to choosing %i;2(0) with i∈A appropriately.

This yields a system with the desired properties but
the feedback is partially determined in open loop due to
our choice in (30) and therefore not acceptable. Choose
instead for each t, %i;2(t) with i∈A to minimize the fol-
lowing criterion:

min{( | %2(t)∈ (T1}: (31)

Note that the existence of %i;2(t) with i∈A that minimize
this criterion is a consequence of the fact that the setT1 is
bounded. Clearly, the optimal %i;2(t) with i∈A becomes
a function of %i;2(t) with i∈Ac. But for i∈Ac, the %i;2(t)
are a function of the state and hence the %i;2(t) with i∈A
are determined according to a state feedback. Note that
(30) is a suboptimal choice for the optimization in (31)
yielding (29) and therefore, we have that

(6 e−�3t
(
1− 2�

3

)
and hence the choice for %i;2(t) according to the optimiza-
tion is a state feedback which also satis:es (29). Note
that in general the dependence of %i;2 with i∈A on the
%i;2 with i∈Ac is nonlinear. There are a few instances
where we can guarantee a linear feedback. Clearly, if ei-
ther the set A or the set Ac is empty, then this mapping
is automatically linear since either its domain or its range

is 0-dimensional. Moreover, if imCz ⊂ T, then T1 is
equal to the whole space and we get an optimal value
(=0 by choosing %i;2(t)=0 for i∈A which clearly also
yields a linear feedback.

Finally, we still need to choose �4; �5; : : : : We note
that we have the following structure when ki ¿ 2.

%̇i; j =− �j%i; j + %i; j+1 for j=1; : : : ; ki − 1;

%̇i; j =− �j%i; j for j= ki:

From the above structure, it should be obvious that we
can make the %i; j small by a suitable design of the �j. We
have to make sure that∫ t

0
e�3t%i;3(') d'

is small enough for those i with ki¿ 3. By making �4
large enough, we can make this arbitrarily small provided
that∫ t

0
e�4t%i;4(') d'

is small enough. If ki =4 this is actually equal to zero
and otherwise we can use a similar argument to make this
small enough by choosing �5 large enough. In this way,
we can recursively determine �4; �5; : : : ; �ki+1.

Finally, note that all the %i; j(t) converge to zero expo-
nentially and therefore for i=2 this implies that %i;2(t)
converges to zero exponentially and hence the di<erence
between xi;1 and f1; i(x1) converges to zero exponentially.
Since f1(x1) also converges to zero exponentially we
:nd that xi;1 converges to zero exponentially. This also
implies that z converges to zero exponentially. Finally
it implies that mi;2(x) converges to zero exponentially.
Similarly, since %i;3(t) converges to zero exponentially
we have that the di<erence between xi;1 and mi;2(x) con-
verges to zero exponentially. Hence, if ki ¿ 1; mi;2(x)
converges to zero exponentially and we :nd that xi;2 con-
verges to zero exponentially. As before, this also implies
that mi;3(x1) converges to zero exponentially. Continuing
with this recursive argument, we :nd that all states con-
verge to zero exponentially and therefore, the constructed
feedback has the desired attractivity as well as stability.

4.1.1.3. Proof of Theorem 20.
We :rst note that any stabilizing controller satis:es (7).

Consider an initial condition x(0)= (x1(0); x2(0)) in the
domain of attraction R

f
A (�). We note that by construc-

tion of V2 if x2(0) 
∈ V2(S;T) then we cannot even
satisfy the constraints at time 0. On the other hand, the
:rst subsystem �s is controlled through z and has initial
condition x1(0). Since x(0) is in the domain of attraction,
we know x(t) → 0 as t → ∞ but then also in the sys-
tem �s we have that the state x1(t) converges to zero as
t → ∞ while z satis:es the constraints. This implies by
de:nition that x1(0)∈Rc(�s;S;T).
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In order to prove the second part of Theorem 20, we
need the following lemma which is a direct consequence
of results from van Moll (1999).

Lemma 26. Given a linear system:
M�: Ṁx= MA Mx + MBu+ d; Mx∈Rn; u∈Rm

and a convex set MS which contains 0 in the interior.
Assume there exists a feedback Mu= g( Mx) and a set Rg

A(�̃)
such that in the absence of d; 0 is the equilibrium point
of the closed-loop system which is asymptotically stable
and its domain of attraction contains Rg

A(�̃). Moreover;
for all initial conditions in the set Rg

A(�̃) and in the
absence of d (i.e. d=0) we have that Mu(t)∈ MS.

Then we can 9nd for any compact set R satisfying
R ⊂ �Rg

A(�̃) for some �¡ 1; a feedback Mu= h( Mx) such
that h is continuous and for any M; there exists an r
large enough such that for any d satisfying:

‖d(t)‖6Me−rt

and for all initial conditions in the set R we have that
Mu(t)∈ MS and all the trajectories Mx(t) go to zero exponen-
tially as t → ∞.

The above lemma yields the proof of Theorem 20 im-
mediately by utilizing the same construction as given in
the proof of Theorem 15 but using z0 = h(x1) as con-
structed in the above lemma instead of z=f(x1). We
should note that since we have no rate constraints we can
choose �2 = r (with r as given in the above lemma) since
the feedback as constructed in the above lemma requires
a rapid enough decay in the disturbance signal d (which
equals v as used in our proof of Theorem 15).

4.2. Non-right invertible constraints

In this section, we consider non-right invertible con-
straints. In the case of right invertible constraints, as we
have seen earlier, if a stabilization problem is solvable
for one pair of constraint sets S and T, the same stabi-
lization problem is solvable for any pair of constraint sets
S and T irrespective of their shape as long as they sat-
isfy Assumption 1. In general this is not so for non-right
invertible constraints. This adds a layer of complexity
and renders the case of non-right invertible constraints
profoundly di<erent from the case of right invertible
constraints.

In what follows, we :rst provide a set of necessary con-
ditions for the solvability of the posed stabilization prob-
lems. This set of conditions do not depend on the shape
of the sets S and T, but essentially show the complexity
involved with non-right invertible constraints. Next, we
present an example showing that the necessary and su3-
cient conditions for the solvability of the posed stabiliza-
tion problems in general invariably depend on the shape
(i.e. on the speci:c features) of the sets S and T. We

then pursue the task of identifying a class of non-right
invertible constraints for which the necessary and su3-
cient conditions for the solvability of the posed stabiliza-
tion problems can be formulated without involving any
speci:c features of the sets S and T as long as they sat-
isfy Assumption 1.

As we shall see shortly for both global and semi-global
stabilizations, the condition given in the previous section
for the right invertible case remains necessary for the
case of non-right invertible constraints. However, these
conditions are no longer su3cient. In fact we show that
an intricate set of additional conditions are required in
case of non-right invertible constraints.

Consider the special coordinate basis as given in (2).
In order to proceed again we need further structure to
be recalled from scb. In order to show this structure, we
need to have a transformation in the constrained output
space in addition to the earlier transformations in the state
and input spaces. There exists a transformation matrix �z

such that Mz=�zz yields the following decomposition

Mz=



z11
z12
z2


=



Cz;12

0

0


 x1 +




0
MC1

0


 x2 +




0

0

D1


 ũ 1:

(32)

Note that choosing a basis in the output space a<ects our
sets S and T. Therefore, we obtain new constraint sets
S̃ and T̃. Since CT

z Dz =0 we can guarantee that these
new constraint sets still satisfy Assumption 1.

Consider our original system in the special coor-
dinate basis as given in (2) together with the extra
output transformation in (32). By de:ning Ã1 =A11;
B̃1 =K1�−1

z ; C̃1 =Cz;12; x̃1 = x1; ṽ1 = Mz and z̃1 = z11, we
obtain for i=1 the following system:

�̃i:

{
˙̃xi = Ãix̃i + B̃iṽi;

z̃i = C̃ix̃i:
(33)

This is basically the :rst subsystem as de:ned in the
previous section but still with an output constraint which
was absent in the right invertible case. So basically from
the system � we constructed �̃1. In a similar fashion we
can construct �̃2 from �̃1 and so on. However, at each step
we should make sure that the matrix B̃i has full column
rank and the matrix C̃i has full row rank to proceed with
the next step. This can of course be done without loss of
generality. This chain ends if we obtain a subsystem �̃i

which is right invertible in the sense that �̃i+1 satis:es
C̃i+1 =0. Another possibility for termination is that after
some steps we get B̃i =0 which obviously implies that we
can end the chain. We know that (it can be shown easily)
if the pair (A; B) of the given system � is stabilizable,
then all the systems �̃i as de:ned in (33) are stabilizable.

We have the following result for the case of amplitude
constraints only.
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Theorem 27. Consider the plant � as given by (1) with
constraint sets S and T=Rp satisfying Assumption 1.
Let the chain of systems �̃i (i=1; : : : ; s) be as described
above. Then the semi-global constrained stabilization
problem as formulated in Problem 7 is solvable only if
the following conditions are satis9ed:

(1) (A; B) is stabilizable.
(2) The constraints are at most weakly non-minimum

phase.
(3) All the systems �̃i (i=1; : : : ; s) have at most weakly

non-minimum phase constraints.
(4) The systems �̃i (i=1; : : : ; s) with realization (33)

satisfy:

ker C̃i ⊂ ker C̃iÃi: (34)

Moreover; the global constrained stabilization prob-
lem as formulated in Problem 6 is solvable only if
the above conditions (1)–(4) and the following con-
dition are satis9ed:

(5) The constraints are of type one.

Proof. The necessity of (1) and (2) are obvious. The
condition (5) is also a direct consequence of earlier
arguments.

In order to show item (3), consider one of the sys-
tems �̃i. This system has input constraints and output con-
straints in the sense that ṽi and z̃i must both be bounded,
i.e. ṽi ∈Vi and z̃i ∈Si for some bounded sets Vi and Si.
Based on earlier theorems, the necessity of condition (3)
is then obvious.

To show the necessity of condition (4), we proceed as
follows. Consider the system �̃i whose input ṽi and output
z̃i are bounded. Assume z̃i is constrained to be in the
set Si. We will prove this implication by contradiction.
Assume that there exists a vector Px such that C̃i Px=0 but
C̃iÃi Px 
=0. For any %¿ 0, there exists a vector x̂ such that
C̃ix̂ is in the interior ofSi but C̃ix̂+%C̃iÃi Px 
∈ Si. Consider
for any scalar . the initial condition xi(0)= x̂ + .Px. It is
easily veri:ed that this initial condition is admissible. We
have:

ż1(0)= C̃iÃix̂ + C̃iB̃iû i(0) + .C̃iÃi Px: (35)

For large enough . the last term in this derivative will
dominate the :rst two. Recall in that respect that x̂(0) is
:xed and we can choose û i but it is constrained to be in a
:xed bounded set. However, if we move in the direction
C̃iÃi Px, then we will be outside the set Si very quickly
when we choose % su3ciently small combined with the
fact that

z1(0) + %C̃iÃi Px= C̃ix̂ + %C̃iÃi Px 
∈ Si :

Note that, since the complement of Si is open, the small
perturbation caused by the :rst two terms in the deriva-
tive of ż1(0) in (35) cannot avoid that we will leave Si

since they only cause a minor perturbation compared to
the dominant third term. The initial condition xi(0) is in

the interior of the admissible set of initial conditions for
the system �̃i but we cannot avoid constraint violation
with this initial condition. This yields a contradiction to
the claim that this system was semi-globally stabilizable.
Therefore such a Px for which C̃i Px=0 but C̃iÃi Px 
=0 does
not exist, and this yields the fourth condition.

Remark 28. The condition (34) immediately implies
that the order of in:nite zeros of each subsystem
�̃i; i=1; : : : s, is less than or equal to one.

The following example indicates that the conditions
given in Theorem 27 are just necessary conditions and
are not su3cient to solve the constrained stabilization
problems. Also, this example shows that the solvability
conditions for global and semi-global stabilization in the
case of non-right invertible constraints (unlike the case
of right invertible constraints) in general depend on the
particular choice of constraint sets S and T.

Example 29. Consider the following system (Kosut,
1988):

ẋ1 = x2;

ẋ2 =− a1x1 − a2x2 − b1u;

z=(uT; xT)T;

where z required to be constrained in hypercubes, and
a1 = 3575; a2 = 333; b1 = 305 555.

Note that the transfer matrix from u to z in this example
is non-right invertible. We obtain �̃1 and �̃2 as:

�̃1:




˙̃x1 =

(
0 1

−a1 −a2

)
x̃1 +

(
0 0

0 −b1

)
ṽ1;

z̃1 = x̃1;

�̃2:

{
˙̃x2 = (0 1)ṽ2;

z̃2 = x̃2:

Note that to construct �̃2 from �̃1 we have removed the
redundancy (a column equal to 0) in B̃1. This example
satis:es the necessary conditions in Theorem 27. On the
other hand, suppose we require that:

u∈ [c1; d1]; x1 ∈ [c2; d2]; x2 ∈ [c3; d3]; (36)

where 0∈ (ci; di). We have that 0 is an interior point
of the constraints set and hence we have c2¡ 0 and
c3¡ 0. Therefore, if x1(0)= c2; x2(0)= c3, we get
that x1 will leave [c2; d2], which shows that global
constrained stabilization is not possible. Moreover,
since ẋ2 is bounded, an initial condition very close
to the boundary will still violate the constraint con-
ditions and hence semi-global stabilization is not
possible either. Hence, for the given constraint sets
(36), we cannot achieve semi-global or global con-
strained stabilization. However, it is trivial to show that
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there exist other constraint sets for x (for instance el-
lipsoidal sets) such that we can achieve semi-global or
global constrained stabilization. This implies that the
solvability conditions depend on the particular choice of
the constraint sets unlike in the case of right invertible
constraints.

We pursue next the task of identifying a class of
non-right invertible constraints for which the necessary
and su3cient conditions for the solvability of the posed
stabilization problems can be formulated without involv-
ing any speci:c features of the sets S and T as long as
they satisfy Assumption 1.

To proceed we :rst consider the system �̃1 as given
in (33) for i=1. First note that using the structure from
scb, we can decompose this system as follows:
 ˙̃x

1
1

˙̃x
2
1


=


 Ã

1
1 Ã

2
1

0 Ã
3
1


( x̃11

x̃21

)
+


 B̃

1
1

B̃
2
1


 ṽ1;

z̃1 = (0 C̃
2
1)

(
x̃11

x̃21

)
;

(37)

where x̃11 represent the zero dynamics. Note the structure
of ṽ1 and z̃1 that we used in constructing �̃1:

ṽ1 = (zT11; z
T
12; z2)

T; z̃1 = z11:

Using this decomposition explicitly, we get:


 ˙̃x

1
1

˙̃x
2
1


=


 Ã

1
1 Ã

2
1

0 Ã
3
1


( x̃11

x̃21

)
+


 B̃

11
1 B̃

12
1 B̃

13
1

B̃
21
1 B̃

22
1 B̃

23
1





z11

z12

z2


 ;

z11 = (0 C̃
2
1)

(
x̃11

x̃21

)
:

We can eliminate the z11 from the state equation by sub-
stituting the output equation and we obtain the following
system:

M�1:





 ˙̃x

1
1

˙̃x
2
1


=


 Ã

1
1

MA
2
1

0 MA
3
1


( x̃11

x̃21

)
+


 MB

1
1

MB
2
1


 Mv1;

z̃1 = (0 C̃
2
1)

(
x̃11

x̃21

)
;

(38)

where MA
2
1 = Ã

2
1+B̃

11
1 C̃

2
1; MA

3
1 = Ã

3
1+B̃

21
1 C̃

2
1; MB

1
1 = (B̃

12
1 ; B̃

13
1 ),

MB
2
1 = (B̃

22
1 ; B̃

23
1 ); Mv1 = (zT12; z

T
2 )

T, and z̃1 = z11.
Note that if we impose amplitude constraints on Mv1 and

z̃1, then we can always translate these back to constraints
on the original output z provided the constraint set V
for Mv1 decomposes as V=V1 ×V2 compatible with the
decomposition of Mv1 into z12 and z2.

Theorem 30. Consider the system � given by (1) with
(A; B) stabilizable. Then the following two statements
are equivalent:

(1) Semi-global constrained stabilization is possible for
all constraint setsS andT satisfying Assumption 1.

(2) The constraints of system � are at most weakly
non-minimum phase. Moreover; if we construct M�1

of the form (38); then we have MA
3
1 = &I with &6 0

and C̃
2
1 injective.

For global constrained stabilization we can use similar
arguments to obtain the following result:

Theorem 31. Consider the system � given by (1) with
(A; B) stabilizable. Then the following two statements
are equivalent:

(1) Global constrained stabilization is possible for all
constraint sets S and T satisfying Assumption 1.

(2) The constraints of system � are at most weakly
non-minimum phase and of type one. Moreover; if
we construct M�1 of the form (38) then we have
MA
3
1 = &I with &6 0 and C̃

2
1 injective.

The proofs of Theorems 30 and 31 are omitted. In-
terested readers can :nd the proofs from Saberi et al.
(2001).

5. Conclusions

We focus here on a wide range of constrained stabi-
lization problems, where the constraints exist on both the
amplitude and rate of change of state as well as con-
trol variables in a very broad frame work. An impor-
tant aspect that emerged from our study is the taxonomy
of constraints. This taxonomy is based on the structural
properties of the mapping from the input to the constraint
output. The formulated stabilization problems in global,
semi-global, as well as regional frame work are studied at
length. Also, construction methods of appropriate stabi-
lizing controllers are developed. We would like to point
out that some of the concepts and ideas of constraint sta-
bilization which have been presented in this paper can
be extended to nonlinear systems with the proper struc-
ture such as normal form in more or less straightforward
manner.

Acknowledgements

The work of Ali Saberi and Jian Han is partially sup-
ported by the National Science Foundation under Grant
ECS-0000475.



654 A. Saberi et al. / Automatica 38 (2002) 639–654

References

Bernstein, D. S., & Michel, A. N. (Eds.). (1995). Special issue
on saturating actuators. International Journal of Robust &
Nonlinear Control 5(5), 375–540.

Blanchini, F. (1999). Set invariance in control. Automatica, 35(11),
1747–1769.

Camacho, E., & Bordons, C. (1998). Model predictive control. Berlin:
Springer.

Kosut, R. L. (1988). Adaptive robust control via transfer function
uncertainty estimation. In Proceedings of ACC (pp. 349–354).
Atlanta, GA.

Maciejowski, J. M. (2002). Predictive control with constraints.
Englewood Cli<s, NJ: Prentice-Hall.

Mayne, D. Q., Rawlings, J. B., Rao, C. V., & Scokaert, P. O. M.
(2000). Constrained model predictive control: Stability and
optimality. Automatica, 36(6), 789–814.

Saberi, A., Han, J., & Stoorvogel, A. A. (2001). Constrained
stabilization problems for linear plants. Technical Report
2001-0100, Washington State University.

Saberi, A., & Sannuti, P. (1990). Squaring down of non-strictly
proper systems. International Journal of Control, 51(3),
621–629.

Saberi, A., & Stoorvogel, A. A. (Eds.). (1999). Special issue
on control problems with constraints. International Journal of
Robust & Nonlinear Control 9(10), 583–734.

Sannuti, P., & Saberi, A. (1987). Special coordinate basis for
multivariable linear systems — :nite and in:nite zero structure,
squaring down and decoupling. International Journal of Control,
45(5), 1655–1704.

Shi, G., Saberi, A., & Stoorvogel, A. A. (2000). On lp (lp)
performance with global internal stability for linear systems with
actuators subject to amplitude and rate saturation. In American
Control Conference (pp. 730–734). Chicago, IL.

Sontag, E. D., & Sussmann, H. J. (1990). Nonlinear output feedback
design for linear systems with saturating controls. In Proceedings
of 29th CDC (pp. 3414–3416). Honolulu.

Stoorvogel, A. A., & Saberi, A. (1999). Output regulation of linear
plants with actuators subject to amplitude and rate constraints.
International Journal of Robust & Nonlinear Control, 9(10),
631–657.

van Moll, C. (1999). Stabilization of the null controllable region
of linear systems with bounded continuous feedbacks. Master’s
thesis, Eindhoven University of Technology.

Jian Han, received MSEE from Wash-
ington State University, July 2000. He is
now working in Cisco Systems.

Ali Saberi lives in Pullman, WA.

Anton A. Stoorvogel, received the M.Sc.
degree in Mathematics from Leiden Uni-
versity in 1987 and the Ph.D. degree in
Mathematics from Eindhoven University
of Technology, the Netherlands in 1990.
He has been associated with Eindhoven
University of Technology since 1987.
In 2000, he was also appointed as pro-
fessor in the Department of Information
Technology and Systems of Delft Uni-
versity of Technology and as professor
and adjunct faculty in the Department

of Electrical Engineering and Computer Science of Washington State
University. In 1991, he visited the University of Michigan. From 1991
till 1996 he was a researcher of the Royal Netherlands Academy of
Sciences. Anton Stoorvogel is the author of three books and numerous
articles.


