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The Robust Control Mixer Module Method for Control
Reconfiguration

Yang Zhenyu and Mogens Blanke
Department of Control Engineering
Aalborg University, Fredrik Bajers 7C
DK-9220, Aalborg East, Denmark
E-mail: yang,blanke@control.auc.dk

Abstract

The Control Mizer concept proposed in [8] is efficient in improving an ordinary control
system into a fault tolerant one, especially for these control systems of which the real-time
and on-line redesign of the control laws is very difficult. In order to consider the stability,
performance and robustness of the reconfigurated system simultaneously, and to deal with
a more general controller reconfiguration than the static feedback mechanism by using the
control mixer approach, the robust control mixer module method is proposed in this paper.
The form of the control mixer module extends from a static gain matrix into a LTT dynamical
system, and furthermore multiple dynamical control mixer modules can be employed in our
consideration. The H, control theory is used for the analysis and design of the robust control
mixer modules. Finally, one practical robot arm (ERA) system as benchmark is used to test
the proposed method.

1 Introduction

The critical idea of the control mizer concept firstly proposed in [8] is that the baseline (nominal)
control law is still under operation when some fault happens in the controlled system, alterna-
tively, some extra gain matrices, referred to as control mizer modules, will be inserted into the
faulty closed-loop control systems. The control mixer modules redistribute the signals in the
closed-loop systems so as to preserve the closed-loop system functionality as much as possible.

This method is directly motivated by the research of self-repairing flight control systems
[2, 8, 10, 11, 17], where the control mixer module is used to distribute the forces and moments
of the failed surfaces to the remaining healthy control surfaces. The existing digital flight
control laws are mainly designed using the classical control methods iteratively and loop-by-
loop, furthermore adjusted through extensive experimentation besides a lot of heuristic expert
knowledge [1, 15], so it is impossible (or very difficult) to redesign this kind of control laws in
an on-line and systematic way. While the control mixer method avoids the redesign problem of
the operating control law, alternatively, the reconfiguration task is to redesign the control mixer
module according to different fault conditions provided by the FDI mechanism.

The control mixer method can be implemented as off-line (pre-storing a set of modules for
anticipated faults) or on-line (depending on real-time FDI mechanism) forms [2]. With respect

to the possible unanticipated faults, in this paper we consider the on-line control mixer module



design problem®. The on-line control mixer module method is a restructurable control approach
(2, 7, 15].

Within all related previous work [2, 8, 10, 11, 17|, the control mixer modules are designed
as a matrix (gain) form based on the Pseudo-Inverse techniques [6]. The designed control mixer
matrix (gain) minimizes the Frobenius-norm between the original and reconfigured actuator
matrices [2] or closed-loop system transition matrices [4]. But the stability of the reconfigured
system can not be guaranteed by this design approach. Gao and P.J. Antsaklis proposed a
Modified Pseudo-Inverse Method in [4] with respect to the stability constraint, it can be extended
to deal with the control mixer design with the state feedback information [18], but their method
loses the optimal sense for the general MIMO control systems. Furthermore, the Pseudo-Inverse
based techniques require that the nominal and faulty control input matrices (for actuator faults)
or system matrices (for general faults) must be known perfectly, if there is some false information
in the FDI provided information, the reconfigurated controller designed by this approach maybe
lead to a disaster consequence in the system. So the robustness of control mixer should be
guaranteed not only to the ordinary exogenous disturbance and uncertainties, but also to the
uncertainty of fault information provided by FDI systems. From the system configuration point
of view, the Pseudo-Inverse based approaches are only suitable for the closed-loop control systems
with static feedback mechanism, they are not suitable for the closed-loop control systems where
the baseline (nominal) controller is a dynamical system form.

In order to overcome above mentioned drawbacks of Pseudo-Inverse based approaches for the
control mixer module design, a novel design approach, called the robust control mizer module
method, is proposed in this paper. Comparing with previous Pseudo-Inverse based methods,

here

e The form of the control mixer module extends from a static matrix form into a linear

time-invariant dynamical system;

e Instead of using a single gain matrix, multiple dynamical compensating filter modules can

be employed in our consideration;

e Matching the closed-loop transfer function matrices of the nominal system and reconfigu-

rated faulty system in the H,,-norm sense.

The Hy, optimization theory [3, 5, 9, 13, 14] is used for the robust control mixer module de-
sign after augmenting the optimal control mixer design problem into a standard robust control
problem.

The robust control mixer method has more design flexibility and extensive applicable range
comparing with the Pseudo-Inverse based methods, and furthmore, multiple objectives, such as
stability, performance and robustness of the reconfigurated control systems, can be considered
simultaneously and systematically in the design procedure. The rest of the paper is organized
as: section 2 formulates the robust control mixer design problem; Section 3 outlines the usage of

the Hyo control theory to design or cooperatively design the dynamical control mixer modules,

!"Which can also be used directly for the off-line design.



and some sufficient conditions for the existence of the optimal modules are obtained; In section
4 one subsystem of the European Robot Arm (ERA) system [12] as the benchmark is employed
to test the proposed method; Finally, section 5 is the conclusions.

2 Problem Formulation

In the following, we restrict our discussion to a class of continuous time LTI control systems,
and the faults considered are abrupt actuator, sensor and component faults.
Consider a class of continuous time LTI control systems with plant input disturbances, where

the plant P, and controller C,, have the following nominal state space forms:

[ () = Apzy(t) + By(w(t) +ult), t>to
P { y(t) = Gy () + Dy(w(t) + u(t)). @

o - Ze(t) = Acxe(t) + Beue(t), t >t @)

") ye(t) = Ceze(t) + Deue(t),
where z, € R™ (z, € R") is the plant (controller) state vector, u € R™» (u, € R™) is the
plant control (controller input) vector, y € R™ (y. € R™) is the plant (controller) output vector,

w = [w! Wl Wl

€ RMitnsTMo ig the stack of plant external signals, which includes the reference
input w; € R™, process noise input ws; € R™, and measurement noise input w, € R™. Assume
lw||leo < 12. The plant and controller connect with each other into a closed-loop system through
the relationship:

u(t) = —ye(t), and uc(t) = y(?). 3)

Equations (1),(2) and (3) define the nominal closed-loop control system in the following analysis.

When a fault occurs, the plant P, changes abruptly to the following state space form:

y(t) = Crap(t) + Dy(w(t) + u(t)),

Equations (4),(2) and (3) define the faulty closed-loop control system.

Py {a’cf<t>=Afxf<t>+Bf( w(t) +u(t), t>t; >t ”

The class of faults to be considered is defined by the following relationships between the

nominal and faulty system matrices of the plant:

Af :Ap—I—AA, Bf :Bp‘l‘AB, (5)
Cf:Cp+AC, Df:Dp+AD,

The FDI system should supply the faulty system matrices Ay, By, Cy and Dy, in addition to
the estimated fault occurring time ;.

Consider the general closed-loop configuration of Fig. 1, in the nominal case all the dashed
boxes (control mixer modules) are identity matrices. P (Py) denotes the transfer function
matrix of the nominal (faulty) controlled plant, and G denotes the transfer function matrix of

the nominal controller. Let the nominal closed-loop transfer function matrix from w(t) to y(t)

2For the general case, proper weighting function can be selected to make this assumption satisfied.
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Figure 1: The General Control System Structure with Possible Control Mixer Modules

be denoted as F, and let F(K) be the closed-loop transfer function matrix for the case a fault
has occurred and a number of the compensating systems (robust control mixer modules) are
used, which are linear, time-invariant and different from the identity matrix case. Then the

robust control mixer module (RCMM) design problem is defined as:

1. Select a subset of the compensating systems K; (i = 1,---,5) from Fig. 1, which can be
different from the identity matrix, denote the selected subset by K = {K;};

2. Design the compensating system K; in 1. by solving the optimization problem
min [[(F = F; (K))Wllo (6)

under the condition that the reconfigurated closed-loop control system is internal stable, where
W is a weighting function.

It is obvious that the RCMM design problem is a two-degree-of-freedom design problem,
i.e., selection of control mixer modules and design of each selected module, the two sub- design
problems influence each other, so that which should be cooperatively designed and synthesized

in an integrated way.

3 Design of the Robust Control Mixer Modules

The RCMM design problem not only relates to the concrete forms of the nominal plant, faulty
plant and controller systems, but also relates to the whole network structure of the closed loop
systems. In the following analysis, we assume the considered system has the general control sys-
tem structure as shown in Fig.1. Firstly, we consider the individual design of the compensating
filters K1 and K4, after that, the necessarity for the cooperative design by the H, control design
approach for K1 and K4 is explored.

3.1 Design of Compensator X,

According to the robust control mixer design problem formulation, the design problem of using
compensator K simplifies to
min | (7 = (K1) W] (7

4
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Figure 2: The Formulation of Designing K;

under the condition that the reconfigurated closed-loop system is stable. This problem can
be directly regarded as a model-matching problem [3] as shown in Fig. 2, where F;(K;) =
Fr(s)Ki(s).

Under the assumption that the weighting function W is absorbed into F and F;, and the
nominal closed-loop system F is stable and detectable, then it follows directly from ([3], Chapt
6):

Lemma 1: The optimal control mixer module K exists if the faulty closed-loop system is
still stable, i.e., 7y € RH, and has no zeros and poles on the imaginary axis.

Considering that the fault information provided by FDI system has a state space forms
(5), so here we also use the system state space form for further exploration of the K; design.
Assume that the weighting function has been added in the plant and controller modules, and
denote the nominal closed-loop control system as state space form [Ap¢, Bpe, Cpe, Dpc|, and the
faulty closed-loop system as [Ay., By, Cfc, Dsc]. With respect to the requirement (7), combine
the nominal closed-loop system with the reconfigurated closed-loop system into an augmented
system as shown in Fig. 2, then we can augment the optimal K; design problem (7) into a

standard Hy, control problem as shown in Fig. 3. According to the Hy, theory [5], we have

————————————————————————————

74'[Ap61 BpCa pr Dpc —+

L i =h|AfC7BfC’CfcanC ) i

____________________________

Figure 3: The Augmented Reconfigurated System with X (K1)

Lemma 2: Under the assumption that the nominal closed-loop control system [Ap., By,
Che, Dp] is stable and detectable, the solution K for the Hy, optimization problem (Fig. 3) exists
if

e A, of the nominal closed-loop system has no eigenvalues on the imaginary axis;

o Ay of the faulty closed-loop system is stable and has no eigenvalues on the imaginary



axis; and
e Dy, of the faulty closed-loop system is full column rank.

Theorem 1: When the nominal and faulty closed-loop systems of the optimal K; design
problem (7) satisfy the conditions proposed in Lemma 2, the solution K of the Hy, optimization
problem (Fig. 3) is also a solution of the optimal K; design problem (7).

Note 1: The conditions in Lemma 1 and 2 are only sufficient. Once the faulty closed-loop
system is unstable, there is still possible that a controller to stabilize the faulty system and make
(7) satisfied.

3.2 Design of Compensator K,

Consider that there is only K4 is selected from Fig. 1, then the system configuration of Fig. 1

l Ky g T (v)
w U_Uf P,

Y

simplifies to Fig. 4.

Figure 4: The structure of reconfigurated closed-loop system using K4

The design problem of using compensator X4 reduces to solve the optimal problem:
min (= F(C0)) Wloo, 0

under the condition that the reconfigurated closed-loop system is internal stable.

On the basis of requirement (8), we construct an augmented control system as shown in
Fig. 5. Once we regard the parts included in the dash-box in Fig. 5 as a controlled plant with
input vectors w and u, and output vectors z; and zo, then the design of controller K of this
augmented control system becomes a standard H,, optimal design problem, then we have

Lemma 3: The augmented control system (Fig. 5) can be stabilized by a real rational and
proper controller K if and only if K can stabilize the GP;y.

———————————————————————————————

Figure 5: The Augmented Control System with Controller X (KX4)



Proof: The plant outputs of the augmented control system are z; and 2o, where:
21 =y—y;=Fw—Prlw—u), 22=Gyr=GP(w—u).
So the plant of the augmented control system can be expressed as a transfer function matrix
21 _ F — Pf Pf W 2 gn 912 w (9)
29 GP;y —GPy U Ga1 G2 u |
Then according to the Hy, theory [3], the controller K can stabilize the plant if and only if

K can stabilize Goy = GP;.
Lemma 4: The optimal solution X for the augmented Ho, optimization problem exists if

form

GPy is stabilizable and Py Ms and N has no zeros and poles on the imaginary axis. Specially for
the SISO systems, the condition is that the PfMoNy (PyNoMs) has no zeros and poles on the
imaginary axis. Where My, Ny, Mo, N are the components of doubly-coprime factorization
of ng.

Proof: According to the Hy, theory [3], bring a doubly-coprime factorization of Gao as

Goos=GP; = NoMy ' = M, N, and

72 _?2 M2 Y'2 =7
—Ny M, Ny Xo |
where the eight matrices My, No, Xo,Ys, Mo, No, Xo,Y 5 are all belong to RH .

Then the controller K stabilizing the augmented plant (9) can be parameterized as
K=(2—MQ)(Xo— N2Q) ' = (X2 — QN,) (Y2 — QM) (10)
where Q € RH . Define

Ti = Gi1 + G1oM3Y 9Goy = F — Py + PrMoY oGPy
T2 = G12Ma = Py M; B (11)
T3 = M2Go1 = MaGP; = Ny

According to [3], once the transfer functions Py, G and F are all real-rational and proper,
there is 7; € RH o, @ = 1,2,3, and the transfer function matrix 7,,, of the closed -loop system
from w to z; equals 71 — 72Q73. Then the Hy optimization problem of the augmented control
system

min [| 7oz, oo (12)

under the condition that the closed-loop system is internal stable, transfers into a model-
matching problem

Jin (|7 = ToQT5) e (13)

With respect to the Theorem in Chapt 6 [3] (pp.62), the optimal solution for the model-
following problem (13) exists if the ranks of 72(jw)= — PrMa(jw) and T3(jw)=Ns(jw) are
constant for all 0 < w < 0.



When PyM, and N5 has no zeros and poles on the imaginary axis, and with respect to
Lemma 3, we know the optimal solution K exists for the Hy, optimization problem (12).
Specially, when the considered system is an SISO system, then the functions 75 and 73 can

be combined together, i.e.,

T2Ts = g12M2M2£’E = —P;MyMG, Py
—PrMoMyNo My Y, or —P;NoMy, or

_{ —P; My Mo M, ' N, ~ | —P;MyN,.

So the optimal solution K for the augmented He, problem exists of if PfMaNy (PyN2Mo) has

no zeros and poles on the imaginary axis besides GP; is stabilizable.

Similarly as the discussion of the compensator Ky design, we also further explore the op-
timal K design problem in the state space form. Denote the faulty plant as a state space
form [Af, By, Cy, Dy], the nominal closed-loop system as [A,¢, Bpc, Cpe, Dp), and the nominal
controller as [A., B., C¢, D.], then according to the Hy, theory [5], under assumption that the
weighting function W has been absorbed into F and Py, we have

Lemma 5: The optimal solution K for the Hy, optimization problem (12) exists, if

o The systems (Af, By) and (A, B.Dy) are stabilizable;
e Dy is full column rank, and DDy is full row rank; and

Ap —jw —By

e A,. and A, have no eigenvalues on the imaginary axis, and c D
—Lf f

] is full
A; —jw —By

“D.C; D.D; ‘| is full row rank.

column rank; [

Proof: The controlled plant for the Hy, problem (12) has the state space form

A 0 0 B, 0
A B B 0 A 0 By — By
C. Dy Do |2 0 B.C; A B.D; —B.D;
Cy Doy Do Cpe —Cf 0 Dype — Dy Dy

0 D.C; C, D.D; —D.D;

Similarly as the proof for Lemma 2, we can check all conditions proposed in Lemma 5 make

the four preconditions in [5] satisfied.

Theorem 2: When the nominal closed-loop system, nominal controller and faulty plant of
the optimal Ky design problem (8) satisfy the conditions proposed in Lemma 4 or 5, the solution
K of the Hy, optimization problem (12) is also a solution of the optimal K4 design problem (8).

Proof: With respect to the definition of Hy, optimization problem, the proper and real-

rational optimal controller K of the problem (12) satisfies:



1. making the transfer function matrix of system Fig. 5 from w to z; satisfies
in | Tz oo = min || F — (T + PrKG) ™ Py

2. making the closed-loop system internal stable, i.e., the nine transfer function matrices of

system Fig. 5 from w, v; and 5 to 21, 22 and u are all stable, where

Tom = F = (I +PKG) "' Py, Tay = (I +GPK)~'GPy, Tow = (I +KGPf)~,

77/1Z1 = (I +Pf}Cg)_1Pfa 77/1Z2 = _(I+ ngIC)_lnga 7-1/1u = (I‘I' }Cgpf)_la

77/221 = _(I + Pflcg)_lpf}ca 77/222 = _(I + ngIC)_lng’Ca 77/2u = (I+ }Cgpf)_llc
(14)

While the optimal compensator K design problem requires (8) and the following four transfer

function matrices are stable (as shown in Fig. 4), i.e,

Toy = (I +PsKsG)~ Py, Ty = (I +KaGPp)7H,

15
Th = —(I+ PiKaG) PG, T, = —(I +KiGPy) 1KaG (15)

The following relationships can be noted from (14) and (15) if we take K = Ky:
7:113/ E7-’/12417 7Zlujc = 77/11“ (16)

7_1jly = 7-1;2Z1g5 77}11,}: = _7;/2ug

When we assume the transfer function matrix G of the nominal controller is stable, then
it is obvious that if the optimal solution for Hy, optimization problem (12) which satisfies the
conditions in Lemma 4 or 5 exists, it is also a solution of the optimal compensator X4 design
problem (8).

Ezample: Consider a plant has the LTI form [16]:

. 0.15 —2.45 0
Tp=ApTp ¥t Byty = | g g5 g9 [Tt g |

(17)
y=Cpp + Dyup = [ —0.35 0.55 | 2 +0.01uy,
A control law for output tracking is given as [18]:
.. _ | 0.3597 —1.0039 0.0829 )
Fe=Acte + Botie = [0.4605 —0.5279 ] Te [ 0.113 ]“ s

Ye=Cote + Doug = [ —0.5925 0.959 ]$c+0.01uc,

The plant and controller connect through u.(t) = y(t) and uy(t) = w(t) — y.(t), where w(t)
is the reference signal. The system parameters By, Cy, Dy of the faulty plant are expressed
as: By = FgB,, C; = FcCy, Dy = FpDy. It should be noted that the Pseudo-Inverse based
approaches for the control mizer design are unsuitable for this system.

When multiple faults happen simultaneously in the plant system, denoted as Fp = 0.1, Fo =
0.5 and Fp = 1.2, and we add £5% FDI estimator errors, i.e., assume the FDI estimated
parameters are

Fp=0.105, Fg=0.52, and Fp=1.18. (19)



The simulation results of using control mizer modules K1 and K4 individually is shown in Fig. 6
and Fig. 7 respectively. The fault happens at t; = 45msec. and control mizer is switched into

operation at t. = 63msec.

o.1
o.os
o.oe
o.0a
o.02

o000 1200 1400 1600

o

Qutput Response

—o0.02

—0.04a

—o0.06

—o.o8

o 200 ao0 600 800 EX
Time ( x0.1 msec.)

(Boldface line: reference signal; Thin line: output response)

Figure 6: The Control Reconfiguration Using RCMM K,

This fault (19) makes the faulty closed-loop system lose the tracking ability (during [45, 63]),
while the robust control mizer method makes the reconfigurated closed-loop system recover the
tracking ability partially. For this specific fault case, it can be seen that K1 plays a better function
than K4, since the Hy, norm of the transfer function from w to z of the closed-loop augmented

control system corresponding to the usage of K1 is smaller than that of the usage of K4, i.e.,
(1752 llo0 = 0.7335) < (|72 lloo = 3.3239).

Up till now, we just discussed the independent design of each separate control mixer module,
in the following we will explore the necessity of cooperation design of multiple robust control

mixer modules.

3.3 Cooperative Design

As the RCMM design problem formulation, more than one control mixer modules K; (i =
1,2,---,5) can be employed simultaneously for the control reconfiguration if it’s necessary to
improve the reconfiguration quality. So the functional redundancy of possible control mixer
modules should be explored before doing the cooperative design. The redundancy of the control

i et S R R

Qutput Response
S

o 200 ao0 600 800 1000 1200 1400 1600
Time ( xO.1 msec.)

(Boldface line: reference signal; Thin line: output response)

Figure 7: The Control Reconfiguration Using RCMM K4
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Figure 8: The Augmented Reconfigurated System with Xy and K4

mixer modules reflects that the functions of control mixer modules at some specific locations in
the closed loop system can be substituted completely by the functions of proper control mixer
modules at other locations. From the system structure shown in Fig.1, it can be seen that in
the local component level, the control mixers in different locations have different functions, but
in the global system level, some positions are redundant in the functional point of view. By
utilizing the equivalent relationship of transfer function (matrices) approach, we can get:

Lemma 6: For the specific systems with different numbers of inputs and outputs, there are

e For the SISO system, the transfer function from w to y with minimum number of robust
control mixer modules can be expressed as: Fgis50 = (I + I@ngg)_lelACl, where the K
and Ks is the module combination as: (1,2), (1,4), (1,5), (2,3), (2,4), (2,5), (3,4), or (3,5).

e For the SIMO system, the transfer matrix from w to y with minimum number of robust

control mixer modules can be expressed as: Fgimo = (I + Knggng,)_lngPflCl;

e For the MISO system, the transfer matrix from w to y with minimum number of robust

control mixer modules can be expressed as: Fiso = (I + ’PfIC4g)_1’PfIC1;

e For the MIMO system, the transfer matrix from w to y¥ with minimum number of robust
control mixer modules can be expressed as: Frimo = (I + K3PK1GK5)1K3PK;.

It can be noted that the number of selected control mixer modules for the cooperative design
is no larger than the numbers specified by Lemma 6. In the following we explore the benefit of
designing multiple compensating filters K1 and K4 as shown in Fig. 1.

The cooperative design problem of X; and K4 is formulated as to determine compensators
K1 and K4, such that

jin |77 = Fy (K, Ka)lloo (20)

under the condition that the reconfigurated closed-loop system is internal stable.

Theorem 3: The cooperative design of K1 and K4 is necessary when GP; is stabilizable and
N7 has zero(s) or pole(s) on the imaginary axis. Specially for the SISO systems, the condition
is that the PfMyNy (PrN2 M) has zero(s) or pole(s) on the imaginary axis. Where My, Na,
My, N, are the components of doubly-coprime factorization of GP;.

11
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Figure 9: The Basic Structure of one joint of ERA

Proof: When the modules £; and X4 are both employed in the reconfigurated system,
similarly as the discussion for the individual K4 design case, we can construct an augmented
system as shown in Fig. 8. The plant of this augmented control system is expressed as a transfer

function matrix form:
21 _ (f - Pf)’Cl Pf w 2 gil 912 w (21)
22 GPfK1  GPy u Gy G2 u |
where the elements G192 and Gog are the same as those in (9).
Like the proof for lemma 4, once GP; is stabilizable, i.e., the controller K4 to stabilize the

augmented plant exists, then the Hy, design problem based on (21) is reduced into a model-

matching problem as (13), where

T! = Gy + G1aMaY 2Gh, = (F — Py)K1 + Pr MY 2GPrKy
T2 = G12My = Py My (22)
3 = M2Gh = NoKy

Here the matrix 73 of (22) is different from that in (11) as: 73 = 73K;. The function of K5 is to
keep the rank of matrix 73 (jw) constant for all 0 < w < oo, i.e., when Ny has zero(s) or pole(s)
on the imaginary axis, a proper design of compensator K; is necessary to cancel this (these)
unexpected zero(s) or pole(s).
Specially, when the considered system is an SISO system, then 73 and 73 can be combined
together as
7'273 = PfMQNQICl = PfNQMQ}Cl, (23)

When PfMQWQ or PfNQMQ has zero(s) or pole(s) on the imaginary axis, then we can design
the compensator K; to cancel these zero(s) or pole(s) through the cross canceling of the poles
and zeros, so that the rank of PfMQNQ}Cl(j(U) (PfNQMQ}Cl (jw)) is constant for all 0 < w < oo.

4 A Benchmark Study

In this section, the European Robot Arm (ERA) monitoring system [12] is utilized as a practical
benchmark to test the robust control mixer module method for control reconfiguration. Here we
consider the linear model of one joint of ERA system. A schematic representation of the joint
of ERA is shown as:

The system parameters and values are:

12



Symbol Notes Symbol Notes

N = —260.6 gear-box ratio I, = 0.0011 inertia of the input axis
Q joint angle of the internal axis I, = 400 inertia of the output axis
T;f f effective joint input torque € joint angle of output axis
K; =0.6 motor torque constant Tc motor current

8=04 the damping coefficient ¢ = 130000  spring constant

Tes deformation torque of the gear-box T, motor torque

The equations of motion of the robot arm joint with spring damping are as follows:
NIy + Lion(Q + &) + B(Q + &) = T3/ (24)

Ison(Q + 6) + IB(Q + 6) = _Tdef (25)

The actuator model of the motor plus the gear-box is:

T = NTw, T = Kiie, (26)

and the deformation torque Ty, is described as:

Tyef = ce. (27)
Denote z,=[(2, Q, e, )T, yp= JK\ZK—; ¢ , and u, = i, as the input, the state space model of
this system is:
0 1 0 0 0
dy=Apty + Byuy = g g W (:: Tp + W NKyi.  (28)
0 _Ifm —(&7, + o) _Ifm _ﬁ

Substitute the values of each parameters into (28), the matrices of the system are:

0 1 0 0 0

0 0 1740.2 0 = —2.0931
Ap = 0 0 0 1 » By = 0 ’

0 0.001 —-2065.2 0.001 2.0931

and
1 0 10]

O = l 0 —260.6 0 0

In this actual system, the controllable variable is the motor current ¢., and the measurable
signals of the system are the encoder output ® = Q + € and the tachometer output N Q.

In [18] an LQG controller for the tracking problem is designed as shown in Fig.10 in order to
test our presented reconfiguration method. The extended plant system model can be described
by

{a'cp(t) = App(1) +Bp<up(<t) + (1)) (29)
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Figure 10: Modified Model of Robot Arm System with LQG Controller

where B, = Bplar as], and uy(t) = [up(t) upa(t)]?, process noise v(t) = [vi(t) vo(t)]T and
measured noise w,(t) = [w1(t) we(?)]T, D, is a small diagonal matrix in order to solve the Hy,
0.01 0
0 0.01
output (MIMO) system. The designed LQG controller can also be expressed as an LTI system

design, here we assign D, = . The modified plant system is a two-input-two-

with the state space form:

io = (A + K.Cp)ac+ [ (B, +KeDy) —K. | l up ]

Yp (30)

Ye = Keiwe + Dc'ufp

Where a1 = as = 0.5, the series and compensator matrices K. and K 9, and the filter matrix
K, are:
P l —707.1068 —205.4797 205.7443 —18.8559 ]
¢t 7 | —707.1068 —205.4797 205.7443 —18.8559 |’

—0.0038 0.0038
—1707.1068 O] K — —0.0000 1.4800
—707.1068 0 |’ ~¢ | —0.0000 —0.0000
—0.0000 —1.4800

KCQZ[

Where D, is a small diagonal matrix in order to keep the solubility of the H,, design problem,
001 0
0 0.01

required to track the reference signals:

here we assign D, = . The nominal extended closed-loop control ERA system is

Qap(t) = 0.255in(0.8t),
Qeap(t) = 0.2c0s(0.81),

The input noise is v(t) = 0.00101 (¢) and output noise is wy(t) = 0.001d5(t), where d1 (t) and d2(t)
are uncorrelated continuous time white noises with uniform covariance. The system faults are
regarded by a derivation of the nominal parameter values, such as the gear-box ratio becomes
Ny = F,,N and the motor torque constant becomes K;; = F};K;, where the parameters F;, € R
and Fj; € R represent the fault levels of corresponding system parameters.

(a) System fault Case: When we consider the multiple-simultaneous fault case that F,, = 0.5

and Fj; = 1.2, the simulation results of using control mixer modules Xy and K4 individually are
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Figure 11: Fault Case (a) with RCMM K; Reconfiguration
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(Boldface line: reference signal; Thin line: output response)

Figure 12: Fault Case (a) with RCMM K4 Reconfiguration

shown in Fig. 11 and Fig. 12 respectively. Under this case, the robust control mixer modules
are 16th order LTI systems. The fault happens at ¢ = 3msec., and the control mixer module is
switched into operation at ¢ = 15.7msec. The H,, norm of the transfer matrix from w to z of the
augmented control system corresponding to the usage of K is || 751 ||oo = 5.1261 x 10*, which of
the usage of K4 is ||7.54||co = 93097 x 105. But from the simulation it is noted that the system
using K4 has better tracking ability recovery comparing with the K; case. If the matrix-form
control mixer module method is used for this fault case, from the simulation result in Fig. 13,
it is obvious that the reconfiguration performance of the robust control mixer modules is much

better than that of the static (matrix) control mixer module.

OuiputResponse

—1s
() 50 100 150 200 250 300 350 200 aso
Time ( x0.1 msec.)

(Boldface line: reference signal; Thin line: output response)

Figure 13: Fault Case (a) with Static Control Mixer Reconfiguration
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(Boldface line: reference signal; Thin line: output response)

Figure 14: Fault Case (b) with Static Control Mixer Reconfiguration Designed by (?7?)

Output Response
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Time ( x0.1 msec.)

(Boldface line: reference signal; Thin line: output response)

Figure 15: Fault Case (b) with RCMM K; Reconfiguration

(b) Actuator Fault Case: When we consider about the actuator fault case - Fj; = 0.12. The
control reconfiguration simulation using matrix-form control mixer method with K, = 8.333, is
shown in the Fig. 14. This control mixer recovers the faulty system performance completely,
since the ERA system is actually a SIMO system. The simulation using robust control mixer
K1 is shown in the Fig. 15, this control mixer just keeps the faulty system stable, there is a little
performance recovery. The simulation using robust control mixer 4 is shown in the Fig.16, this
control mixer not only keeps the faulty system stable, but also has a good performance recovery.

From the simulations, it can be noticed that the static (matrix) control mixer method and
robust control mixer method have distinct characters. In general, the latter has more extensive
applicable range and design flexibility than the former, but the complexity of reconfigurated

Qutput Response

20 ao 60 =Y 140 160 180 200

) 160 iz
Time (<0.1 msec.)
(Boldface line: reference signal; Thin line: output response)

Fig.16 Fault Case (b) with RCMM K, Reconfiguration

16



system using the robust method is much high than that of using static method.

5 Conclusions

In order to meet the simultaneous consideration of stability, performance and robustness, and
deal with more general control configurations by using the control mixer concept, the robust
control mixer module method is proposed in this paper. The robust control mixer module design
problem consists of selection of control mixer modules and design of each selected control mixer
module. The H, control technique is used for the robust control mixer module design after
augmenting the optimal design problem into a standard robust design problem. Employed one
practical robot system as one benchmark system to test our methods, the simulation results
show that the robust control mixer method has more extensive applicable range and design
flexibility than the (Pseudo-Inverse design based) static methods.

From the analysis of theorem 1 and 2, it can be noted that the Hy, control design provides
the conservative solutions for the robust control mixer problem, the design method for a less
conservative solution for this problem is still open. Moreover, the ERA case study shows that
the performance recovery measurement (3.6) is not enough for the quantitative evaluation of

control reconfiguration, improvement of this method is one of our future work.
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