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Abstract

This paper reports the experimental system identifica-
tion of the Jet Propulsion Laboratory MEMS vibra-
tional rate gyroscope. A high-order two-input/two-
output transfer function for the microgyroscope is iden-
tified and mapped to a three-mode rigid plate model
that reveals the orientation of important vibrational
modes.

1 Introduction

A new generation of microelectromechanical (MEMS)
gyroscopes is being developed at the Jet Propulsion
Laboratory for spacecraft applications such as attitude
stabilization, maneuver control, and tumble recovery.
The advantages of these microsensors over conventional
inertial navigation instruments include: 1) compact
size and weight savings, 2) low power consumption, and
3) a low cost micromachining process.

For microsensors to realize the performance levels of
which they are capable, innovative methods are re-
quired for device calibration and active control of sen-
sor dynamics. This paper presents a method for iden-
tification of a physical model of a microgyro from in-
put/output data. The physical model, as opposed to
an input/output model, reveals the orientation of the
two rocking mode axes and distinguishes the rocking
modes from the plunging mode of the gyro. Because
the microgyros are based on the coriolis-induced cou-
pling between the rocking modes, knowledge of the
rocking mode axes’ orientations are essential for im-
plementation of control loops and calibration methods
that compensate for the devices’ sensitivity to operat-
ing conditions.

The approach here first uses a fast recursive least-
squares algorithm to identify a MIMO transfer function
from input/output data. Next, because the coefficients
in the identified transfer function are related to the
physical parameters in a nonlinear way, we develop an
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algorithm to extract from the identified transfer func-
tion a rigid plate model that captures the three domi-
nant mechanical modes of the gyro.

The identification results demonstrate that the nodal
axes of the rocking modes do not necessarily coincide
with the symmetry axes of the gyro’s sensing and drive
components. The axes’ orientations are verified inde-
pendently with measurements from a laser vibrometer,
which is not available in microgyro applications.

2 JPL Microgyroscope Operating Principles

The Jet Propulsion Laboratory microgyroscope is a vi-
brational rate sensor whose operation depends on the
coupling of energy in one degree of freedom to another
degree of freedom within the sensor. Excitation of the
microgyro dynamics is achieved by applying a poten-
tial to the two drive electrodes, denoted Dy and D-,
in Figure 1. The drive electrodes and sense electrodes
(denoted S; and S»), are suspended by silicon springs
above matching electrodes on the base plate. The large
post is rigidly attached to the center of the “cloverleaf”
formed by Dy, D, S; and S;. The post adds iner-
tia to the system which boosts the sensitivity to ro-
tational motion. The electrical potential between the
drive electrodes and their respective base plate elec-
trodes creates an electrostatic force that, ideally, rocks
the cloverleaf assembly about the y-axis. The ampli-
tude of the rocking motion can be maximized by driving
the electrodes at the natural frequency of this degree
of freedom, known as the drive mode. If the device is
rotated about the z-axis, then the rocking about y is
coupled into rocking about the z-axis via coriolis accel-
eration in the z-y frame fixed to the gyro. The rocking
about the z-axis is referred to as the sense mode and
the z-axis response is related to the angular rate of ro-
tation about z. Further information on the operating
principles of the microgyro, fabrication details and pre-
liminary performance results may be found in Tang et
al. [4,5,6].



Figure 1: JPL microgyro with sense and actuator elec-
trodes labeled (picture courtesy of T. Tang).

3 Identification of Input/Output Models

3.1 ARX Models

The objective of the identification is to accurately
model the dynamic response of the gyroscope as repre-
sented by the two-input/two-output transfer function
from drives Dy and D> to sensors S; and Sy. This
transfer function is assumed to have the form of the
linear ARX (Auto-Regressive with eXogenous input)
model

A(z)y = B(2)u, (1)

where A(z) and B(z) are matrix polynomials in which
the coefficients are 2 x 2 matrices, and y and u represent
the 2 x 1 measured output sequences and applied input
sequences, respectively.

Details of the ARX model identification with an adap-
tive lattice multichannel lattice filter are presented
in [3]. In this paper we describe the choice of test
inputs, model order selection, and frequency domain
weighting of the prediction error for identification of
accurate models. This paper also demonstrates that
MIMO experiments and identification must be em-
ployed to determine the two very closely spaced rocking
modes in the microgyro.

Figure 2 displays the magnitude of the frequency re-
sponses of the 40th-order two-input /two-output identi-
fied model (the dashed plots are explained in Section 4).
The transfer functions reveal two modes less than 2
Hz apart near 535 Hz. These modes are the rocking
modes of the microgyro. Extracting the modal frequen-
cies from the identified model yields rocking modes at
534.5 Hz and 536.4 Hz. The third prominent mode
is the plunging mode, the “axial” degree of freedom
in the sensor, and is located at 590.3 Hz. The modal
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Figure 2: Comparison of 40th-order model (solid) and
three degree of freedom rigid plate model
(dash).

frequencies determined from the identified model have
also been confirmed with a dynamic signal analyzer.

The two rocking modes and plunging mode dominate
the frequency response of the gyro so it is useful to
consider a six-state approximation of the 40th-order
model. The six-state approximation is obtained from
the truncation of the balanced state-space realization of
the 40th-order model. Balanced realizations and model
reduction are discussed in Green and Limebeer [1] and
Zhou et al. [7]. The eight largest Hankel singular values
of the 40th-order model are

[15.2 152 6.75 6.75 3.49 3.48 0.0652 0.0651].

Truncating the system to the first six states of the bal-
anced realization results in very small approximation
error as is evident from these Hankel singular values.
The eigenvalues of this six-state system are three sets of
complex conjugate pairs forming a three-mode system
approximating the rocking modes and plunging mode
of the gyro dynamics.

The transfer function representation for the six-state
model is

i = [31r S/

_ 1 s 6.067 —0.9687 + 7063  —397.6

Ty —21.06  3.649 —54670 5861

+l s —-5.423 —-19.02 " —5408 —50450 2)
d> —1.233 —4.559 =727.3 —9474

1 (S [21.31 21.34] [64680 —64740])

T \Pl23.00 2313 T 69500 69570

~—

The polynomials dy, dy and d3 are the two rock-
ing modes and plunging mode dynamics, respectively,



where d;(s) = s? + 2¢w; + w?, and

G =3.167x 1074 w; =534.5%27
(first rocking mode)

(o =1.586 x 107*, ws =536.4%2m
(second rocking mode)

(3 =11.70 x 107", w3 =590.3 %27
(plunging mode).

The sense channels in (2) are written S; to remind
us that this truncated model still contains the effects
of the anti-aliasing filter dynamics. Without the ad-
ditional phase lag introduced by the filter one would
expect (2) to contain only s terms in the numerator
since velocity measurements are used in the gyro. The
anti-aliasing filter, however, changes the phase of the
electrode measurements and this effect must be re-
moved since Section 4 requires models based only on
the gyro dynamics. This is accomplished by approxi-
mating each modal contribution in the transfer func-
tion (2), on a channel-by-channel basis, with a transfer
function based on velocity measurements and explicitly
including the anti-aliasing filter G,a. For example, the
first rocking mode transfer function excluding the anti-
aliasing filter for the S;/D; channel is approximated
as ﬂlll S/d1 (S) where ﬂlll is determined from

6.067s + 7063 Bs

4 (s) =7 ®

Bi11 = argrrbin H

‘oo<’4>

where || || is the Hoo norm. The objective function is
convex in 3 and so a simple bisection routine is used to
compute (4). This approximation yields the following
transfer function relating the drive inputs to the sense
measurements without the anti-aliasing filter dynamics

w0 =[50, 5]

__ 8 {5111 5121}4_ S [5112 5122]
B212  Ba222 (5)

Cdi(s) |Be11 Pomu da(s)
S {5113 5123]
ds(s) 5213 5223
where

(B Biza] [ 6.240 —0.8787
_5211 ﬁzzl_ o |—26.52  4.014
[Biia Braz]  [—5.425 —24.10
8212 B22| | 1.153  —5.355
Bz Bies]  [27.49 27.53
G213 Pa23]  [29.70 29.74]°

A comparison of (5) with the 40th-order model is de-
ferred until the next section.

4 Mapping I/0 Models to Physical Models

Most system identification methods, including the
lattice-filter-based algorithms that we use in Section 3,
estimate input/output models. In applications of feed-
back control, the controller design commonly is based
on an identified input/output model or a state-space re-
alization of an identified input/output model. Such re-
alizations are either canonical control or observer forms
or balanced realizations, and the mathematical states
in these realizations rarely represent physical states. In
most control applications, the controllers are designed
to drive all states to zero or to regulate particular mea-
sured outputs. In either case, the transformation from
the mathematical states realized from the identified
I/0O model to physical states is not needed.

Physical models are system descriptions in which the
states represent physical phenomena, such as cloverleaf
rocking about a particular axis in the JPL microgyro.
Calibration of the JPL microgyro and design of feed-
back compensation requires not only the identification
of input/output models, but also mapping the identi-
fied I/O model to a physical model that captures key
physical states and parameters internal to the sensor.

The objective is to recover the rocking mode axes from
analysis of the input/output model so that the drive
and sense axes can be distinguished in the cloverleaf
plane, about which the cloverleaf rocks, or the angu-
lar velocity of the sensor cannot be inferred from the
sense electrode measurements. This can be accom-
plished only if additional structure is imposed on the
identification problem. Specifically, since the two rock-
ing modes and plunging mode dominate the frequency
response we introduce a simple rigid plate model with
three degrees of freedom to capture these modes. This
is what we designate as a “physical” model because we
assign physical significance to the states of a certain
coordinate representation of the model.

The top view of the rigid plate model in Figure 3 shows
the parameters we use to define the perpendicular dis-
tance from the (unknown) location of the sense and
actuator electrode centroids to the rocking mode axes.
The plunging mode corresponds to the plate model
moving in and out of the plane of the page in Figure 3.
Although the sense and drive electrodes make measure-
ments and apply forces distributed over the electrode
surface, we can conceptually think of a location on the
electrode surface —the centroid —where an equivalent
velocity is measured or force is applied. The partic-
ipation of a particular rocking mode in the transfer
function is determined by various products of these pa-
rameters: the authority over a given rocking mode by a
point force acting at the drive centroid is proportional
to the perpendicular distance from the drive centroid
to the rocking axis associated with that mode; simi-



larly, the velocity at the sense centroid due to a partic-
ular mode is proportional to the perpendicular distance
from its rocking axis to the sense centroid. The dis-
tances from the sense centroids to the lower frequency
rocking mode axis (respectively, higher frequency rock-
ing mode axis) are denoted £;1 and &2 (respectively,
&12 and £22). The distances from the drive centroids to
the axis of the lower frequency rocking mode (respec-
tively, higher frequency rocking mode) are denoted 713
and 7y (respectively, 12 and 722). These parameters
are labeled in Figure 3.

The &’s and n’s relate how point forces and point veloc-
ity measurements affect, and are affected by, the posi-
tion of the centroids relative to the rocking mode axes.
A complete model, however, must include extra de-
grees of freedom that reflect the gains of sense and drive
electrodes. The forces applied at the drive electrodes’
centroids are “converted” from the electrical potentials
specified by the D/A boards. The same analogy can
be made for the sense electrodes: the measured sense
voltages are converted from the velocity of the sense
electrodes’ centroids. These conversion factors are con-
stant gains associated with the drive and sense elec-
trodes. This view is especially motivated for the sense
electrodes since (nonidentical) transimpedance ampli-
fiers are used to convert a capacitance change into a
voltage proportional to the electrode’s velocity. We
denote the electrode gains associated with S; and S,
as Kg, and Kg,, respectively. The electrode gains as-
sociated with D; and D, are denoted Kp, and Kp,,
respectively.

The state-space model of the rocking modes with these
parameters is

i’l _ 0 1 il
j?Q - —w]z —2Cjw]- T2
0 0| |Kp, 0 D, .
=1,2
) [0 ][] =22
sl sl el
Sy 0 Ks,| |0 &5 [z2]’
where (; and wj, j = 1,2, are the damping ratios and
frequencies associated with the rocking modes (cf. (3)).
Thus, this model represents each rocking mode as a
damped harmonic oscillator with velocity outputs. A

calculation reveals that the transfer function specified
by (6) is

s [Ks, 0]y Kp, 0
w0 we) e e[ )

where

> -
=

d](s) =52+ 2(¢jw;is + w]2-.

The plunging mode is treated in a similar manner with
the exception that forces at each drive electrode iden-
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Figure 3: Rigid plate model for the two rocking modes
and plunging mode.

tically affects the plunging mode. The velocities mea-
sured at the sense electrodes are also the same since the
plate model is translating as a rigid body for the plung-
ing mode. The unknown parameters that specify the
effect of forces applied to, and velocity measurements
made from, the plunging mode are denoted ap, and
ag, respectively. This produces the following plunging
mode equations

-i’l- [ 0 1 T

| %2 | - |—w3 —QCBWB] [332}

Al
ap OGp 0 KDZ D2

- LR E

_52_ | 0 Ks,| |10 as| |z
s Kg,
L K K .
= d3(s)a5a[) [FSJ [ D, Dz]

Linear superposition allows us to combine the three
transfer functions comprising the rigid plate model into
one transfer function that describes the input/output
behavior of the plate. The final transfer function is the
sum of the individual transfer functions for each mode.

The ¢’s, n’s, Kg,,...,Kp,, and ag and ap can be
computed by comparing (5) to the rigid plate transfer
function and produces the following algebraic equations

Ks 611 _ B Brat]
|:K52£21:| [KDlml KDan] _[5211 5221_ )
|
M,
Ksg, 612 _ Bz Biaz]
{Kszfzz] [KD17712 KDan] B [5212 B222] ©)
| ——
Mo
asan [12] (Ko, #0] =[5 0] o)
M3



Solving these equations allows us to interpret the mi-
crogyro dynamics in terms of a three-mode rigid plate
model. The matrices formed from the plate parameters
on the left hand side of the equalities in (8)—(10) are
rank one and the singular value decomposition (SVD)
will be used to approximate the data matrices with the
nearest, in the sense of the matrix 2-norm, rank one
matrix. The SVD of M3 is

AL — [06793 07338 ] [57.27 0
37 10.7338 —0.6793 0 1.370x1073

_[0.7066  0.7076 |
0.7076  —0.7066

The rank one approximation of M3 is

0.6793

Ms3 ~ 57.27 {0.7338

} [0.7066  0.7076]

and so the sense electrode and drive electrode gains are
computed to be

Ks| _  [0.6793 Kp,| _,_[0.7066
Ks,| — 7°10.7338 Kp,| — P 10.7066|

The constants vs and vp reflect the fact that we cannot
uniquely determine ag and ap, and hence Kg,, Kg,,
Kp,, and Kp,, without additional information. In the
sequel we will be concerned with the ratios of the &’s
and n’s so any common factor between elements in a
given vector does not change the result. Thus we set
vs = vp = 1 without loss of generality. Note that M3
is almost rank one since the condition number of Mj3
is greater than 4 x 10%. This analysis also indicates an
imbalance between the sense electrode gains Kg, and
Kg, of about 8%.

Estimates of &’s and n’s are obtained from computing
SVDs of M; and M5 after pre- and post-multiplication
by the electrode gain matrices

—1 —1
e ]l )

0 KS2 0 KD2
_[0.2460 —0.9693] [5336 0 ]
= 120.9693 —0.2460 0 01312

0.9889 —0.1488]"
—0.1488 —0.9888| -
K
0 KS2 0 KD2

51 0]1M2 [KDl 0}1 (11)

|

09796 0.2011] [5246 0 |
0.2011 —0.9796

0.2196 —0.9756]"
0.9756  0.2196

0 0.09799

The condition numbers of these matrices are greater
than 400 and so they are accurately approximated by

rank one matrices from which the parameter estimates
are extracted. The &’s and 7’s are determined, within
a multiplicative factor, to be

i1 ~ 0.2460 mi| 0.9889
&1 —0.9693| " [n21 —0.1488]”

¢ —0.9796 n 0.2196
{éﬂ o [—0.2011} ’ {nlﬂ x {0.9756} - 12

The data from the identified model (5) conforms to
the properties of the rigid plate model (i.e., M; are
essentially rank one matrices) and gives us confidence
in the rigid plate model as a suitable representation of
the gyro dynamics.

A comparison of the plate model and the 40th-order
identified model is made in Figure 2. The frequency
response of the three-mode rigid plate model is an ex-
cellent approximation to the full-order identified model.

4.1 Rocking Mode Axis Orientation from the
Rigid Plate Model

Locating the rocking mode axes with respect to the sen-
sor’s frame, or equivalently the xz—y axes in Figure 1,
requires that we determine or assume the position of
the electrode centroids. We proceed by assuming that
the sense centroids are located in the center of the sense
electrodes versus assuming the drive centroids are lo-
cated in the center of the drive electrodes. The results
of this comparison are also contrasted to displacement
measurements made with a laser vibrometer.

Figure 3 shows the variables used in orienting the rock-
ing mode axes with respect to the z—y frame assuming
the sense centroids are located in the middle of the
electrode and the rocking mode axes pass through the
geometric center of the gyro. These assumptions imply
that the angle subtended from one centroid to the ori-
gin of the z—y axes to the other centroid is 90 degrees.
In this case, the angles #; and 6, are the angles between
the negative z-axis and the first rocking mode axis (in
a counterclockwise sense) and the second rocking mode
axis, respectively, and are calculated to be

2
0,5 = tan~" (1 _ 2] ) =30.8°

|11 + |€21]
Sz ) = 123°. (13)

025 =45° + tan~! <
22

Alternatively, using the drive parameters gives

2
61.p = tan"! <1 _ 2l ) = 36.4°

21| + |71
o2

02,p = 45° + tan™" (
12

) = 122°. (14)



Note that only the ratios of £’s or 1’s, appearing in the
same vectors in (12), are required in these calculations
thereby verifying our assertion that multiplicative con-
stants in the parameters do not affect the analysis.

The orientation estimates for the second rocking mode
axis are very close, and the estimates for the first rock-
ing mode axis differ by about six degrees. The axes’
orientations from vibrometer data are obtained by an-
alyzing identified models with the vibrometer displace-
ment measurements. The locations of the laser spots
are shown in Figure 3 as Vi and V5. Using a proce-
dure entirely analogous to the sense electrode measure-
ment case, the identified models using the vibrometer
measurements are balanced, truncated, and phase cor-
rected, yielding the following independent estimates of
the node orientation

6, = 33.4°, 6, = 130°.

Thus, 6, is within 3 degrees of the estimates from (13),
and 0, is within 8 degrees of the estimates from (14).
The vibrometer estimates are reliable but they do con-
tain the effects of positioning errors which are difficult
to quantify since the laser spot is positioned by eye on
the mechanical structure of the gyro.

5 Conclusion

This paper addresses system identification and model
development for the Jet Propulsion Laboratory micr-
ogyroscope. High-order, multi-input/multi-output lin-
ear models are required to capture important charac-
teristics of the gyro dynamics such as closely spaced
modal frequencies. Frequency response plots show
that the three key modes corresponding to the sen-
sor’s two rocking modes and plunging mode are well-
modeled with the six-state approximation of the high-
order model.

The orientation of the rocking mode axes with respect
to the sense and drive electrodes is also determined.
This information is not immediately available from the
identified input/output model. A physical model of
gyro, specified as an elastically suspended rigid plate
with three degrees of freedom (representing the two
rocking modes and plunging mode), is introduced to
extract the rocking mode axes orientations from the
identified model. Our results show that the rocking
mode axes are not necessarily aligned with the conve-
nient sense/drive electrode coordinate frame.
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