
Proceedings of the American Control Conference
Arlington, VA June 25-27, 2001

Motivating Hierarchical Run-Time Models in Measurement and
Control Systems

Jie Liu t, Stanley Jefferson*, and Edward A. Lee t

tDepartment of EECS *Agilent Laboratories
University of California, Berkeley Agilent Technologies

Berkeley, CA 94720, USA Palo Alto, CA 94304, USA
{ liuj, eal } @ eecs.berkeley.edu stan_jefferson @ labs.agilent.com

Abstract

Measurement and control systems are intrinsically distrib-
uted and real-time, as they contain sensor and actuator
nodes that interact with the physical world directly. Embed-
ded software in the computational nodes is responsible for
timely reaction to sensor data, and for producing actuation.
This paper reviews run-time computation models for this
kind of real-time embedded software, from message seman-
tics, message acquisition, and the dataflow/control f low
perspectives. In general, dataflow centric models are natu-
ral for describing measurement and control algorithms and
easy to use in distributed systems, but they lack mechanisms
for control!ing the execution order to fulfill timing con-
strains. Control-flow centric models are good at handling
real-time requirements but are hard to distribute and some-
times hard to analyze. Although most practical run-time
models to some extent support both dataflow and control
flow, they are hardly universal. In complex applications, it is
desirable to use different models in different parts of the sys-
tem or under different modes of operation. Cleanly integrat-
ing multiple run-time models is a challenging task. In this
paper, we motivate a hierarchical architecture for compos-
ing run-time models, based on the Ptolemy H component
framework and models of computation. Unlike traditional
real-time operating systems that provide only one flat layer
of abstraction, the hierarchical architecture enhances flexi-
bility, scalability, and reliability of MC systems by mixing
and matching multiple run-time models in a disciplined
way.

Keywords: run-time models, hierarchical heterogeneity,
real-time systems, embedded systems.

1. Introduction

Measurement and control (MC) systems are distributed real-
time computing systems that interact directly with the phys- •

q[. This work is supported by Agilent Technologies, and the
Ptolemy project, which is supported by DARPA/ITO, the State
of California MICRO program, and the following companies:
Agilent, Cadence Design Systems, Hitachi, Hughes Space and
Communications, Motorola, NEC, and Philips.

ical world. A typical MC system has sensor nodes, comput-
ing nodes, actuator nodes, and a communication subsystem
that connects the nodes. As computation and communica-
tion resources get more economical and reliable, MC sys-
tems are becoming more complex and software-enabled.
This increases the complexity of embedded software run-
ning on computational nodes. This kind of software usually
carries tasks for controlling peripherals, collecting informa-
tion, analyzing data, and producing reactions.

Run-time software for MC systems differs from its design-
time counterpart and desktop software in many ways:
• Real rtime. Most run-time software for MC systems has

constraints (either hard or soft) on the response time.
• Concurrency. MC systems directly interact with the

physical world, so it is intrinsically concurrent. At the
very least, the embedded system and its environment are
operating concurrently.

• Real I/O. The interaction between a MC system and its
environment are going through samples and events. How
the state of the physical world is reflected in the computer
is an important part of run-time models.

Following [15], we view a piece of software for MC sys-
tems as an aggregation of software components that interact
with each other and with the environment by exchanging
messages. These components could be processes, subrou-
tines, or objects. A run-time model is a set of rules that gov-
erns the execution and interaction of these components.
Run-time models are usually operating system (OS) con-
cepts; for example, they may appear as part of real-time
operating systems (RTOS) or virtual machines. They may
also appear as application-specific schedulers or event dis-
patchers. As MC systems become networked, the concept of
run-time models extends beyond single computer platforms.

Embedded real-time software has been an active research
area for over 20 years. Many models have been proposed
with different performance, predictability, and scalability
[8] [10] [14] [18] [21]. However, as systems become more
complex and large scale, no single model may fit for all
applications. Nowadays, embedded real-time software is
still a mixture of formal models and hand-tuned code, which
make them hard to scale up, analyze and debug. It is also

0-7803-6495-3/01/$10.00 © 2001 AACC 3457

worthwhile to realize that different real-time models also
impose different requests on hardware and system infra-
structure. The designers must have a system-level under-
standing of the models and their implications.

This paper reviews some run-time models that can be used
for MC software, in terms of their qualities of performance,
predictability, and scalability. We argue that the traditional
way of mapping all applications to a single run-time model
is fragile and unscalable. We motivate a hierarchical run-
time architecture based on the Ptolemy II component frame-
work and models of computation [4]. By mixing and match-
ing multiple run-time models, this architecture can ease the
process of MC software development and improve run-time
understandability, scalability, and reliability.

The rest of the paper is organized as follows. Section 2 dis-
cusses some perspectives on studying run-time models for
MC systems, in terms of message semantics, data flow and
control flow, and the notion of time. Section 3 gives some
examples of run-time models. Section 4 motivates a hierar-
chical architecture for run-time embedded software. Section
5 discusses related work.

2. Perspectives on Run-Time Models

2.1. Messages in MS systems

MC systems have the physical world, in addition to users, as
their environment. The environment generates messages
that could be user commands, clock signals, alarms, as well
as samples of physical variables like voltage, temperature,
pressure, etc. A MC system responds to these messages and
controls the behavior of the environment by producing out-
put messages.

It is important to notice that the environment operates con-
currently with the MC system. The MC system operates
according to some run-time models, while the environment
operates under its own laws of physics. In particular, in the
physical world, time is continuous and flows at a constant
rate. The environment never holds itself to wait for the next
input. And, if an event occurs, the environment does not
care whether the MC system is ready to receive it. Thus, the
messages at the boundary of MC systems and their environ-
ment need to be carefully examined, especially when there
is a mismatch on the execution rates.

2.1.1 Message semantics

Following Kopetz [13], we loosely classify two kinds of
message semantics: event and state.
• Event semantics requires that the receiver of messages

processes every event exactly once. The loss of a single
event may lead to a misunderstanding between senders
and receivers. If there is a mismatch between the produc-
tion and consumption rates of events, a blocking mecha-

nism or a queuing mechanism may be introduced to force
synchronization. Event semantics can be further classified
by whether the events carry time stamps, how they are
ordered, and how to force synchronization.

• State semantics reflects the current state of the physical
world. It is reasonable to only keep the most recent sam-
ples of physical states. The rate mismatch between send-
ers and receivers can be solved by overwriting older data.
State messages are usually seen in control-oriented real-
time systems, where controllers only deal with the latest
state of plants. Kopetz argues that in MC systems, state
messages are far more frequent than event messages [13].
This argument may be overstated, but it reflects a funda-
mental difference between computing in MC systems and
computing in traditional transaction-processing systems.

It is important to distinguish the message semantics from the
general understanding of events and states. For example, in
a data acquisition system, the data to be recorded are the
"states" of a physical process. But if every sample is impor-
tant, we may take the event semantics, and queue the sam-
ples if recording is slower than sampling.

2.1.2 Message acquisition styles

Traditionally, designers of MC systems think in terms of two
styles of external message acquisition - pushed or pu~lled. A
pushed message is actively sent by the sensor nodes, while a
pulled message is queried by the computation nodes. Pushed
messages usually generate interrupts. Although interrupts
allow messages to be processed as soon as possible, they are
one of the biggest sources of uncertainty in run-time soft-
ware. Pulled messages does not generate interrupts, but they
require extra CPU cycles for polling, and thus reduce the
performance of the computational nodes.

As sensor nodes and communication systems become more
intelligent, the boundary of push and pull styles is blurred.
For example, a message pushed by a sensor can be locally
cached by the communication layer of the computational
nodes (as in TTP [14]) or middleware (as in Real-t ime
CORBA [9]), and the run-time software will never notice
that it is pushed. In addition, when there is a uniform notion
of time in the system, sensors can time tag their readings,
and the computational nodes do not have to poll the sensors
very frequently. So, from the viewpoint of run-time soft-
ware, the fundamental difference of message acquisition
styles is whether they generate interrupts, and how the soft-
ware responds to them.

2.2. Data Flow and Control Flow

It is helpful to look at real-time software models from the
dataflow 1 and the control-flow perspectives. The dataflow

1. The term "dataflow" used here is close to but somewhat
broader than that in dataflow programming languages.

3458

perspective focuses on the data dependencies among com-
ponents. A software component processes its input data and
produces output data so that other components can use them.
A component is eligible to execute when there are enough
data to be processed. Most measurement and control algo-
rithms, like filters, difference equations, compensators, and
regulators can be conveniently specified in a dataflow way.
In other words, in MC systems, the dataflow view of embed-
ded software is close to the problem domain. Generally, the
dataflow view only imposes a partial order on the execution
of components. So, pure dataflow models have great flexi-
bility on dealing with concurrency and are easy to scale up.
On the flip side, the partial order of execution makes it
harder for dataflow models to fulfill real-time constrains.

The control-flow perspective, like task scheduling and mode
switching, focuses on controlling when a certain compo-
nents be executed. The flow of control usually depends not
only on the availability of data, but also on many other
things, like the current state and time of the system, task pri-
orities, and deadlines. It is thus straightforward to control
the execution order so that the real-time requirements can be
met, at least for simple systems. Control-flow centric mod-
els, although being capable of managing real-time proper-
ties, do not solve all MC software challenges. Some control-
flow formalisms do not match the problem domain very
well and the tight control on the execution order may make
these models hard to reconfigure, hard to scale up and hard
to use in distributed systems.

2.3. Notion of Time

Time, although being the most important concept in real-
time systems, is not part of the computation in most models.
This is partly because traditional computer sciences have
systematically removed the notion of time from computer
theories and partly because maintaining a synchronized time
across platforms is difficult.

However, the development on hardware description lan-
guages (like VHDL and Verilog) and the study on discrete
event systems [17] has shown that time can be an intrinsic
part of computational models. Recent advances in timekeep-
ing [1], time synchronization [14][25], and smart sensors
and actuators [24] also show that the cost is relatively low to
maintain a global notion of time in distributed MC systems.
These technologies enable new infrastructure for real-time
systems and time-based models [13] [22].

3. Run-Time Models

In this section, we give some examples of run-time models.
This is by no means a complete list. The intent is to give a
hint of the diversity of run-time models, their assumptions,
and their quality of service.

• P r i o r i t y - d r i v e n mu l t i t a sk ing

Most real-time operating systems take priority-driven multi-
tasking as their run-time model [2]. In this model, the soft-
ware components are tasks, which are finite computations
that process inputs and produce outputs. Individual tasks are
usually highly dataflow oriented. Tasks may communicate
through global variables, buffers, or queues. Tasks become
eligible when they have enough inputs. When multiple tasks
are eligible but the resources are limited, the run-time sys-
tem chooses a task with the highest priority to execute.

There are various algorithms deal with when and how to
assign priorities to tasks. The most famous ones are the rate
monotonic scheduling and the earliest-deadline-first sched-
uling [18], which yield optimal CPU utilization under cer-
tain conditions. A basic assumption in these algorithms is
that tasks can be arbitrarily preempted. In reality, this
assumption may not always hold, and brute-force applica-
tion of the algorithms may introduce undesirable phenom-
ena, l ike pr ior i ty invers ion [20]. An a l t e rna t ive is
nonpreemptive scheduling or cooperative multitasking.
Although nonpreemptive scheduling may have weaker
schedulability and lower CPU utilization than preemptive
ones, they are more robust and easier to scale up. If tasks
are short enough, nonpreemptive scheduling may provide
close-to-optimal performance with small context switching
overhead.

Priority-driven models are typically used within one compu-
tational node. The distribution of such models requires the
syste m to be coherent [21], which is stronger than priori-
tized event dispatching and a system-wise understanding of
priorities. These requirements may be hard to maintain
across heterogeneous platforms.

• T i m e - t r i g g e r e d arch i t ec tures

Time-triggered architectures [14], assume the state seman-
tics of messages, and control the execution of components
solely based on elapsed time. A distributed time-triggered
architecture needs a time-division-multiple-access (TDMA)
communication protocol and (roughly) synchronized clocks
across nodes, which may require additional hardware sup-
port. In these models, time is segmented into frames. Com-
putation and communication are both triggered by the start
of a time frame, and they must finish by the end of the time
frame. Since time triggered architectures directly address
time in the computation, they can guarantee to deliver hard
real-time performance. On the flip side, they usually have
low CPU utilization and are too rigid for soft real-time
applications.

• S ta te m a c h i n e s

At run time, state machine models can be used in two levels,
within a component or across components. Within a compo-
nent, state machines are sequential and apply precise control

3459

to component states and transit ions among them. State
machines are amenable to in-depth analysis and formal veri-
fication, which make them desirable for safety critical sys-
tems. Many design-time models, like Statechart [7], Esterel,
Signal, and Lustre [6], synthesize their components into
state machines to be executed.

State machines can also be used across components to coor-
dinate other models. The typical use is to specify operation
modes and sequences among components. The Statechart
formalism is an example of using high-level state machines
to coordinate low-level state machines. The "*charts" (pro-
nounced star-charts) model [5] extends the coordination to a
huge variety of concurrent models. Hierarchically combin-
ing state machines with concurrent models makes state
machines concurrent and helps to prevent the explosion of
the number of states in complex systems. But when and how
to make state transitions remain challenging issues. Care-
lessly implemented concurrent models and randomly made
transitions may lead the system to non-quiescent states,
which should be avoided at all cost.

• Asynchronous message passing

In asynchronous message passing, components are pro-
cesses communicate by sending messages through FIFO
queues. The sender of a message need not wait for the
receiver to be ready to receive the message. There are sev-
eral variants of this model, for example, various dataflow
models, but they share the same property that components
are loosely coupled. Thus, these models are easy to distrib-
ute. Most asynchronous message passing mechanisms
impose few constrains on the execution order of compo-
nents, which makes the performance of such models highly
unpredictable.

Synchronous dataflow (SDF) [16] is a particularly restricted
specia l case of a synchronous m e s s a g e pass ing with
extremely useful properties. In SDF, whenever an compo-
nent executes, it consumes a fixed amount of input data and
produces a fixed amount of outputs. This property makes
questions like deadlock and boundedness decidable [12].
For a consistent SDF model, a schedule can be computed,
such that the components do not have to test for sufficient
data before execution. So, for computation that has a fixed
structure, SDF is very efficient and predictable.

• Publish and subscribe

Publish and subscribe (P/S) models extent event dispatching
mechanisms to distributed systems. In P/S models, event
channels [11], also known as a persistent object spaces,
mediate the communication between senders and receivers.
Since no direct channel needs to be established between
senders and receivers, P/S models are good for managing
communicating peers that join and leave a federation. Prior-
itized P/S models dispatch events according to their priori-

ties [9], so it gives more fine-grained control on the order of
transmitting events.

• Time-Synced event driven

When there is a highly accurate synchronized time across a
distributed system, the nodes can coordinate their operation
with respect to time. In particular, sensor nodes can attach
time stamps to their readings and these time stamps will
make sense at the computational nodes. Computat ional
nodes can send time-stamped outputs to actuators and the
actuator will perform the output at the right time without
further involvement from computational nodes. This mecha-
nism frees the computational nodes from time tracking and
allows them to process events faster than real time, and thus
called faster-than-real-time computation [22].

4. Hierarchical Run-Time Models

Complex MC systems usually have multidimensional qual-
ity of service requirements. Some parts of a system may
require hard real-time guarantees, some parts may require
high utilization of resources, and some other parts may
require immediate response to spontaneous events. These
requirements may also change with respect to time and
operational modes. Ad-hoc integration of different run-time
models may bring emergent behaviors and destroy the ana-
lyzability and reliability of a system. We propose a compo-
nent-based architecture to hierarchically integrate multiple
run-time models. This architecture is based on the Ptolemy
II component framework and models of computation.

As in Ptolemy II, a basic software component is an actor.

Actors have well-defined communication points, which are
called ports. How a port is implemented depends on the run-
time model that the actor is in. An actor, when executed,
performs a finite atomic execution and reaches a quiescent
state. Such execution is called a precise reaction. A run-time
model is implemented as a director, which defines the com-
munication style (i.e. the ports) and the execution order of
the actors under its control. For example, a priority-driven
multitasking director will manage the priorities of actors and
an event queue that dispatches events according to their des-
tination actor's priority. A time-triggered architecture direc-
tor may provide state semantics with double buffering for
communication and use synchronized timers to schedule
computation and communication. A publish/subscribe direc-
tor will realize an event channel and dispatch events over
network.

An aggregation of actors, together with their director is
called a composite actor. With careful design of directors, a
composite actor can work exactly like an atomic actor. That
is, a composite actor will have well-defined communica-
tion points and precise reactions. Such a composite actor
can be integrated with other actors under the control of a dif-
ferent director. In this fashion, multiple models can be hier-

3460

machine o~ [Finite state -'~' an.a~~

N~

I Time-. i Time_synced dataflow ' I triggered event driven Synchronous II
I architecture

Figure 1. Hierarchical models for a test and measure-
ment system.

archically integrated, and within each level there is a well-
defined model. This architecture localizes the run-time mod-
els only to the components that need them and preserves
their properties within that range.

For example, consider a typical test and measurement appli-
cation, where the plant to be tested is first stabilized and
driven to a neutral operation point, then a sequence of stim-
uli (a.k.a. test vectors) is injected and the response of the
system is measured, and finally the data collected are pro-
cessed to extract testing results. The run-time system may
work in the following hierarchical way, as illustrated in Fig-
ure 1. The top level is a finite state machine, which controls
a sequence of operations: stabilizing, measuring, and ana-
lyzing. In the stabilizing state, a periodically sampled feed-
back control is used to drive the plant to the neutral state. A
time triggered architecture guarantees the timing of the con-
trol. In the measuring state, a time-synced event driven
model can be used to apply a sequence of test vectors to the
plant and start the data collection process accordingly. In the
analyzing state, the system is off-line. Since the analysis
algorithms, like filtering and spectrum analysis, have static
structures, SDF provides high computational throughput.
Each operational mode has precise reaction, and the mode
switching points are well-defined.

Consider another example of a fault tolerant control system
for air-vehicles, as shown in Figure 2. Sensors, computers,
and actuators can be connected by a publish and subscribe
event channel. Multiple tasks, for example a high-priority

actuator
nodes

~ ~ 1 . ~ ~'~ Time_
I (" ~ J " ~ ' ~ [Triggered
I ~ . ~ . ~ architecture

Figure 2. Hierarchical models for a fault-tolerant control
system.

feedback control task and a low-priority fault detection task,
run on the computer. Depending on the operational status,
the feedback control task may have multiple modes, each
taking care of a region of flight trajectory. In particular,
there is a safety protection mode, and alarms from fault
detection task will trigger the controller to go into that state.
Within each state, a time-triggered architecture can be used
to support the implementation of sampled-data control laws.
The fault detection task is soft real-time and maintains its
own data space. Thus, it can be preempted by the control

' task at any time.

5. Discussion

Systematically integrating multiple models is crucial to
design large-scale distributed real-time systems. Many
active research projects address this issue and influence our
architecture. For example, [3] gives conditions and architec-
tures for distributing synchronous languages. By posing
slight constrains on components and communication proto-
cols, asynchronous event passing can be used to coordinate
synchronous execution of components and the composition
maintains the synchronous semantics. This leads to a glo-
bally asynchronous and locally synchronous (GALS) archi-
tecture for reactive systems. Giotto [10] integrates multirate
time-triggered architecture with finite state machines. The
open control platform (OCP) [19] integrates a prioritized
publish and subscribe model for event dispatching with pri-
ority-driven multitasking on single nodes. But most of these
projects only integrate two models and assume a fixed con-
tainment relation between them.

It is important to understand the synergy and distinction
between a heterogeneous design environment and a run-
time system. Ptolemy II is a heterogeneous modeling and
design environment, which is the root of this work. Design-
time environments emphasize the understandability of
models, syntax and semantics checking (like type systems),
and component polymorphism, while run-time systems
emphasize physical interface, performance, and footprint.
There are certain design-time models that are unsuitable for
run-time systems. Those models may be nondeterministic
and possibly deadlock, may make extreme assumptions, or
may only be useful for modeling physical environment but
not embedded software.

Code generation is a migration path from certain design-
time models to run-time models [23]. A typical code genera-
tion process assumes a flat operating system support and
generates a stand-alone program that is then compiled into
an application. The wide variety and irregularity of MC sys-
tem platforms and operating systems make the code genera-
tion process burdensome and unportable. We argue that
having a hierarchical run-time system will greatly ease code
generation and improve the quality of final applications. A
run-time system can use platform dependent hardware sup-

3461

port, instruction set and I/O to provide high quality services
to applications. In addition, there are certain operations, like
preemption, can only be achieved by OS-level run-time sys-
tems, but not easily by applications.

Notice that another view of integrating heterogeneous run-
time models is to show that they can all be implemented by
a grand unified model. This is the generalization of the tradi-
tional operating system view that a flat layer of abstraction
will fit for all applications. For example, it is possible to
claim that all the models in section 3 could be implemented
by a time-synced distributed priority-driven model. There
are at least two disadvantages in such viewpoint.
1. A grand unified model usually provides little analys-

ability. Undisciplined mixing of arbitrary features
makes applications fragile.

2. An applications usually does not need all the features
provided by the grand unified model. Packaging and
integrating only the necessary run-time support will
help improve performance and reduce footprint.

6. Conclusion

Noticing a wide variety of run-time models for distributed
measurement and control systems, their assumptions, and
quality of service, this paper motivates a hierarchical archi-
tecture to integrate multiple models. Unlike a traditional
RTOS, which provide only one flat layer of run-time mod-
els, this architecture keeps a clean model at each level and
uses hierarchical composition to mix and match heterogene-
ity.

References

[1] D.W. Allan, N. Ashby, and C.C. Hodge, The Science of Time-
keeping, Hewlett-Packard Application Note 1289.

[2] E Balarin, L. Lavagno, P. Murthy, and A. Sangiovanni-Vincen-
telli, "Scheduling for Embedded Real-Time Systems," IEEE
Design and Test of Computers, Jan.-March 1998, pp. 71-82.

[3] A. Benveniste, B. Caillaud, and P. Le Guemic, "Composition-
ality in Dataflow Synchronous Languages: Specification and
Distributed Code Generation," Information and Computation,
163 (2000), pp. 125-171.

[4] J. Davis II, M. Goel, C. Hylands, B. Kienhuis, E.A. Lee, J. Liu,
X. Liu, L. Muliadi, S. Neuendorffer, J. Reekie, N. Smyth, J.
Tsay, and Y. Xiong, Ptolemy H: Heterogeneous Modeling and
Design in Java, technical report, UCB/ERL No. M99/44, Uni-
versity of California, Berkeley, July 1999.

[5] A. Girault, B. Lee, and E.A. Lee, "Hierarchical Finite State
Machines with Multiple Concurrency Models," IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems,
Vol. 18, No. 6, June 1999.

[6] N. Halbwachs, Synchronous Programming of React&e Sys-
tems, Kluwer Academic Publishers. 1993.

[7] D. Harel, "Statecharts: A visual formalism for complex sys-
tems," Science of Computer Programming, vol. 8, 1987, pp.
231-284.

[8] D. Harel and A. Pnueli, "On the Development of Reactive Sys-
tems," Logic and Models for Verification and Specification of
Concurrent Systems, Springer Verlag, 1985

[9] T.H. Harrison, D.L. Levine, and D.C. Schmidt, "The Design
and Performance of a Real-time CORBA Event Service," Pro-
ceedings of OOPSLA '97, Atlanta, GA, October 1997, ACM.

[10]T.A. Henzinger, B. Horowitz, and C.M. Kirsch, Giotto: A
Time-triggered Language for Embedded Programming, Tech-
nical Report, University of California, Berkeley, UCB//CSD-
00-1121, 2000.

[11]K. Juvva and R. Rajkumar, "A Middleware Service for Real-
Time Push-Pull Communications," Proceedings of lEEE Work-
shop on Dependable Real-Time E-Commerce Systems
(DARE'98) June 1998.

[12]R.M. Karp and R.E. Miller, "Properties of a Model for Parallel
Computation: Determinacy, Termination, Queuing," SlAM
Journal, Vol. 14, pp. 1390-1441.

[13]H. Kopetz, Real-Time Systems: Design Principles for Distrib-
uted Embedded Applications, Kluwer Academic Publishers,
1997.

[14]H. Kopetz and Ct Gruensteidl, "TFP - A Protocol for Fault-
Tolerant Real-Time Systems," Computer, Vol. 27, No. 1, Jan.
1994, pp. 14-23.

[15]E.A. Lee, Embedded Software - An Agenda for Research, UCB
ERL Memorandum M99/63, University of California, Berke-
ley, ERL

[16]E.A. Lee and D.G. Messerschmitt, "Synchronous Data Flow,"
Proceedings of the IEEE, Sept. 1987.

[17]E.A. Lees "Modeling Concurrent Real-time Processes Using
Discrete Events," Annals of Software Engineering, Special Vol-
ume on Real-Time Software Engineering, vol. 7 (1999), p.25-
45.

[18]C. Liu and J. W. Layland, "Scheduling Algorithms for Multi-
programming in a Hard Real-Time Environment," ACM Jour-
nal, Jan. 1973, Vol. 20, No. 1, pp. 44-61.

[19]J. Paunicka, B. Mendel, and D. Corman, "The OCP: An Open
Middleware Solution for Embedded Systems," to appear in
2001 American Control Conference, Arlington, VA, June 2001.

[20]R. Rajkumar, Synchronization in Real-Time Systems: A Prior-
ity Inheritance Approach, Kluwer Academic Publishers, 1991.

[21]L. Sha, R. Rajkumar, and S.S. Sathaye, "Generalized rate-
monotonic scheduling theory: a framework for developing
real-time systems," Proceedings of the IEEE, vol.82, (no.l),
Jan. 1994. p.68-82.

[22]D. Tennenhouse, "Proactive Computing," Communication of
the A CM, Vol. 43, No. 5, May 2000, pp. 43-50.

[23]J. Tsay, C. Hylands and E.A. Lee, "A Code Generation Frame-
work for Java Component-Based Designs," 2000 International
Conference on Compilers, Architecture, and Synthesis for
Embedded Systems, (CASES'00), November, 2000, San Jose,
CA

[24]S.P. Woods, B. Hamilton, and J.C. Eidson, "The Advantage of
Implementing Synchronized Clocks in Distributed Measure-
ment and Control Systems," Sensors Expo., May 2000, Ana-
heim, CA

[25]Draft Standard for a Precision Time Protocol (PTP), v0.15,
prepared by the Systems and Solutions Laboratory, Agilent
Laboratories, April, 2000.

3462

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

