AlAA 2000-4056

REAL-TIME MOTION PLANNING
FOR AGILE AUTONOMOUS
VEHICLES

Emilio Frazzoli Munther A. Dahleh Eric Feron

AlAA Guidance, Navigation, and Control
Conference and Exhibit
August 14-17, 2000/Denver, CO

For permission to copy or republish, contact the American Institute of Aeronautics and Astronautics
1801 Alexander Bell Drive, Suite 500, Reston, VA 20191-4344

ATA A 2000-4056

REAL-TIME MOTION PLANNING FOR
AGILE AUTONOMOUS VEHICLES

Emilio Frazzoli *
Munther A. Dahleh f
Eric Feron *

The operation of an autonomous vehicle in an unknown, dynamic environment is a
very complex problem, especially when the vehicle is required to use its full maneuvering
capabilities, and to react in real time to changes in the operational environment.

A new class of algorithms, based on the construction of probabilistic roadmaps, has
been recently introduced, and proven to provide a very fast and efficient scheme for mo-
tion planning for robots with many degrees of freedom, while maintaining completeness
guarantees (in a probabilistic sense). In this paper we will present an extension of the
probabilistic roadmap approach, which is able to deal effectively with the system dynam-
ics, in an environment characterized by moving obstacles. This is accomplished through
a Lyapunov function based approach to the construction of the roadmap.

The proposed algorithm can be directly applied to a very general class of dynamical
systems, including traditional state space systems, as well as hybrid systems (systems

including both discrete and continuous dynamics).

Simulation examples, involving a

small autonomous helicopter, will be presented and discussed.

Introduction

ECENT advances in computational capabilities,
both in terms of hardware and algorithms, com-
munication architectures, and sensing and navigation
devices make it possible to develop research efforts
aimed at designing autonomous, single or multi-agent
systems that exhibit a high degree of reliability in their
operation, in the face of a dynamic and uncertain envi-
ronment, operating conditions, and goals. These sys-
tems must be able to construct a proper representation
of the environment and of their own conditions from
the available sensory data and/or knowledge base, and
have to be able to make timely decisions aiming at in-
teracting with the environment in an ”optimal” way.
One of the basic problems which have to be faced
by autonomous vehicles or moving robots is the gener-
ation and the execution of a motion plan, that enables
the robot to move to some place to perform a given
task, while avoiding collisions with obstacles, or other

“Research Assistant, Laboratory for Information
and Decision Systems, Department of Aeronautics and
Astronautics, Massachusetts Institute of Technology,

email:frazzolifmit.edu. ATAA Member

tProfessor, Laboratory for Information and Decision Sys-
tems, Department of Electrical Engineering and Com-
puter Science, Massachusetts Institute of Technology, email:
dahleh@lids.mit.edu

¥ Associate Professor, Laboratory for Information and De-
cision Systems, Department of Aeronautics and Astronautics,
Massachusetts Institute of Technology, email: feron@mit.edu.
ATAA Senior Member

Copyright © 2000 by the American Institute of Aeronautics
and Astronautics, Inc. All rights reserved.

undesired behaviors. When dealing with realistic sit-
uations, the robot will have to generate and execute
this plan in an environment with a complex topology,
and with dynamically changing and uncertain compo-
nents. In extreme cases, the environment could include
other agents actively seeking out the robot with hos-
tile intentions (e.g. autonomous air vehicles in military
operations).

Moreover, often we are interested in devising motion
planning strategies for agile autonomous vehicles, op-
erating in an environment such that the exploitation
of their dynamics and maneuvering capabilities plays
a crucial role in achieving the mission goals.

The problem of navigating a simple kinematic robot
in a known environment with polyhedral obstacles has
been proven to be computationally hard.!>?> Even
though complete algorithms are available, these cannot
be used for real-time path planning in many real-world
applications.! Note also that these algorithms require
an explicit characterization of the environment (i.e. of
the obstacles), which is practically unfeasible for large
configuration spaces.

When the dynamics of the vehicle are also consid-
ered, there is strong evidence that the computational
complexity of a complete algorithm will grow expo-
nentially fast in the number of dimensions of the state
space. Motion planning in the presence of dynamics is
usually referred to as kinodynamic planning, and has
been the object of considerable interest in the recent
past. The system is subject to kinematic or dynamic
constraints that, unlike obstacles, cannot be encoded
as “forbidden” zones in the state space. Moreover,
if the environment is changing over time, the output

1 oF 11

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS PAPER 2000-4056

of the motion planning algorithm must be a time-
parametrized feasible trajectory.

A new class of motion planning algorithms, known
as probabilistic roadmap planners, has been recently
introduced in (), and further explored in (*7'2). This
class of algorithms is particularly interesting since, by
relaxing the completeness requirements to probabilis-
tic completeness (i.e. completeness in expectation),
we can achieve computational tractability, while main-
taining formal guarantees on the behavior of the algo-
rithm.

Note that another significant advantage of a ran-
domized sampling scheme is that no explicit charac-
terization of the environment is needed. Sampling
replaces the prohibitive computation of an explicit
representation of the free space by collision-checking
operations.

In this paper, an extension of the available algo-
rithms is presented, which is able to deal effectively
with the system’s dynamics, in an environment char-
acterized by moving obstacles. Moreover, it is shown
how this class of algorithms is particularly well suited
to application to a new class of integrated guidance
and control architectures, based on a hybrid control
formulation.

The paper is organized as follows: first, the planning
framework is presented, including specifications on the
system dynamics, on the environment, and on the type
of problem we want to address. A short review of pre-
vious work in probabilistic roadmap algorithms will
follow, after which we will present, discuss, and ana-
lyze our extensions for real-time motion planning of
agile vehicles. Finally, we will present and discuss
some simulation results.

Planning framework
System dynamics

In the following we will present different modeling
approaches for describing the system dynamics. While
the continuous state-space formulation is the most tra-
ditional and widely used representation of a vehicle’s
dynamics, recent advances in hybrid systems suggest
an alternative formulation, which presents significant
computational advantages, especially for aerospace ve-
hicles with complex, high-dimensional and fast dynam-
ics.

State space formulation

The usual representation of the dynamics of an au-
tonomous vehicle or robot is based on a state-space for-
mulation. The dynamics of the system are described
by an ordinary differential equation of the form:

d
== faw (1)
where z € A is the state, belonging to an n-

dimensional manifold X (the state space), and u repre-
sents the control input signals, taking values in the set

U C R™. The function f : X x Y — TX is assumed
to be locally Lipschitz in its arguments. Note that the
above formulation can represent both nonholonomic
and dynamic constraints.!> In some cases, we also
have to consider additional inequality constraints on
the state variables F;(z) < 0, to ensure safe operation
of the vehicle (e.g. flight envelope protection).

Assume that the state space X can be decomposed,
at least locally, in the product C x V. We can regard
C as the configuration space of the vehicle, while V
encodes the vehicle’s velocity and higher order deriva-
tives of the configuration variables.

A significant reduction in the complexity of the
motion planning problem can be achieved under the
assumption that the system dynamics are invariant
with respect to translations (or, in general, group op-
erations) on C. One of the main consequence of the
invariance (or symmetry) is the existence of relative
equilibria, or trim trajectories.'*'7 While the motion
planning problem can be posed in terms of relative
equilibria, for the sake of simplicity, in this paper we
will limit the analysis to problems in which the desired
destination is an equilibrium point. We can define equi-
librium points for the system (1) as the points (Z, @)
for which f(Z,a) = 0. Since the system dynamics are
invariant with respect to translations on C, a family
of equilibrium states can be expressed by a point in
C x {0}, where & € V is a constant (e.g. the zero
vector).

Hybrid formulation

While the state space formulation is probably the
most commonly used representation of a vehicle’s dy-
namics, it could not be the most appropriate choice in
all cases. In particular, the state space of non-trivial
systems is typically very large, and the “curse of di-
mensionality” makes the solution of motion planning
problems in such large-dimension spaces computation-
ally intractable.

An alternative approach is represented by the for-
mulation of the system dynamics, and hence of the
motion planning problem, in what can be regarded as
the maneuver space of the vehicle.'®® Such an ap-
proach entails the definition of a hybrid control archi-
tecture (a hybrid automaton), based on quantization
of the system dynamics into a library of feasible “tra-
jectory primitives”, or behaviors. We will not discuss
in detail the architecture proposed in the references, it
will suffice to mention its main features.

First of all, we have to identify the trajectory primi-
tives that will be included in the library. As mentioned
in the previous section, from invariance to translation
in C, it follows that there exists a particular class of
trajectories, known as relative equilibria. Most vehi-
cles exhibit invariance to translation in the horizontal
plane, and to rotation about a vertical axis. If altitude
changes are limited (and hence air density variations

2 0rF 11

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS PAPER 2000-4056

Turn
left

Turn
right

Fig. 1

Simplified Robust Hybrid Automaton

are small), we can also assume invariance to vertical
translation; this is the case when we consider, for ex-
ample, Nap-Of-the-Earth (NOE) missions. Under the
above assumptions, the relative equilibria, or trim tra-
jectories, will be represented by helices, with a vertical
axis, in the physical space. An appropriately chosen
set of relative equilibria constitutes the first class of
primitives. A possible such choice can be obtained
through a gridding of the compact set defined by the
flight envelope. A second class of primitives, that
we can call “maneuvers” are defined as feasible, finite
time transitions between trim trajectories; in particu-
lar, maneuvers can be designed in order to solve some
local optimal control problem, or other criteria (de-
signer’s insight into what are the desirable maneuvers
that the vehicle should be able to perform).

We can graphically depict the hybrid automaton as
a directed graph, where the nodes represent the trim
trajectories, and the edges represent the maneuvers.
If we restrict the evolution of the vehicle to follow tra-
jectories generated by the automaton, the complete
state will be described by the index of the current tra-
jectory primitive, the current time, and the time and
location on C at the primitive inception time. Explicit
conditions can be given to ensure reachability of the
resulting dynamical system, as well as consistency or
robustness to uncertainties in the environment and in
the plant.!?

Note that, while maneuvers have a definite time du-
ration, trim trajectories can be followed indefinitely.
As a consequence, the decision variables, or control
inputs, acting on the hybrid automaton, consist of the
amount of time the vehicle must remain in the trim
trajectory (coasting time), and in which maneuver it
has to execute next (jump destination).

The hybrid automaton can be seen as a new model-
ing tool, in which the continuous dynamics ODE (1) is
replaced by the transition rules on the directed graph
representing the automaton, and by the associated hy-
brid system evolution.'®!'? Using this representation,
the assumption of invariance to translations in C is
enough to ensure that the hybrid automaton encodes
all the relevant information about dynamics and the

flight envelope constraints of any vehicle in a space of
small dimension, that is M = C x Q7. For most vehi-
cles, the dimension of C is at most 4, and @ is a finite
set of trim trajectory indices. The maneuver space M
can be equivalently seen as the union of |Qr| copies of
the configuration space C.

The price that we have to pay for using the hybrid
automaton is the sub-optimality of the computed so-
lutions, owing to the fact that the stored trajectory
primitives do not represent the whole dynamics of the
system. However, the number of trajectory primitives
stored in the automaton can be increased, depending
on the available memory and computational resources,
so the sub-optimality gap can be reduced to a point
were it is not noticeable for practical purposes. More-
over, for most practical purposes a sub-optimal solu-
tion which is computable on-line can be worth more
that an optimal solution that requires computational
resources only available for off-line planning.

In the rest of the paper, to simplify the notation, we
will just use the letter X' to indicate the “state space”,
with the understanding that this can be regarded as
either the proper, continuous state space or the hybrid
maneuver space M.

Environment characterization

We will consider an environment which presents
both fixed and moving obstacles, and we will assume
that the motion of the obstacles (or conservative esti-
mates thereof) is known in advance. Since the envi-
ronment is time-varying, collisions have to be checked
on (space x time) pairs (z,t) € X x R. We will de-
fine the feasible set F C X x R as the set of all (xz,t)
pairs for which there are no collisions, and the flight
envelope constraints are satisfied.

Given an initial condition (xo,t0), a pair (zf,tf) is
said reachable if it is possible to find a control function
@ : [to,ty] — U, such that the ensuing trajectory of the
system, from the above initial conditions is feasible,
and terminates at the required final condition. In other
words, we say that (xy,ts) is reachable from (zg,%o)
if the time-parametrized curve x : [to,ty] = X is an
integral curve of the ODE (1) (or is compatible with
the automaton dynamics), given the control input (t),
and is such that x(to) = zo, x(ty) = zy, and (x(t),t) €
F, for all t € [to,tr]. We can define the reachable set
R(zo,t0) C F as the set of all points that are reachable
from (zo,tp). Accordingly, given a set S C F, we
define:

R(S)= |J Rt (2)

(z,t)eS

Problem formulation

The motion planning problem we are interested in
can now be stated as: given an initial state o € X,
at time to, and a goal equilibrium configuration z; €
C x {0}, find a control input v : [to,t;] — U, such

3 oF 11

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS PAPER 2000-4056

that the resulting trajectory x is feasible, and satis-
fies the boundary conditions x(to) = o, x(tf) = xy.
A motion planning algorithm is said complete if it
returns a feasible solution if there exists a time ¢
such that (zy,ts) € R(wo,%0), and returns failure oth-
erwise. While the usual formulation of the motion
planning problem is concerned only with finding a
feasible trajectory, in many engineering applications
we are also interested in finding a trajectory mini-
mizing some cost, often expressed as a functional of
the form J := jz)f g(x(t),v(t))dt +, (z(ts),tr). The
motion planning problem, even in its simplest formula-
tion has been proven computationally hard. However,
very recently a new class of algorithms for motion
planning has been introduced, which, by trading off
completeness with probabilistic completeness (in the
sense that the algorithm terminates correctly with high
probability) achieves computational tractability, while
retaining formal guarantees on the behavior of the al-
gorithm.

Review of previous work

Since the algorithm we will present builds directly
on previous algorithms available in the literature, a
brief discussion of previous work will be helpful in un-
derstanding its characteristics and novel components.

Probabilistic Roadmap

The Probabilistic RoadMap (PRM) planner was
first introduced as a fast and efficient algorithm for
geometric, multiple-query path planning.> The algo-
rithm can be divided into an off-line processing phase
and an on-line querying phase. The off-line phase
consists of the construction of the roadmap, which
is accomplished by (1) picking Npgrys configurations
(milestones) uniformly at random in the free space F;
(2) building the visibility graph R of milestones that
“see” each other. We say that a milestone m; is vis-
ible by another milestone ms if a straight line can be
drawn from m; to ms inside F, that is without col-
liding with obstacles. The visibility graph R defines
our roadmap. Once the roadmap has been built, we
store it in the robot’s memory. The on-line planning
will then consist of a query phase, in which we try to
find a path connecting the assigned start and end con-
figurations, through the stored roadmap, plus short
linking segment from the starting and ending configu-
ration to milestones in the roadmap, achieved through
some form of local planner.

The PRM algorithm has been proven to be complete
in a probabilistic sense, i.e. the probability of a correct
termination approaches unity as the number of mile-
stones increases. Moreover, performance bounds have
been derived as a function of certain characteristics of
the environment (ezpansiveness) which prove that the
probability of non-correct termination decreases expo-
nentially fast in the number of milestones.2°

In its original form the algorithm is only applica-
ble to path planning problems for holonomic robots
(no dynamics, no kinematic constraints). Also, the
PRM algorithm was originally designed for multiple-
query motion planning: this means that the foreseen
applications would involve the generation of a fixed
knowledge base, from which feasible paths could be
found easily for several queries. In this case, we pro-
cess all the available information during the roadmap
construction, and do very little on-line computation.
Finally, the basic PRM algorithm is only concerned
with checking feasibility of a given start-end configu-
ration couple; no performance issues are addressed.

Lazy PRM

In the lazy PRM algorithm, both the roadmap con-
struction and the query phase are carried out on-line.?!
A number Ni4., << Nprp of milestones is generated,
but their visibility is not checked: on the contrary,
a full connectivity graph is generated (possibly limit-
ing the connectivity to nodes less than some distance
d apart). At each time step the algorithm finds the
shortest path from the current roadmap, and check
all the nodes and edges belonging to this path for
obstacles. If collisions are detected, the unfeasible
nodes/edges are removed from the roadmap, and the
search is performed again on the modified roadmap.
This process is repeated until a feasible path is found,
or it has been established that no paths exist in the
current roadmap. If this is the case, other additional
Niqazy points are added to the roadmap, and the pro-
cess is repeated again. In order to improve efficiency,
nodes/edges that have already been checked and found
feasible can be marked to avoid further checking.

The properties of the Lazy PRM, with respect to
completeness and performance bounds are the same
as in the original PRM case: the main concerns of the
authors was to limit the number of collision checks.
However, note that at the basis of the Lazy PRM is
also a notion of performance (in the search for a short-
est path), that was lacking in the basic PRM.

Rapidly-exploring Random Trees

Rapidly exploring Random Trees constitute an ex-
ample of single-query probabilistic roadmap algo-
rithm: in this class of algorithms, the roadmap is not
constructed off-line, but during the on-line exploration
phase.'% ! The RRT algorithm starts with the initial
configuration as the root of a configuration tree. At
each iteration, we generate a random sample configu-
ration g; in the free space F, and select the node m;
that is “closest” to ¢;. From m;, use a greedy control
algorithm in order to go “towards” ¢; for a small time
dt; call the endpoint of this exploration step m}. If
we do not have collisions, we add m} to the tree, and
iterate until one node of the tree is sufficiently close
to the target. Another option would be to also grow a
tree backwards in time from the target, and stop when

4 0rF 11

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS PAPER 2000-4056

some nodes in the two trees are sufficiently close.

The RRT algorithm has been proven probabilisti-
cally complete.'> A similar algorithm was introduced
very recently:” in this alternative formulation, the
milestone from which a new leaf is generated is cho-
sen randomly (from a weighted distribution, aiming at
avoiding too many leaves from the same milestone).
The new milestone is generated by generating a ran-
dom piecewise-constant in time control, and propa-
gating the parent milestone according to the system
dynamics. The authors were able to prove, in addition
to probabilistic completeness, performance bounds for
the algorithm.

Notice that RRTs and similar algorithms represent
the only class of probabilistic roadmap algorithm that
can be immediately extended to allow for moving ob-
stacles, since the trees (directed graphs by definition)
are rooted at the initial time and configuration, and
hence time can be simply propagated to each node
in the tree. The RRT algorithm does not involve
implicitly performance criteria, but these are easily in-
tegrated in the framework.’

Sampling point generation

In general, the proofs on the properties of probabilis-
tic planners rely on uniform distributions of sampling
points. The asymptotic results (i.e. completeness) can
be extended to all distributions for which the prob-
ability density function is strictly positive (almost)
everywhere on the configuration space C.!?

However, many sampling selection schemes have
been published, in the hope to enhance the algorithm’s
performance with some heuristics, especially in the
presence of narrow passages (i.e. environments with
small “expansiveness”).

Some sampling techniques available in the literature
include: (1) allow for some degree of penetration of the
sampling point into obstacle, up to some depth;” (2)
if a milestone is inside an obstacle, shoot a number
of rays in random directions to the boundary if the
obstacle, and use these configurations as milestones??
(3) generate couples of “close” milestones, and keep
one of them if the other is inside an obstacle, oth-
erwise discard both;?® (4) generate low-discrepancy
milestones.?*

Notice that the intuition behind the first three tech-
niques above relies on the minimum principle of Pon-
tryagin: a “good” solution will be very close to the
obstacles (i.e. the constraints will be active). Low-
discrepancy roadmaps try to avoid clustering of ran-
dom points, but instead ensure uniform exploration
of the configuration space through the use of pseudo-
random sequences with certain desirable characteris-
tics.

Planning in an obstacle-free
environment

Before addressing the problem of motion planning
in the presence of obstacles, we will discuss the solu-
tion to the problem of optimal motion planning in an
obstacle-free environment. In the following, we will try
to make it clear how the solution to this problem will
be instrumental in devising (sub)optimal trajectories
when obstacles are included.

We will consider the problem of finding the control
input that, given a target equilibrium point x.q, mini-
mizes the total cost:

tr

Haoseg) = [gl g u)dt + (5(ty). 2, ty) ()
to

for some initial conditions zg, under the dynamics con-

straints (and possibly state and control constraints).

This is a special case of problems that constitute the

subject of optimal control theory.?? 26

If we know the optimal cost function J*(z, z¢,), for
all z € X, and all equilibrium points z., € C x {0},
then it is relatively easy to formulate an optimal con-
trol policy m: X x C — U, as a (feedback) policy that
returns at each time instant the control input that
minimizes the total (future) cost-to-go to the target.
Alternatively, given a stabilizing control law, in some
cases it is possible to find out a corresponding optimal
cost function (inverse optimal control problem).

In general, the computation of the optimal cost func-
tion, and of the optimal control is a very difficult
problem. However, in some cases an explicit form of
the solution can be easily computed: most notably, in
the case of linear systems subject to a quadratic cost.

When this is not possible, other techniques can
be used to compute an estimate of the optimal con-
troller. In particular, the hybrid formulation outlined
in the previous sections can be profitably used for
autonomous vehicles: using a dynamic programming
formulation, an approximation of the optimal cost
function (an upper bound) can be computed “eas-
ily” using a numerical procedure, even for vehicles
with complex dynamics, including all state and con-
trol constraints.'® 27 Other approaches for kinematic
motion planning of nonholonomic vehicles involve the
construction of optimal solutions via the interconnec-
tion of canonical paths.?8-30

The solution to an optimal control problem in the
free space thus provides us with a control policy 7 that
ensures that the system is driven towards an equilib-
rium point, effectively parameterized by configurations
in C. Additionally, we notice that, once a cost func-
tion has been computed for all states, it can be used
as a meaningful measure of the “distance” from points
in X and equilibrium points at arbitrary locations on
C (under the invariance hypothesis). Moreover, the
same cost function induces a metric on the configura-
tion space C. Notice that the time to reach the desired

50F 11

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS PAPER 2000-4056

equilibrium point given a stabilizing policy 7 is not
always finite (unlike the cost); in this case, we will
consider that the system has reached the equilibrium
point when the state enters a ball of radius € centered
at the equilibrium.

Motion planning algorithm

The motion planning algorithm in the presence of
obstacles that we will present in the following will be
based on the determination of a time-parametrized se-
quence of “attraction points” z.,(t) that effectively
steers the system to the desired configuration while
avoiding obstacles. In this way, the obstacle-free solu-
tion to an optimal control problem will form the basis
for the problem of motion planning in the presence
of obstacles. Such an approach casts the location of
the equilibrium configuration as a function of time as
a “pseudo-control” input for the system. Since the
actual control inputs can be computed from the knowl-
edge of the optimal control policy (-, Z¢q), this means
that the low-level control layer (the layer actually in-
teracting with the vehicle) and the high-level, guidance
layer are effectively decoupled, while at the same time
ensuring full consistency between the two levels.

This has an advantage over other approaches, where
a random piecewise-constant in time control input is
generated.” Random control inputs could result in vi-
olation of the vehicle’s operating envelope, or other
undesirable behaviors for non-trivial dynamic systems;
on the other hand, using a Lyapunov function ap-
proach, we ensure that the closed loop system remains
“stable” at all times. Also, greedy approaches on Eu-
clidean distance in the configuration space!'® can lead
to instability for even very simple dynamic systems.

Note also that the ideas outlined above in a prob-
abilistic roadmap setting can be seen as a motion
planning technique through scheduling of Lyapunov
functions. While the concept is not entirely new in
control theory (see for example3'33), to the authors’
knowledge, ours is the first application to motion plan-
ning in a workspace with moving obstacles. A funda-
mental difference can also be seen in the fact that in
our implementation the ordering of Lyapunov func-
tions is performed on-line, whereas in the references
the ordering was pre-determined.

The algorithm can be outlined as follows (a pseudo-
code version is also given below). Starting with a node
representing the initial condition, we build a tree by
iteratively adding new “milestones”, which are con-
nected to the tree by a feasible trajectory segment.
Each new milestone is generated through the genera-
tion of a random equilibrium state zpqng € C x {0};
the control policy 7 (-, Zranq) is applied to a randomly
chosen node of the current tree, and if the ensuing
propagated trajectory is feasible, z,q,q is added to the
tree. The milestones generated according to the above
procedure can be regarded as primary milestones. In

Algorithm 1 Motion planning algorithm

1: Initialize R with (zq,to + 7);

2: for i =1 to Ny do

3: repeat

4 generate a new random target Z,qnq € C X {0}

5: randomly select a node (z,t) in R

6 if J*(z,%rand) > Jmin then

7 propagate state using the control policy
7(*, Trand), until the state is “sufficiently”
close to Z,4n4, and call the resulting state

(',)
8: if no collisions detected, and (z',t') is 7-
safe then
9: add new primary milestone (z',t') to R
10: select a point at random on the trajectory
from (z,t) to (z',t'), call it (z",t")
11: add new secondary milestone (z”,t") to
R
12: propagate from (z', ") using the control
policy 7(-,xs)
13: if no collisions detected then
14: feasible solution found
15: add new primary milestone (at the tar-
get) to R
16: update upper bounds on cost-to-go.

17 until time is up

18 if feasible path found then

19: descend child tree with minimum upper
bound on cost

20: else if no children then

21: add milestone (Zyoot, troot + 7) to the tree
22: else
23: descend child tree selected from a random dis-

tribution, weighted according to the number
of children in each subtree
24: destroy old root, and all the children that were

not chosen
25 if at destination then
26: exit with SUCCESS

27: exit with FAILURE

the following, we will assume that z,,,4 is generated
from a uniform distribution on the subset of C defining
our workspace; other sampling techniques can be used,
as discussed in the earlier sections.

As an addition to the above stated rule for gener-
ating primary milestones, we will discard the random
point x,,,q before propagating the state if it is “too
close” to the randomly selected node in the tree, in the
sense defined by the function J*. In the probabilistic
roadmap literature, it is common to try to distribute
milestones uniformly over the configuration space C.
This seems to produce good results in practice for mo-
tion planning in a static workspace. However, there is
no theoretical justification for such a criterion in the
case of moving obstacles. What is desirable is that the
roadmap covers uniformly the reachable space.

6 oF 11

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS PAPER 2000-4056

th Target

Fig. 2 Example of generated roadmap (projected
on X). Primary milestones are marked as circles,
and secondary milestones as squares

As it can be easily recognized, the algorithm out-
lined above consists of jumps from equilibrium point
to equilibrium point, and as such cannot be expected
to provide impressive performance, especially in terms
of time. In order to increase the performance, we will
introduce the following step: at random points along
the trajectory to the new randomly generated point,
we add ng > 1 additional, secondary, milestones. Sec-
ondary milestones are likely to be at points in the state
space that are “far” from equilibria. From secondary
milestones we can apply the control policy to the des-
tination 7 (-, x¢): if the resulting trajectory is feasible,
we have solved the feasibility problem. In this case,
we climb the tree back towards root, updating the es-
timates on the upper bound on the cost-to-go. Both in
the case in which a feasible trajectory is found, and in
the case in which a collision is detected, the secondary
milestones are added to the tree, and can be selected
as the starting point for later iterations. Note that
each secondary milestone, by construction, will have a
primary milestone in a child subtree (see Fig. 2).

In order to guard ourselves from dead-ends due to
finite computation times, we also require that primary
milestones be checked for 7-safety. We say that a mile-
stone (r,t) € C x {#} x R is 7-safe if (z,f) € F for all
t € [t,t+7]. The time horizon 7 should be chosen as a
time interval in which at least one new 7-safe milestone
can be computed with high probability.

The time available for computation is bounded by
either 7, or by the duration of the current trajectory
segment. When the time is up, we have to select a new
tree from the children of the current root. If there are
none, we know that every primary milestone will be 7-
safe, and hence we will have 7 seconds for computing
a new tree (secondary milestones will always have at
least one child). If we have children, there are two
possibilities. In the most favorable case, at least one
of the children will lead to the destination through an
already computed feasible solution. If there is more

| Name | Domain |
State X
Time R
CumulativeCost | Ry
LBCost Ry
UBCost R4
NChildren N
Table 1 Information stored at the tree nodes
| Name | Domain |
Target C
IncrementalCost | Ry
Table 2 Information stored at the tree edges

than one such feasible solution, we select the one with
the least upper bound on the cost-to-go. On the other
hand, it can be the case (especially during the first
iterations of the search), that no feasible solutions have
been computed yet. In this case we randomly select the
child to descend according to a distribution weighted
on the total number of milestones in each tree. The
selected tree will be likely to cover a bigger portion of
the reachable set.

Data structure

The roadmap is constructed as a tree; at the nodes
of the tree we store all the information concerning each
milestone (see Table (1)). More specifically, the data
stored at the tree nodes include the propagated state
of the vehicle (i.e. state z € X, time t € R), plus
information on the “quality” of the motion plan, such
as the cumulative cost and estimates on the cost-to-
go. Finally, we include a counter of the total number
of milestones in the children trees. The (statextime)
couple is initialized through propagation of the sys-
tem dynamics, and the cumulative cost is updated,
according to eq.(3). The lower bound on the cost-to-go
coincides with the value of the cost function J*(z,zy),
while the upper bound on the cost to go is initialized to
+00, meaning that a feasible path from the particular
node has not been found yet.

On the tree edges, we store information regarding
the transitions between single milestones (see Table
(2)). This means that we have to store parameters
identifying the control law implemented in the tran-
sition, namely the target equilibrium point. Finally,
we can store the incremental cost incurred during the
transition, mainly for bookkeeping purposes.

Analysis

In order to analyze the behavior of the algorithm,
with the purpose of ensuring probabilistic complete-
ness and possibly obtaining performance bounds, we
have to introduce some additional definitions, and as-
sumptions on the environment characteristics. The
remainder of the section will present concepts that are
at the basis of most of the available results in analysis

7oF 11

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS PAPER 2000-4056

Fig. 3 Visualization of R (zo,t0) and its projection
on C. The cone represents R(zo,to)

of probabilistic roadmaps. However we will give our
own definitions, as needed by adaptation and exten-
sion of these concept to our algorithm.

First of all we have to characterize the effect of re-
stricting the trajectories of the system to those that
can be obtained through the application of control
policies 7 derived by the optimal cost function J*. Let
us consider a point (z,t) € F, and an equilibrium point
at (v,,t'). We say that (z,,t") is (7, 7)-reachable
from (z,t) if it is the terminal point of the trajec-
tory obtained by applying the control policy = (-, z;,)
starting from (z,t), the trajectory is feasible, and
(zgg,t') is T-safe. We can define the (7, 7)-reachable
set RT(zo,t0) C (C x {U} x R) N F as the set of all
points that are (,7)-reachable from (zo,0); this set
belongs to a manifold with the same dimension as C,
embedded in the larger space X x R (see Fig. 3). Ac-
cordingly, given a set S C F, define:

R7(S) == |J Ry (p) (4)

peES

Given a set S C F, denote by uc(S) the volume
of its projection on C. Moreover, assume that we are
interested in a workspace C such that ¢ (C) = 1.

We have to make sure that for all equilibrium points
the (7, 7)-reachable set is not “too small”. This prop-
erty corresponds to the e-goodness of a workspace.?*
In our case, we will say that the planning environment
(as defined by both the workspace and the control pol-
icy) is (e,7)-good if, for all sets S, C F of r-safe
equilibrium points we have that:

pe(R(S7)) > e ()

Now we have to characterize sets whose (m,7)-
reachable set is “large”. Let 8 be a constant in (0, 1];

define the 3-lookout of S C F as:

B-lookout(S) := {p € S| (6)
| e (R (p)) — e (S) > B (uc((S)) — pe(S))}

Lastly, we have to make sure that the dimensions of
the B-lookout of a set are not too small; we call this
property (a, 3)-expansiveness.?’ Given two constants
a, B in (0,1], the environment is said («, 3)-expansive
if for all sets S € F we have that:

pic (B-lookout(S)) > avpe(S) (7)

Counsider the initial condition (zo,%p), and assume
it is an equilibrium point (if not, generate a primary
milestone using the algorithm presented in the previ-
ous section). Let us define the endgame region E C C
as a region such that all equilibrium points contained
in it can be connected without collisions to the desired
destination 'y using the policy n (-, z), for all times ¢.
Then, if the environment is («, 3)-expansive, and the
desired destination z is contained in the reachable set
R(zo,to), it can be shown that the probability of the
algorithm returning a feasible trajectory connecting xq
to xy approaches unity exponentially fast:®

Theorem 1 (Hsu,Kindel,Latombe and Rock)
Let g > 0 be the volume of the endgame region E C C,
and v be a constant in (0,1]. A sequence M of r
primary milestones contains a milestone in E with
probability at least 1 — ~y, if:

2 2. 2
rzﬁln—k—l——ln— (8)
a v g v

where k := (1/8)In(2/g).

Given the definitions and assumptions stated earlier
in this section, the proof in the reference applies to
our algorithm. We will not present the proof in detail
here, and we refer the reader to the original paper.
Roughly, the argument is based on the following facts.
Consider the set M of primary milestones in the tree;
from the (e, 7)-goodness and expansivity assumptions
we have that: (1) uniform sampling on C will produce
target points in R7 (M) with probability at least €; (2)
the newly added milestones will be in the 8-lookout of
M with probability at least «; (3) each new milestone
in B-lookout(M) reduces puc(R(M)) — pc(RL(M)) by
a factor of at least 1 — (3.

Note that the proofs in the reference are not
completely consistent with the algorithm presented
therein: the proofs rely on uniform exploration of
reachable sets, while the search algorithm actually ex-
plores uniformly on control inputs. This inconsistency
was noted by the authors, but not resolved rigor-
ously. On the other hand, the same arguments do
apply consistently in the case of our algorithm, with

8 oF 11

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS PAPER 2000-4056

the definitions and under the assumptions given ear-
lier in this section, since we are indeed sampling the
(m, 7)-reachable set of milestones uniformly.

Notice that the performance bounds that can be ob-
tained for this algorithm establish only its theoretical
soundness, but cannot be used for obtaining an explicit
estimate of the probability of successful termination,
since «,3, and € cannot be determined easily, for non-
trivial environments.

Note also that the use of secondary milestones does
not impact adversely the main results on probabilis-
tic completeness (when evaluated on the number of
primary milestones) , since they only add to the (m, 7)-
reachable sets. On the other hand, secondary mile-
stones help the convergence of the algorithm when
close to the endgame region, and enhance the overall
quality of the resulting trajectory (i.e. the trajectory
is “faster”, or in general less expensive with respect to
the assigned cost).

Application example: Small
autonomous helicopter

A small helicopter is a very good example of the
systems to which the algorithm presented in this pa-
per can be profitably applied, especially when used in
conjunction within a hybrid control framework.'®

Radio-controlled helicopters are capable of remark-
ably agile and aggressive maneuvers, which are impos-
sible to perform using traditional control techniques,
especially when the on-line solution of the motion plan-
ning problem is required. Among the reasons for that
we can state that helicopters are essentially unsta-
ble systems, with a very high bandwidth, and their
dynamics change considerably throughout the flight
envelope.

In this section, we will present simulation results
for a test case involving a small autonomous heli-
copter. The simulations are carried out on a fully
non-linear helicopter simulation, based on a widely
used minimum-complexity model.?® The motion plan-
ning algorithms operating on the hybrid automaton
structure!® 19 are complemented by the control law
presented in6 to ensure tracking of the reference tra-
jectory.

The randomized path planning has been tested in
several examples, including cases with both fixed and
moving obstacles, and in general proved to be very
fast and reliable. The examples that we will discuss in
the following are based on the examples presented in
a previous work of the authors.!® The cost function
used in all the examples is the total time needed to
go to the destination (we are solving a minimum-time
problem). The algorithm was implemented in C on a
300 MHz Pentium II computer.

The first examples involves navigating the helicopter
through a set of obstacles represented as spheres in
the configuration space. Note that in the following ex-

North [m]
&
3
T

—80l- i) 4

\\77/ /,‘
—90l- 4
-100 L L L A/ L I I

East [m]

Fig. 4 Example 1: trace of the trajectory tree,
and best trajectory found

450

Il Fixed spheres
Il Moving spheres

400 B

0 0.2 0.4 0.6 0.8 1 12 14 16 18 2
tls]

Fig. 5 Example 1: computation times

amples we constrain the helicopter to fly at constant
altitude (even though the model and the control laws
are fully three-dimensional). We tested the algorithm
in several runs, involving both fixed and randomly
moving spheres. This particular scenario was easily
tackled by our algorithm: the mean computing time
on one thousand runs was 0.45s (standard deviation
0.245) in the fixed obstacles case, and 0.46s (standard
deviation 0.28s) in the randomly moving obstacle case.
Note that the fact that the obstacles are moving does
not result in a significant increase in the computation
time. An example of a computed trajectory is pre-
sented in Fig. 4, and a histogram of the computation
times is reported in Fig. 5.

Note that the computation times are very small
when compared to the time scales for the required
maneuver switches in the hybrid formulation; in this
particular case the planner has about 2 seconds of time
at its disposal, before deciding what maneuver to exe-
cute after the initial acceleration from hover to forward
flight at maximum speed. This scenario was partic-
ularly easy, since the environment does not present
“narrow passages” (i.e. it is highly expansive).

9 oF 11

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS PAPER 2000-4056

of -
|:| ///
-10f) Py
P
_o0k e
—
a0k —
5ol
“e0}
—
/——"'
70+ >
!
—sofb /’ =
s
o0} / H
-100
.

I
-100 -90 -80 -70 -60 -50 -40 -30 -20 -10 0

Fig. 6 Example 2: trace of the trajectory tree,
and best trajectory found

40

t[s]

Fig. 7 Example 2: computation times

A second example involves navigating through a
maze of fixed walls. This example proved to be slightly
more difficult for our algorithm, which sometimes was
forced to move down a subtree not yet proven feasi-
ble. The average computation time was 3.5s, and the
standard deviation was 3.1s. A computed trajectory
is presented in Fig. 6, and a histogram of computation
times is presented in Fig.7.

Lastly, we examined a scenario in which the heli-
copter had to fly through moving slots in two walls
dividing the workspace into three components. This
problem proved to be quite difficult for our algorithm,
which often resulted in the helicopter to “hop” between
different hovering points in front of one of the walls,
looking for a feasible solution. In this case, the algo-
rithm in this paper actually behaved more poorly than
a similar algorithm proposed by the authors,'® which
was endowed with a more complex heuristic (but for
which no formal performance bounds were available).
Animations showing the behavior of the helicopter in
all the above scenarios are available from the authors.

Conclusions

In this paper a new algorithm for autonomous vehi-
cle motion planning, based on a probabilistic roadmap
approach, has been presented. The algorithm is based
on the use of Lyapunov functions for motion planning,
and hence provides a very efficient and natural way
of dealing with the system dynamics, with the associ-
ated stability guarantees. Moreover the algorithm is
very general, and can be used with both continuous
state-space and hybrid models of a vehicle’s dynam-
ics. Also, the configuration space needs not be R™,
but we can apply our algorithm in the case in which
C is a more general manifold. This make it possible
to directly address also attitude motion planning, i.e.
motion planning on SO(3), which is a problem of in-
terest in many aerospace application (e.g. spacecraft
attitude motion with pointing constraints).

From a theoretical point of view, it was shown how
to perform uniform sampling in the reachable space of
the vehicle, as opposed to sampling in the input space.
Real-time issues were directly addressed: in the case in
which finite computation time and available resources
do not allow the computation of a feasible solution
before a decision has to be made, it was shown how to
ensure safety and how to choose likely candidates for
further exploration. Future work will address motion
planning in uncertain environment, with limited sensor
range, and multi-vehicle operations.

Acknowledgments

This research was supported by the C. S. Draper
Laboratory through the IR&D grant DL-H-505334, by
the AFOSR, under grant F49620-99-1-0320, and by the
ONR, under Young Investigator Award N-00014-99-1-
0668.

References

1J. F. Canny. The Complezity of Robot Motion Planning.
MIT Press, Cambridge, MA, 1988.

2].C. Latombe. Robot Motion Planning. Kluwer Academic
Publishers, Boston, MA, 1991.

3L.E. Kavraki, P. Svestka, J.C. Latombe, and M.H. Over-
mars. Probabilistic roadmaps for path planning in high-
dimensional configuration spaces. IEEE Transactions on
Robotics and Automation, 12(4):566-580, 1996.

4M. H Overmars and P. Svestka. A paradigm for probabilis-
tic path planning. Technical report, Department of Computer
Science, Utrecht University, March 1996.

5L. E. Kavraki, M. N Kolountzakis, and J.C. Latombe.
Analysis of probabilistic roadmaps for path planning. In Pro-
ceedings of the 1996 IEEE International Conference on Robotics
and Automation, pages 3020-3025, 1996.

L. E Kavraki, J.C. Latombe, R. Motwani, and P. Ragha-
van. Randomized query processing in robot path planning.
Journal of Computer and System Sciences, 57(1):50-60, August
1998.

"D. Hsu, L.E. Kavraki, J.C. Latombe, R. Motwani, and
S. Sorkin. On finding narrow passages with probabilistic
roadmap planners. In Proceedings of the 1998 Workshop on Al-
gorithmic Foundations of Robotics, Houston, TX, March 1998.

10 oF 11

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS PAPER 2000-4056

8D. Hsu, J.-C. Latombe, and R. Motwani. Path planning
in expansive configuration spaces. Int. J. Comp. Geometry and
Applications, 9(4-5):495-512, 1999.

9D. Hsu, J.C. Kindel, J.-C. Latombe, and S. Rock. Ran-
domized kinodynamic motion planning with moving obstacles.
In Proc. Workshop on Algorithmic Foundations of Robotics
(WAFR’00), Hanover, NH, March 2000.

103, M. LaValle. Rapidly-exploring random trees: A new tool
for path planning. Technical Report 98-11, Iowa State Univer-
sity, Ames, [A, Oct. 1998.

1S M. LaValle and J.J Kuffner. Randomized kinodynamic
planning. In Proceedings of the 1999 IEEFE International Con-
ference on Robotics and Automation, 1999.

12].J. Kuffner and S.M. LaValle. RRT-Connect: an efficient
approach to single-query path planning. In IEEE International
Conference on Robotics and Automation, 2000.

13, Barraquand and J.C. Latombe. Nonholonomic multi-
body mobile robots: controllability and motion planning in the
presence of obstacles. Algorithmica, 10(2-4):121-155, 1993.

14 Bullo. Stabilization of relative equilibria for systems on
riemannian manifolds. In American Control Conference, pages
1618-1622, San Diego, CA, June 1999.

15].E. Marsden. Lectures on Mechanics. Cambridge Univer-
sity Press, New York, NY, 1992.

16J, E. Marsden and T.S. Ratiu. Introduction to Mechanics
and Symmetry. Springer Verlag, New York, NY, 1999. Second
edition.

17V 1. Arnold. Mathematical Methods of Classical Mechan-
ics, volume 60 of GTM. Springer Verlag, New York, NY, second
edition edition, 1989.

I8E,. Frazzoli, M.A. Dahleh, and E. Feron. A hybrid control
architecture for aggressive maneuvering of autonomous heli-
copters. In IEEE Conf. on Decision and Control, December
1999.

19K, Frazzoli, M.A. Dahleh, and E. Feron. Robust hybrid con-
trol for autonomnous vehicle motion planning. Technical Report
LIDS-P-2468, Massachusetts Institute of Technology, 1999. Re-
vised version submitted to IEEE Trans. on Automatic Control.

20D. Hsu, J.-C. Latombe, and R. Motwani. Path planning
in expansive configuration spaces. In Proceedings of the 1997
IEEE International COnference on Robotics and Automation,
1997.

21R. Bohlin and L. Kavraki. Path planning using lazy prm.
In International Conference on Robotics and Automation, San
Francisco, CA, 2000.

22N. M. Amato and Y. Wu. A randomized roadmap method
for path and manipulation planning. In Proceedings of the 1996
IEEE International Conference on Robotics and Automation
(ICRA’96), pages 113-120, 1996.

23V. Boor, M.H. Overmars, and F. van der Stappen. The
gaussian sampling strategy for probabilistic roadmap planners.
In Proc. IEEE Int. Conf. on Robotics and Automation, pages
1018-1023, 1999.

24M. S. Branicky and K. Olson. Quasi-random roadmaps:
Using deterministic low discrepancy point sets to break the curse
of dimensionality in motion planning. Submitted to the 4th Int.
Workshop on Algorithmic Foundations of Robotics, 1999.

25M. Athans and P. Falb. Optimal Control. McGraw-Hill,
1966.

26 A E. Bryson and Y.C. Ho. Applied optimal control : opti-
maization, estimation, and control. Hemisphere Pub. Corp., New
York, 1975.

27D. P. Bertsekas and J.T. Tsitsiklis. Neuro-Dynamic Pro-
gramming. Athena Scientific, Belmont, MA, 1996.

281.E. Dubins. On curves of minimal length with a con-
straint on average curvature and with prescribed initial and
terminal positions and tangents. American Journal of Math-
ematics, 79:497-516, 1957.

29J A. Reeds and R.A. Shepp. Optimal paths for a car that
goes both forwards and backwards. Pacific Journal of Mathe-
matics, 145(2), 1990.

30p. Soueres and J.D. Boissonnat. Optimal trajectories for
nonholonomic mobile robots. In J.P. Laumond, editor, Robot
Motion Planning and Control, volume 229 of Lecture Notes in
Control and Information Sciences. Springer, 1998.

31A. Leonessa, V.S. Chellaboina, and W.M. Haddad. Glob-
ally stabilizing controllers for multi-mode axial flow compressors
via equilibria-dependent lyapunov functions. In Proc. IEEE
Conf. Dec. Contr., San Diego, CA, December 1997.

32R. R. Burridge, A. A. Rizzi, and D.E. Koditscheck. Se-
quential decomposition of dynamically dexterous robot behav-
iors. International Journal of Robotics Research,, 18(6):534—
555, June 1999.

33M.W. McConley, B.D. Appleby, M.A. Dahleh, and
E.Feron. A computationally efficient Lyapunov-based schedul-
ing procedure for control of nonlinear systems with stability
guarantees. IEEFE Transactions on Automatic Control, Decem-
ber 1999.

341, E. Kavraki and J.C. Latombe. Probabilistic roadmaps for
robot path planning. In K Gupta and A del Pobil, editors, Prac-
tical Motion Planning in Robotics: Current Approaches and
Future Directions, pages 33-53. John Wiley, 1998.

35T .J. Koo and S. Sastry. Output tracking control design of
a helicopter model based on approximate linearization. In IEEFE
Conference on Decision and Control, 1998.

36E. Frazzoli, M.A. Dahleh, and E. Feron. Trajectory track-
ing control design for autonomous helicopters using a backstep-
ping algorithm. In American Control Conference, Chicago, IL,
2000.

11 oF 11

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS PAPER 2000-4056

