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Nonlinear Receding Horizon Control of an F-16 Aircraft
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The applicationof receding horizon control (RHC) with the linear, parameter varying(LPV) design methodology
to a high-� delity, nonlinearF-16 aircraft model is demonstrated. The highlights are 1) use of RHC to improve upon
the performance of a LPV regulator; 2) discussion on details of implementation such as control space formulation,
tuning of RHC parameters, computation time and numerical properties of the algorithms; and 3) simulated
response of nonlinear RHC and LPV regulator.

Nomenclature
epos = east position, ft
h = altitude, ft
npos = north position, ft
p = roll rate, deg/s
q = pitch rate, deg/s
r = yaw rate, deg/s
T = thrust, lb
Vt = velocity, ft/s
® = angle of attack, deg
¯ = sideslip angle, deg
±a = aileron, deg
±e = elevator, deg
±r = rudder, deg
µ = pitch angle, deg
Á = bank angle, deg
Ã = yaw angle, deg

I. Introduction

R ECEDING horizon control, also known as model predictive
control, has been popular in the process control industry for

several years.1;2 It is based on the simple idea of repetitive solution
of an optimal control problem and updating states with the � rst
input of the optimal command sequence. The repetitive nature of
the algorithm results in a state-dependentfeedback control law.

The attractive aspect of this method is the ability to incorporate
state and control limits as hard or soft constraintsin the optimization
formulation.When the model is linear, the optimizationproblem is
quadratic if the performance index is expressed via a L2-norm, or
linear if expressed via a L1=L1-norm. Issues regarding feasibil-
ity of on-line computation, stability, and performance are largely
understood for linear systems and can be found in Refs. 3–6.

The focus of this paper is on the application of receding horizon
control (RHC) techniques to nonlinear systems. Speci� cally, the
use of af� ne, linear, parameter varying control7 to derive a control
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Lyapunov function (CLF), which is used as a terminal penalty func-
tion in the RHC framework.Similar work has been done by Primbs8

and Jadbabaie et al.9 on the Caltech Ducted Fan,10 where combina-
tion of off-line linear, parameter varying (LPV) design and on-line
RHC optimization led to better regulation of the system states. The
approach used by Primbs imposes path and terminal constraints
to guarantee stability. Satisfying path constraints on state and con-
trol trajectoriesduring optimizationis however computationallyde-
manding. This is not so lucrative if we are to explore any possibility
of real-time implementation of the RHC algorithm. In the work
done by Jadbabaie et al.,9 stability is guaranteed by choosing a
suitable terminal cost. No constraints are necessary to guarantee
stability.We chose this approach to formulate our RHC problem for
the nonlinear F-16 model because of the simplicity of formulation
and also becauseunconstrainedoptimizationis faster thanconstraint
optimization.

The receding horizon control problem investigated in this paper
is a regulation-basedproblem. We are interested in regulating state
perturbations of F-16 to a target set, namely the origin. The per-
formance of the controller is measured in terms of the value of a
objective function, which depends on the state and control trajecto-
ries. A LPV controller is designed for the F-16 aircraft, and a CLF
is obtained from it. The CLF is used as a terminal cost in the for-
mulation of the optimization problem for receding horizon control.

The purpose of this paper is to demonstrate an aerospace appli-
cation of nonlinear RHC algorithm and also discuss the implemen-
tation issues in detail. The latter is missing in most publications
in this � eld. This paper goes through an overview of the nonlinear
RHC theory, F-16 model details, LPV regulator design, optimiza-
tion problem setup for RHC, formulation of control space, numer-
ical issues in nonlinear simulation, hardware and software details.
This paper is aimed to answer most questions that arise in a typical
nonlinear RHC implementation.

II. Stability and Performance of Nonlinear RHC
Nonlinear trajectoryoptimizationproblemcan be posedas (p. 131

in Ref. 11)

J D min
u.:/

8.x; t/
­­

t D t0 C T
C

Z t0 C T

t0

L.x; u/ dt (1)

with systemdynamics, initial condition,and terminalboundarycon-
dition de� ned as

Px D f .x; u/; x.t0/ D x0; 9.x; t/jt D t0 C T D 0

Solving the associated partial differential equation for the optimal
return functionof the optimizationde� ned by Eq. (1) can be compu-
tationally intractable, even for a moderate number of states. Hence
the optimal control trajectories for RHC are usually obtained by
solving the simpler Euler–Lagrange type of optimization. Because
this is based on calculus of variation, its solution is locally optimal
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and is valid only for a single initial condition.The desired feedback
nature of the receding horizon control law is achieved by resolving
the optimization at every encountered state.

The unconstrained � nite horizon optimization does not guaran-
tee stability. In Ref. 8, Sec. 4.2.2, p. 36, an example is available
that clearly demonstrates this fact. However, if the optimization is
carried out over an in� nite horizon the controllerwill inherit stabil-
ity guarantees and performance properties enjoyed by the in� nite
horizon solution.Unfortunately,in reality one cannot optimize over
an in� nite horizon for practical reasons. There are dif� culties in
proving stability for RHC feedback laws also. These arise because
the solution to each receding horizon optimization is speci� c to a
single point in the state space, and typical stability theories consider
system behavior within a region. To get around these issues, the
stabilityof � nite horizonRHC algorithmis guaranteedby imposing
constraints on the optimization.

The � rst method to guarantee stability12;13 imposes a terminal
boundary condition on state as

x.t0 C T / D 0

Because a nonlinear optimization problem with equality terminal
constraint is computationally demanding, in Ref. 14 closed-loop
stability is ensuredby imposinga terminal inequalityconstraint.The
constraint requiresx.t0 C T / to enter a suitableneighborhoodof the
origin. Once such a neighborhood is reached, the receding horizon
controller is switched to a locally stabilizing linear controller. A
different approach has been proposed in Ref. 15 where the receding
horizon controller is obtained by solving a � nite horizon problem
with quadratic terminal state penalty

8.x; t/jt0 C T D ax T Px jt0 C T

for some a; P > 0. In the more recent work of De Nicolao et al.,16

stability of the receding horizon controller is guaranteedby using a
possible nonquadratic terminal penalty, which is the cost incurred
if a locally stabilizing linear control law is applied at the end of the
horizon. The linear control law ensures exponential stability of the
equilibrium point at the origin, and it is assumed that the region
of attraction of the linear controller is reachable within the horizon
length. This is different from Ref. 14 in that the linear control law
is never applied, it is used just to compute the terminal cost. In
another method proposed by Primbs,8 � rst a globally stabilizing
control law is achieved by � nding a global CLF. Stability of the
recedinghorizoncontroller is ensuredby includingstate constraints
that make the derivative of the CLF negative along the receding
horizon trajectory and also makes the value of the CLF at the end
of the horizon less than that when the controller obtained from CLF
is applied. Unfortunately, the path and terminal constraint on the
optimization makes it computationally intensive.

As mentioned earlier, our implementation of receding horizon
control for the F-16 model is based on the work by Jadbabaieet al.17

This method is a hybrid of the methods proposed by Primbs8 and
De Nicolao et al.16 As in Ref. 8, it is assumed that a suitable CLF
already exists. The CLF is used to replace the state inequality con-
straint with a terminal cost. The terminal cost is the cost incurred
if the controller from the CLF is applied at the end of the horizon.
We derived the CLF from a LPV regulator. In theory, as in Ref. 16,
the CLF-based controller is never implemented; it is used only to
compute the terminal cost. However, because of the limitations in
the optimization software we used we needed the LPV regulator to
prestabilize the system. The optimization software, NPSOL,18 has
numerical problems with unstable systems. It uses shootingmethod
to search for an optimal direction, and a candidate solution can po-
tentially destabilize an unstable system.

III. F-16 Aircraft Model
The nonlinear F-16 model used in receding horizon control is

available in Ref. 19, which we shall represent as

PxNL D f .xNL; ±/ (2)

The mathematical model uses the wind-tunnel data from the
NASA Langley wind-tunnel tests on a scale model of an F-16

aircraft.20 The aerodynamic data are valid up to Mach 0.99, angle-
of-attack range of ¡10 deg · ® · 45 deg and sideslip-angle range
¡30 deg · ¯ · 30 deg. The wind-tunnel tests were conducted on
suf� ciently close points to capture the nonlinear behavior of the
aerodynamic force and moment coef� cient. Aerodynamic data
for the intermediate points are linearly interpolated. The states
xNL 2 R12 and controls ± 2 R4 in the model are de� ned as

xNL D [npos; epos; h; Á; µ; Ã; Vt ; ®; ¯; p; q; r]

± D [T; ±e; ±a ; ±r ]

Actuators for the control surfaces and engine are modelled as � rst-
order systems, details of which are discussed later in the paper.

IV. LPV Modelling of F-16
Based on aerodynamic data in Ref. 20, the control variables in

Eq. (2) enter af� nely in ±a ; ±r , and T , though not in ±e . To derive
an LPV model21 of the nonlinear equation of motion for F-16, it is
necessarythat all of thecontrolsbe in af� ne form.This is achievedby
transforming.±e; T / into syntheticinputs .uS

1 ; uS
2/ with » :R2 ! R2,

so that the equation of motion, after de� ning ±a;r :D [±a ±r ]T and
uS :D [uS

1 uS
2 ]T , can be written as

PxNL D h.xNL/ C g.xNL/

µ
±a;r

uS

¶
(3)

A. Synthetic Inputs
The nonaf� ne terms in Eq. (2) directly affect the states

(Vt ; ®; ¯; q ). If we rearrange the state dynamics of these four states
into af� ne and nonaf�ne terms, we can write it as

8
>><

>>:

PVt

P®
P̄
Pq

9
>>=

>>;
D ¸.xNL/ C ³.xNL/± C ´.Vt ; ®; ±e; T / (4)

where xNL 2 R12 is the statevectorand ± 2 R4 is the controlvectorof
the system. The nonaf�ne terms are represented as ´.Vt ; ®; ±e; T /.
It can be observed that the elevator and thrust inputs do not enter
linearly. Hence, their effect on the state derivatives need to be ap-
proximated through the use of synthetic inputs. We seek to isolate
their effect into a “gain” term [M .Vt ; ®/], as follows:

´.Vt ; ®; ±e; T /| {z }
4 £ 1

¼ M .Vt ; ®/| {z }
4 £ 2

uS.Vt ; ®; ±e; T /| {z }
2 £ 1

(5)

This separation results in the gains on the “synthetic inputs”
uS.Vt ; ®; ±e; T / being constant at a given velocity and angle of at-
tack, which in turn means that the LPV model will not need to be
scheduled on either of these inputs. For continuous functions the
approximation in Eq. (5) can be achieved by

min
M ;uS

Z

Vt ;®

Z

±e;T

k´ ¡ MuSk2 d.±e; T / d.Vt ; ®/ (6)

whereas for a gridded function this is equivalent to minimizing the
following Frobenius norm:

min
rk.H / D r

kX ¡ Hk2
F (7)

where X and H represent the function ´ and its approximationMu,
respectively,evaluatedat the grid points.The minimizationproblem
in Eq. (7) can be solved by singular value decomposition.The rank
of H should equal the number of synthetic inputs;r D 2 in this case.
The synthetic input vector uS is in radians.
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B. Inverse Table
Using the synthetic input formulation means that the LPV regu-

lator is designed using the (Vt ; ®)-dependentmatrix gain M.Vt ; ®/,
as de� ned in the preceding subsection.Thus, the control commands
are not in term of elevator and thrust, but in terms of synthetic in-
puts. This necessitates the ability to calculate .±e; T / from a given
.Vt ; ®; uS/. The synthetic input inverse table, denoted by »¡1, is
used to recover the elevator and thrust values from the synthetic
input values.

At a given.Vt ; ®/ the syntheticinversetable is madeby specifying
grid points .i; j/ in uS space and searching over (±e; T ) to minimize

ck
¡
Vt ; ®; uS

1 i ; uS
2 j

¢
D

£
uS

1 i ¡ uS
1

¡
Vt ; ®; ±k

e ; T k
¢¤2

C
£
uS

2 j ¡ uS
2

¡
Vt ; ®; ±k

e ; T k
¢¤2

where ck is the cost at the kth iteration, resulting in u I .Vt ; ®; uS/.
This is repeated for each (Vt ; ®) grid point. The inverse table »¡1

is also a function of altitude. Because we use this model to com-
pute optimal command trajectories for receding horizon control, it
is necessary that »¡1 is continuous and suf� ciently smooth in the
region of interest.

C. LPV Model of F-16
Assuming � rst-order dynamics for each actuator, the LPV model

derived for the F-16 has 12 states (eight � ight dynamics and four
actuator) and four inputs,

x D
£
Vt ® ¯ p q r Á µ ±a ±r ±S

1 ±S
2

¤T

uLPV D
£
ua ur uS

1 uS
2

¤T

both of which are centeredabout their trim values ( Nx; NuLPV), and the
LPV model is of the form

Px D ALPV.½/x C BLPV.½/uLPV (8)

Gain scheduling is done on parameter ½ 2 P ½ R3, de� ned as

½ D

8
<

:

Vt

®

¯

9
=

; (9)

It is assumed that the set P is compact and P½ is bounded (that is,
P½min · P½ · P½max ). The matrix functions ALPV.½/; BLPV.½/ are de-
� ned as

ALPV.½/:P ! R12 £ 12; BLPV.½/:P ! R12 £ 4

Because the schedulingparameters are also states of the system, the
LPV model is actually a quasi-LPV model. A quasi-LPV system is
a special class of LPV system where the system varies as functions
of state variables and exogenous variables. The state variables and
the exogenous variables are required to be continuous functions
of time and measurable in real time. The LPV full-state control
designalgorithmcannottake advantageof the fact that the scheduled
variables are also the system states. Therefore, the full-state LPV
regulator may be conservative.

A cost function for Eq. (8) penalizing not only the states and
inputs, but the actuator rates, is considered here. Clearly, this will
result in the state cost being coupled to the input cost; de� ne such a
function as the integral of

c :D
µ

x

uLPV

¶T µ
QLPV S

ST RLPV

¶

| {z }
Z

µ
x

uLPV

¶
(10)

By de� ning G :D R¡1
LPV ST and the transformation u :D uLPV C Gx ,

Eq. (10) can be rewritten as

c D
µ

x

u

¶T µ
QLPV ¡ SG 0

0 RLPV

¶ µ
x

u

¶
(11)

The weightingmatrices for the uncoupledcost are Q :D QLPV ¡ SG
and R :D RLPV. De� ning A :D ALPV ¡ BLPVG and B :D BLPV, the
dynamics are represented by

Px D Ax C Bu (12)

A full-state LPV feedback regulator is designed for Eq. (12) in the
following section.

V. Synthesis of CLF and LPV Regulator
A. Terminal Cost Upper Bound

The in� nite horizon optimal control problem is de� ned here:
given Q ¸ 0 and R > 0,

J1.x0/ :D min
u.¢/

Z 1

t0

.x T Qx C uT Ru/ dt

subject to

Px D f .x; u/; x.t0/ D x0

The RHC approach seeks to solve the preceding problem by recur-
sively solving the following � nite horizon optimal control problem
(FHOCP): de� ningÁ[x.t0 C T /] as the cost from t D t0 C T onward,
the FHOCP is

J1.x0/ D min
u [t0 ;t0 C T ]

Z t0 C T

t0

.xT Qx C uT Ru/ dt C Á[x.t0 C T /]

We seek to calculate an upper bound to Á[x.t0 C T /], the “cost-
to-go.” Assume there exists a matrix function P > 0 such that
8½.t/ 2 P; P.½/ > 0, and ° > 0,

MX

k

Nv
¯ k

@ P

@½k
C AT .½/P.½/ C P.½/A.½/

¡ P.½/B.½/R¡1 BT .½/P.½/ C Q · ¡° I (13)

Note that Eq. (13) represents not one but 2M inequalities,each one
containinga different combinationof upper and lower boundson v;
by Eq. (9) M D 3. De� ne

V .x; t; ½/ :D x T P[½.t/]x

Along trajectories of Eq. (12),

PV D xT

"
AT .½/P.½/ C P.½/A.½/ C

X

k

P½k
@ P

@½k

#
x

C uT BT .½/P.½/x C x T P.½/B.½/u

Given Eq. (13), we can bound PV ,

PV · xT [¡° I C P.½/B.½/R¡1 BT .½/P.½/ ¡ Q]x

C uT Ru ¡ uT Ru C uT BT .½/P.½/x C x T P.½/B.½/u

·
®®R

1
2 u C R¡ 1

2 BT .½/P.½/x
®®2

2
¡ xT Qx ¡ uT Ru

Integration of the second line results in

V [x.1/] ¡ V [x.t0/] ·
®®R

1
2 u C R¡ 1

2 BT .½/P.½/x
®®2

2

¡
Z 1

t0

[x T Qx C uT Ru] dt

from which it is clear that choosing

u :D ¡R¡1 BT .½/P.½/x (14)

minimizes the right-hand side. This indeed results in x.t/ ! 0 and
V .1/ D 0, which means that

Z 1

t0

.x T Qx C uT Ru/ dt · V [x.t0/]
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that is, xT .t/P[½.t/]x.t/ is an upper bound on the terminal cost of
the FHOCP. The RHC cost function follows:

J [x.t0/] · min
u.¢/

Z t0 C T

t0

.xT Qx C uT Ru/ dt

C x T .t0 C T /P[½.t0 C T /]x.t0 C T /

B. LPV Regulator and CLF
The problem formulation that was used to obtain the CLF and

LPV regulator is shown here. Assuming Nxi represents some typical
initial conditions, a speci� c P.½/ can be found by the following
minimization:

min
NX

i

NxT
i P Nxi

De� ne W :D [ Nx1 ¢ ¢ ¢ NxN ], then

tr[W T PW ]

is equal to the summation in the preceding minimization. Because
the af� ne matrix inequalities(AMI) in Eq. (13) are not convex in P ,
de� ne X :D P¡1. Pre- and postmultiplyingEq. (13) by P¡1 , noting
that

@ X

@½k
D ¡P¡1.½/

@ P

@½k
P¡1.½/

results in
X

k

¡Nv
¯ k

@ X

@½k
C X .½/AT .½/ C A.½/X .½/

¡ B.½/R¡1 BT .½/ C X .½/Q X .½/ · 0

Applying Schur complement and de� ning C :D Q
1
2 yields the

following problem formulation:

min
Y;X ¸ 0

tr[W T Y W ]

subject to
µ

Y .½/ I

I X .½/

¶
¸ 0

2

6664

¡
3X

k D 1

Nv
¯ k

@ X

@½k
C X .½/AT .½/ X .½/C T

C A.½/X .½/ ¡ B.½/R¡1 BT .½/

C X .½/ ¡I

3

7775 < 0

Solution of this problem yields the positivede� nite X .½/ 2 R12 £ 12,
which is used to calculatethe controlinput (14) and theCLF (Ref. 9):

V .x/ D xT X¡1.½/x (15)

VI. RHC Problem Formulation
For receding horizon control the optimization problem is set up

as follows:

J D min
u.:/

Z t0 C T

t0

L.x; u/ dt C x T X ¡1.½/x jt0 C T (16)

subject to

Px D f .x; u/; x.t0/ D x0

where L.x; u/ is a positive de� nite function of x.:/ and u.:/.
The F-16 equationsof motion are used in Eq. (16) to compute the

optimal control trajectoryand in Eq. (2) to update the systems states
with that control.The accuracyof themodeldeterminestheaccuracy
of the state and control trajectories obtained from the simulations.
The trajectories obtained from a LPV model will be different from
that of the nonlinear model as LPV systems are not exactly same as

their nonlinear parents. Several assumptionswere made in deriving
the LPV model that RHC algorithm can potentially exploit. These
defects could yield unrealisticoptimal control and state trajectories.

For example, in the formulation of the F-16 quasi-LPV model
the direction of gravity was held constant and ® was set equal to
µ . These were obviously simplifying assumptions that eliminated
physical constraints from the problem. Using the LPV model as
the simulation “truth” model in the RHC optimization led to ® and
¯ state trajectories that instantaneously went from their nonzero
perturbedstate to zero with minimal control activity.Hence, the full
nonlinearsimulationwas henceforthused in the RHC optimizations.

VII. Formulation of Control Space for Optimization
A common practice for solving optimal control problems is to

convert them into parameter optimization problems. There are sev-
eral methods available for conversion.22 Numerical integration,col-
location,direct transcription,and differentialinclusionare examples
of these conversion methods. Most of these techniques are simi-
lar in nature and differ by what is guessed (state or control), how
the integration is carried out (implicit or explicit), and the order
of integration. This process of conversion is called “suboptimal”
control because search is restricted to a particular subspace of the
� nite dimensional control space. For our RHC simulation we have
used B-splines23 to formulate our control space.24 For a r th-order
B-spline the control vector is de� ned as

u.t/ D
N C r ¡ 1X

k D 1

®k Ák.t/ (17)

where Ák .t/ D Bk;r;tN .t/ are normalized scalar B-spline basis func-
tionsde� nedona uniformsequenceof breakpointsor knot sequence
tN D fk4tgN C r ¡ 1

k D ¡r C 1 as

Bk;r C 1;tN .t/ D
t ¡ tk ¡ r ¡ 1

tk ¡ 1 ¡ tk ¡ r ¡ 1
Bk ¡ 1;r;tN .t/ C ¢ ¢ ¢

tk ¡ t

tk ¡ tk ¡ r
Bk;r;tN .t/; r ¸ 1

Bk;1;tN .t/ D
»

1 : tk ¡ 1 · t · tk

0 : otherwise (18)

and N is the number of time intervals, ®k 2 R4 the parameter of
optimization, and 1t the time step in discretised horizon.

As an example, for a horizon length of 0.3 s and discrete time
step of 0.05 s we have N D 6 intervals. If we use third-order
B-splines, that is, piecewise quadratic polynomials, then the num-
ber of parameters that determine the control trajectory would
be N C r ¡ 1 D 6 C 3 ¡ 1 D 8 for each control, making a total of
4 £ 8 D 32 parameters to optimize. The knot sequence for this
case would be tN D f0:05 £ kg8

k D ¡2 with N C 2r ¡ 1 D 11 break
points. To understand visually how B-splines are constructed, con-
sider a knot sequence k D [0; 0:05; 0:1; 0:15; 0:2; 0:25] and ® D
[0:4001; 0:1988; 0:6252]. The coef� cient vector for this example
is chosen at random. The resulting graph and basis functions are
shown in Fig. 1. The resulting curve, shown in solid line, is the

Fig. 1 Plot of B-spline functions used to construct a trajectory, basis
functions (·, ·– , –), and resulting curve (——).
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summation of the three nonsolid curves. The shape of the curve
is determined by the knot sequence, the order of B-spline, and the
coef� cient multiplying each basis function. A third-order B-spline
exhibitspositional,� rst derivative,and secondderivativecontinuity.

VIII. Simulation Setup
A. F-16 Model

The systeminterconnectionfor theF-16aircraftis shown in Fig. 2.
The controlobjective is to regulate the system from a perturbedstate
back to a trim condition using receding horizon control. The opti-
mization to compute optimal open-loopcontrol trajectory is carried
out every 0.05 s, that is, the receding horizon controller runs at
20 Hz. The LPV controller runs every 0.01 s (100 Hz). A fourth-
order Runge–Kutta integrator is used to update the system states.
The step size for the integrator is 0.01 s, same as the LPV controller
sampling rate. The F-16 model used for state updates and control
trajectory synthesis is a full nonlinear model given in Eq. (2). The
aircraftmodel is written in ANSI C, which includes routinesneeded
to interpolate aerodynamic data from look-up tables. The airplane
is trimmed at an altitude of 10,000 ft and angle of attack ® D 7 deg.
Trimming is done by minimizing a quadratic cost function of the
moments acting on the aircraft. Although the full nonlinear model
has 12 aircraft states, we have only considered the state trajectories
that are common with the LPV plant, that is, (Vt ; ®; ¯; p; q; r; Á; µ ),
the controls are the same as original, that is, .T; ±e; ±a ; ±r /. The
control signals generated by the LPV and RHC controllers are the
synthetic inputs. The actuator and the trim values are for control
vector .±a ; ±r ; u1; u2/. They are converted to .T ; ±e; ±a; ±r / by the
block labeled as »¡1 . The actuatorsare modeled as � rst-order linear
systems with the following properties:

j±a j · 20 deg; j P±a j · 80 deg/s; ¿s D 0:0495-s lag

j±r j · 30deg; j P±r j · 120 deg/s; ¿s D 0:0495-slag

ju1j · 63 deg; j Pu1j · 137:51 deg/s; ¿s D 0:0495-s lag

ju2j · 45:84 deg; j Pu2j · 57:3 deg/s; ¿s D 0:5-s lag

The magnitude and rate bounds of the actuators are implemented
in the nonlinear simulation.

B. Numerical Details
Numerical analysis is a key part in receding horizon control sim-

ulations. Formulation of control space, integration algorithm used
to update states and most importantly the optimization software
all require numerical computation. Using higher-order algorithms
provides better results, but it is also computationally expensive.
Therefore one has to compromise between accuracy of solution
and computational time. The on-line nature of the receding horizon
control law has stringent real-time demands on the software used.
We are still quite far from applying such control laws to aerospace
problems in real life, based on the formulation in this paper. Never-
theless, an effort has been made to reduce the execution time of the
nonlinear simulation software as much as possible. The following
subsections brie� y describe the tuning of the NPSOL software and

Fig. 2 System interconnection.

� ner numerical details that helped in reducing the computational
time.

1. NPSOL
NPSOL is the heart of our simulation software. Details are

explained in the NPSOL user manual. NPSOL is an optimiza-
tion package written in FORTRAN. This was converted to
ANSI C using f2c, which can be obtained from ftp://netlib.bell-
labs.com/netlib/f2c/src.tar. The ANSI C version of the library is
30–50% slower than the original FORTRAN version. We used the
ANSI C version because of the convenience in linking and compil-
ing with other ANSI C modules of our simulation package.

The algorithm and software parameter selection for NPSOL is
brie� y described here:

1)NPSOL usessequentialquadraticprogramming(SQP) fornon-
linear optimization.The SQP algorithm requires the gradient of the
cost function with respect to the optimization parameters. The user
has the option to supply these gradients as user-de� ned functions,
or let NPSOL determine them numerically. We chose the latter for
convenience at the expense of computational time.

2) The basic structure of NPSOL involves major and minor it-
erations. The minor iterations solves a quadratic subproblem that
determines the search direction. Once the search direction has been
computed, the major iteration proceeds to the next iterate, which
produces a suf� cient decrease in the augmented Lagrangian merit
function.The sequenceof iteratesfrom themajor iterationsconverge
to a � rst-order Kuhn–Tucker point of the nonlinear optimization
problem.Naturally, the limits on the maximum iterationnumber for
both major and minor iterations affect the solution of the problem.
A large limit will give more accurate results but will take a long
time. A smaller limit will reduce execution time, but results could
be far from optimal. For our simulations we set the limit on the
major iterations to 10 and 5 for the minor iterations. These limits
might not be suitable for all RHC simulations with various horizon
lengths. One has to tune them to suit the problem. For example, for
a horizon length of 0.4 s and major iteration limit set to 10, the RHC
solution resulted in destabilizing the system. When the major itera-
tion limit was increased to 20, the resulting trajectories were stable
and gave cost-to-go consistent with the 0.3 and 0.5 horizon length
optimizations.Hence, it is important to monitor the trajectoriesand
tune parameters accordingly.

3) Optimization on bounded parameters is usually faster than
for unbounded ones. The actuator model imposes rate and mag-
nitude limits on the control action. Incorporating these constraints
into the parameter optimization formulation improves the numeri-
cal conditioning of the problem. The bounds on the parameters of
optimization ®k 2 R4 control the magnitude limits of the B-spline
curves generated. We de� ned the bounds of the control rates to be
the bounds of these parameters. To explain the reason behind this,
consider the state-space formulation of a � rst-order actuator:

Pxact D .¡xact C u in/=¿; uout D xact

where ¿ is the time constant, xact is the actuator state, uin is the
signal at input, and uout is the signal at output of the actuator. For
our case uin is de� ned as uin D urhc C ulpv (see Fig. 2), the sum of
signals from the receding horizon controller and the prestabilizing
LPV controller. Thus,

Pxact D .¡xact C u rhc C u lpv/=¿

B-spline curves generated with ®k form the time trajectory of urhc,
which in� uences the trajectory of Pxact . Because we are indirectly
shaping the control rate trajectory with our manipulated variables
u rhc.®k /, bounds on the optimization parameters ®k are selected
based on the limits associatedwith control rates Pxact . The stabilizing
controller u lpv acts in addition to u rhc. Bounding u rhc with limits of
Pxact does not guarantee boundedness of Pxact . The control rates and
magnitude are kept within limits with the use of saturation blocks
in the F-16 simulation model.

4) NPSOL needs an interval to be de� ned over which gradients
can be estimated via � nite difference. If a difference interval is
not speci� ed by the user, NPSOL computes it automatically with a
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procedure that requires six calls to the cost function.Because this is
computationally expensive, we de� ned this function discretization
interval as 0.001 for our simulations.One has to be careful to select
a small enough interval such that the gradients obtained from � nite
differences are accurate. The solution time with interval speci� ed
is 185.06 s, and without it is 334.9 s. Thus providing the interval
reduces computation time by 44.74%.

5) Warm start was implemented from the second solutionof opti-
mal control. The time with warm start is 185.06 s, and time without
is 175.41s. Warm start actually increased the solutiontime by 5.5%.

6) Optimality tolerance was set to 0.01. The optimality tolerance
determines the desired accuracy of the optimal solution. For ex-
ample, with a tolerance of 10¡6 the solution will have six correct
� gures.

2. Simulation Details
This section presents the numerical information required for im-

plementation of receding horizon control law:
1) The optimization to generate the control trajectories was per-

formed every 0.05 s. Because this optimization determines the op-
timal command from the current state, this is equivalent to saying
that the feedback information was provided every 0.05 s.

2) Third-order B-splines were used in the control space formula-
tion. This assumes the control trajectory behaves as quadratic poly-
nomials in the time interval used to discretise the horizon length.
A second-orderB-spline would yield a piecewise linear control tra-
jectory, and a � rst-order B-spline would form a piecewise constant
control trajectory. Because we have four control variables to ma-
nipulate, reducing the order of B-spline r by one reduces the total
number of parameters 4.N C r ¡ 1/ by 4, for a given number of
intervals N in the horizon length. Reducing the number of para-
meters will reduce the computational time, but the set of allowable
control trajectories is also reduced. The effect of B-spline order on
cost-to-go is explained later in this paper.

3) A fourth-orderRunge–Kutta algorithm is used to integrate the
system with � xed step size of 0.01 s. The control for each time step
in the numerical integrationwas computedfrom the B-spline curves
that resulted from the optimization.

4) The entire simulation software, including the nonlinear F-16
model, aerodynamic data interpolation algorithms, basic linear al-
gebra computation, is implemented in ANSI C.

IX. Results
This section presents the results of the receding horizon con-

trol optimizationsimulation,with the state-feedbackLPV controller
used both for prestabilizing and as the CLF in the RHC formula-
tion. The performance of RHC and LPV controllers are compared
in terms of the cost incurred to reach the origin from a given initial
condition. Unfortunately, the computational time of the RHC algo-
rithm is about 30 times slower than real-time requirements.A 5.0-s
simulation took 149 and 9348 s CPU time for horizon lengths of 0.1
and 1.0 s, with third-order B-splines as the basis for control space
formulation and 0.05 s horizon length discretization.

As mentioned earlier, the F-16 model was trimmed at an altitude
of 10,000 ft and 7-deg angle of attack. The trim states and controls
at this � ight condition are

8
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>>>>=

>>>>;

D

8
>>>><

>>>>:

387:5797 ft/s
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7:700 deg

9
>>>>=

>>>>;

(19)

The remaining states and controls are zero at trim. The initial condi-
tion of the system was set by addinga 15- and 10-degperturbationin
angle of attack ® and sideslip angle ¯ , respectively.The control ob-
jective is to return the aircraft to its trim condition while respecting
the limits on actuator magnitude and rates.

Results for 5.0 RHC simulationwith horizonlengths 0.1 and 1.0 s
are shown in Figs. 3–6. The plots are of the trajectories traversed
by the system in course of the simulation. The control trajectories

Fig. 3 State perturbation trajectories, horizon length = 0.1 s: ——,
RHC and – – – , LPV.

Fig. 4 Control perturbation trajectories, horizon length = 0.1 s: ——,
RHC and – – – , LPV.

shown are the actuator outputs and not the controller outputs, and
hencetheysatisfymagnitudeand ratebounds.The cost, computedas

J D
Z 5:0

0

[x uLPV]P

µ
x

uLPV

¶
dt (20)

for LPV control is 128.47, with
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µ

P11 P12

P21 P22

¶

16 £ 16

P11 D diagf6:25 £ 10¡4; 205; 3282; 156; 277; 100; 3282; 820; 217;
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Table 1 Cost variation with horizon length

Horizon length, s Cost CPU time, s

0.1 89.92 149
0.2 82.54 412
0.4 77.98 1989
1.0 77.23 9348

Fig. 5 State perturbation trajectories, horizon length = 1.0 s: ——,
RHC and – – – , LPV.

Fig. 6 Control perturbation trajectories, horizon length = 1.0 s: ——,
RHC and – – – , LPV.

Nonlinear simulations reveal that the RHC cost is signi� cantly
smaller than the LPV cost. This is re� ected in the fast convergence
of the perturbations to origin. The variation of cost with horizon
length and B-spline order (r ) is given in Table 1.

The horizon length plays an important role in the performanceof
the recedinghorizoncontroller.It can be inferredfromFigs. 3–6 that
the state and control trajectoriesbecome less oscillatoryas horizon
length is increased. The effect of horizon length on the trajectories
can be explained by drawing analogies between proportional inte-
gral differential (PID) controllers and receding horizon controllers.

For horizon lengths that are small compared to the speed of re-
sponse of the system, the system response to a given control input
within that time span appears to be sluggish.Thus the recedinghori-
zon controller detects a slower system for short horizon lengths. It
tries to minimize the objective function in this small time interval
by applying large control inputs. A large control input is feasible
because its contribution to the overall cost is small when integrated
over a short time interval. In the linear system framework this is
analogous to increasing the rise time by raising the controller gain.
But increasing the controller gain increases the band width and
reduces the phase margin of the closed-loop system, which might
cause instabilityin the system.This is not possiblebecausethe RHC
algorithm with a suitable terminal penalty is also stabilizing. The
receding horizon controller restores stability by introducing a dif-
ferential control action in the control trajectory. This increases the
phasemargin. However, a large differentialcontrolaction is not fea-
sible because its in� uence on the rise time is not signi� cant. Thus, it
cannot be large enough to fully compensate for the effects of a high
loop gain. Therefore the reduced phase margin causes oscillations
in the system trajectories.

In our simulations the RHC optimization with horizon length of
0.05 s led to control trajectories that caused limit-cycle-like be-
haviour in the system. This phenomenon can be explained based
on the speed of response of the system. The � rst-order actuators in
the F-16 aircraft model have time constant of 0.049 s. Therefore
a horizon length of 0.05 was too short for the RHC algorithm to
observe the effects of a given control input. The sequenceof consis-
tent large control inputs led the system into instability. For longer
horizon lengths the system is able to fully respond to a given con-
trol input. The RHC algorithm is able to observe both transient and
posttransient effects of the system. This rich information about the
system’s responseyields control trajectoriesthat are less aggressive.
The resulting system trajectories are smoother and more optimal.
The variationof thecost-to-gowith horizonlength is shownin Fig.7.

The overall cost-to-gois lower for longerhorizonlengthsbecause
the RHC algorithm has richer knowledge of the system behavior to
a given input, and so better is the decision on optimality for every
control trajectory generated. This also translates to the fact that
optimizationover longertimehorizonreducesthecontributionof the
terminal cost on the total cost.Because the terminal cost servesas an
approximationthat is greater than the valueof the truncated integral,
reducing its contribution yields a total cost that is closer to the
optimal. It is also observedthat increasingthe horizonlengthbeyond
a certain time does not improve the performance of the controller
in terms of the cost-to-go. This is because for a long enough time
horizon the system is steered close to the origin within that time,
and the value of the truncated integral is almost zero. The horizon
length has reached in� nity relative to the system response time.

From the simulation we conclude that combination of LPV and
receding horizon controller provides a better performance than the
LPV controller alone. The difference is signi� cant even for small
horizonlengthsand low B-splineorders.The combinationof the two
controllers yields control trajectories that are able to aggressively
maneuver the state perturbations to the origin and at the same time
satisfy limitations on the control rate and magnitude.

The choice of B-spline order is governed by the order of the inte-
grator used. For fourth-order Runge–Kutta integrators we can only

Fig. 7 Cost vs horizon length (B-spline order = 3): – – –, LPV cost and
——, RHC cost.
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use B-splines of order 1, 2, and 3 (Ref. 24). Because NPSOL com-
putes� rst- and second-ordergradientsof cost with respectto control
numerically, the formulated control subspace should at least have
second-ordercontinuity.This limitsus to only third-orderB-splines.
Using lower-order B-splines will reduce the number of parameters,
and that will clearly reduce the computationaltime. However, its not
clear what will be its effect on the overall system behavior. Owing
to this numerical issue, the effect of B-spline order has not been
investigated in this paper.

The RHC simulations were done on a 400 Mhz Pentium II ma-
chinerunningDebianLinux.The entiresimulationsoftware, includ-
ing the F-16 system model, interpolation routines for aerodynamic
data, basic linear algebra computation, and numerical integration,
is written in ANSI C. The optimization package NPSOL came as
FORTRAN routines, which were converted to C using f2c.

X. Conclusions
The combinationof on-line receding horizon control and off-line

linear, parameter-varyingregulator design, led to improved perfor-
mance on an F-16 � ight control example.The LPV regulator is used
to prestabilize the unstable F-16 aircraft and as a control Lyapunov
function endpoint penalty in the RHC optimization. The numerics
of the nonlinear RHC optimization is a signi� cant issue. The con-
vergence of the RHC optimizations and the overall computational
time are some issues that need to be examined in order to achieve a
reliable on-line control algorithm.
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