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Abstract 

Measurement and control systems are intrinsically distrib- 
uted and real-time, as they contain sensor and actuator 
nodes that interact with the physical world directly. Embed- 
ded software in the computational nodes is responsible for  
timely reaction to sensor data, and for producing actuation. 
This paper reviews run-time computation models for  this 
kind of  real-time embedded software, from message seman- 
tics, message acquisition, and the dataflow/control f low 
perspectives. In general, dataflow centric models are natu- 
ral for describing measurement and control algorithms and 
easy to use in distributed systems, but they lack mechanisms 
for  control!ing the execution order to fulfill  timing con- 
strains. Control-flow centric models are good at handling 
real-time requirements but are hard to distribute and some- 
times hard to analyze. Although most practical run-time 
models to some extent support both dataflow and control 
flow, they are hardly universal. In complex applications, it is 
desirable to use different models in different parts of  the sys- 
tem or under different modes of  operation. Cleanly integrat- 
ing multiple run-time models is a challenging task. In this 
paper, we motivate a hierarchical architecture for compos- 
ing run-time models, based on the Ptolemy H component 
framework and models of  computation. Unlike traditional 
real-time operating systems that provide only one flat layer 
of  abstraction, the hierarchical architecture enhances flexi- 
bility, scalability, and reliability of  MC systems by mixing 
and matching multiple run-time models in a disciplined 
way. 

Keywords: run-time models, hierarchical heterogeneity, 
real-time systems, embedded systems. 

1. Introduction 

Measurement and control (MC) systems are distributed real- 
time computing systems that interact directly with the phys- • 
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ical world. A typical MC system has sensor nodes, comput- 
ing nodes, actuator nodes, and a communication subsystem 
that connects the nodes. As computation and communica- 
tion resources get more economical and reliable, MC sys- 
tems are becoming more complex and software-enabled. 
This increases the complexity of embedded software run- 
ning on computational nodes. This kind of software usually 
carries tasks for controlling peripherals, collecting informa- 
tion, analyzing data, and producing reactions. 

Run-time software for MC systems differs from its design- 
time counterpart and desktop software in many ways: 
• Real rtime. Most run-time software for MC systems has 

constraints (either hard or soft) on the response time. 
• Concurrency. MC systems directly interact with the 

physical world, so it is intrinsically concurrent. At the 
very least, the embedded system and its environment are 
operating concurrently. 

• Real I/O. The interaction between a MC system and its 
environment are going through samples and events. How 
the state of the physical world is reflected in the computer 
is an important part of run-time models. 

Following [15], we view a piece of software for MC sys- 
tems as an aggregation of software components that interact 
with each other and with the environment by exchanging 
messages. These components could be processes, subrou- 
tines, or objects. A run-time model is a set of rules that gov- 
erns the execution and interaction of these components.  
Run-time models are usually operating system (OS) con- 
cepts; for example, they may appear as part of real-time 
operating systems (RTOS) or virtual machines. They may 
also appear as application-specific schedulers or event dis- 
patchers. As MC systems become networked, the concept of 
run-time models extends beyond single computer platforms. 

Embedded real-time software has been an active research 
area for over 20 years. Many models have been proposed 
with different performance, predictability, and scalability 
[8] [10] [14] [18] [21]. However, as systems become more 
complex and large scale, no single model may fit for all 
applications. Nowadays,  embedded real-time software is 
still a mixture of formal models and hand-tuned code, which 
make them hard to scale up, analyze and debug. It is also 
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worthwhile to realize that different real-time models also 
impose different requests on hardware and system infra- 
structure. The designers must have a system-level under- 
standing of the models and their implications. 

This paper reviews some run-time models that can be used 
for MC software, in terms of their qualities of performance, 
predictability, and scalability. We argue that the traditional 
way of mapping all applications to a single run-time model 
is fragile and unscalable. We motivate a hierarchical run- 
time architecture based on the Ptolemy II component frame- 
work and models of computation [4]. By mixing and match- 
ing multiple run-time models, this architecture can ease the 
process of MC software development and improve run-time 
understandability, scalability, and reliability. 

The rest of the paper is organized as follows. Section 2 dis- 
cusses some perspectives on studying run-time models for 
MC systems, in terms of message semantics, data flow and 
control flow, and the notion of time. Section 3 gives some 
examples of run-time models. Section 4 motivates a hierar- 
chical architecture for run-time embedded software. Section 
5 discusses related work. 

2. Perspectives on Run-Time Models 

2.1. Messages in MS systems 

MC systems have the physical world, in addition to users, as 
their environment. The environment generates messages 
that could be user commands, clock signals, alarms, as well 
as samples of physical variables like voltage, temperature, 
pressure, etc. A MC system responds to these messages and 
controls the behavior of the environment by producing out- 
put messages. 

It is important to notice that the environment operates con- 
currently with the MC system. The MC system operates 
according to some run-time models, while the environment 
operates under its own laws of physics. In particular, in the 
physical world, time is continuous and flows at a constant 
rate. The environment never holds itself to wait for the next 
input. And, if an event occurs, the environment does not 
care whether the MC system is ready to receive it. Thus, the 
messages at the boundary of MC systems and their environ- 
ment need to be carefully examined, especially when there 
is a mismatch on the execution rates. 

2.1.1 Message semantics 

Following Kopetz [13], we loosely classify two kinds of 
message semantics: event and state. 
• Event semantics requires that the receiver of messages 

processes every event exactly once. The loss of a single 
event may lead to a misunderstanding between senders 
and receivers. If there is a mismatch between the produc- 
tion and consumption rates of events, a blocking mecha- 

nism or a queuing mechanism may be introduced to force 
synchronization. Event semantics can be further classified 
by whether the events carry time stamps, how they are 
ordered, and how to force synchronization. 

• State semantics reflects the current state of the physical 
world. It is reasonable to only keep the most recent sam- 
ples of physical states. The rate mismatch between send- 
ers and receivers can be solved by overwriting older data. 
State messages are usually seen in control-oriented real- 
time systems, where controllers only deal with the latest 
state of plants. Kopetz argues that in MC systems, state 
messages are far more frequent than event messages [13]. 
This argument may be overstated, but it reflects a funda- 
mental difference between computing in MC systems and 
computing in traditional transaction-processing systems. 

It is important to distinguish the message semantics from the 
general understanding of events and states. For example, in 
a data acquisition system, the data to be recorded are the 
"states" of a physical process. But if every sample is impor- 
tant, we may take the event semantics, and queue the sam- 
ples if recording is slower than sampling. 

2.1.2 Message acquisition styles 

Traditionally, designers of MC systems think in terms of two 
styles of external message acquisition - pushed or pu~lled. A 
pushed message is actively sent by the sensor nodes, while a 
pulled message is queried by the computation nodes. Pushed 
messages usually generate interrupts. Although interrupts 
allow messages to be processed as soon as possible, they are 
one of the biggest sources of uncertainty in run-time soft- 
ware. Pulled messages does not generate interrupts, but they 
require extra CPU cycles for polling, and thus reduce the 
performance of the computational nodes. 

As sensor nodes and communication systems become more 
intelligent, the boundary of push and pull styles is blurred. 
For example, a message pushed by a sensor can be locally 
cached by the communication layer of the computational 
nodes (as in TTP [14]) or middleware (as in Real-t ime 
CORBA [9]), and the run-time software will never notice 
that it is pushed. In addition, when there is a uniform notion 
of time in the system, sensors can time tag their readings, 
and the computational nodes do not have to poll the sensors 
very frequently. So, from the viewpoint of run-time soft- 
ware, the fundamental difference of message acquisition 
styles is whether they generate interrupts, and how the soft- 
ware responds to them. 

2.2. Data Flow and Control Flow 

It is helpful to look at real-time software models from the 
dataflow 1 and the control-flow perspectives. The dataflow 

1. The term "dataflow" used here is close to but somewhat 
broader than that in dataflow programming languages. 
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perspective focuses on the data dependencies among com- 
ponents. A software component processes its input data and 
produces output data so that other components can use them. 
A component is eligible to execute when there are enough 
data to be processed. Most measurement and control algo- 
rithms, like filters, difference equations, compensators, and 
regulators can be conveniently specified in a dataflow way. 
In other words, in MC systems, the dataflow view of embed- 
ded software is close to the problem domain. Generally, the 
dataflow view only imposes a partial order on the execution 
of components. So, pure dataflow models have great flexi- 
bility on dealing with concurrency and are easy to scale up. 
On the flip side, the partial order of execution makes it 
harder for dataflow models to fulfill real-time constrains. 

The control-flow perspective, like task scheduling and mode 
switching, focuses on controlling when a certain compo- 
nents be executed. The flow of control usually depends not 
only on the availability of data, but also on many other 
things, like the current state and time of the system, task pri- 
orities, and deadlines. It is thus straightforward to control 
the execution order so that the real-time requirements can be 
met, at least for simple systems. Control-flow centric mod- 
els, although being capable of managing real-time proper- 
ties, do not solve all MC software challenges. Some control- 
flow formalisms do not match the problem domain very 
well and the tight control on the execution order may make 
these models hard to reconfigure, hard to scale up and hard 
to use in distributed systems. 

2.3. Notion of Time 

Time, although being the most important concept in real- 
time systems, is not part of the computation in most models. 
This is partly because traditional computer sciences have 
systematically removed the notion of time from computer 
theories and partly because maintaining a synchronized time 
across platforms is difficult. 

However, the development on hardware description lan- 
guages (like VHDL and Verilog) and the study on discrete 
event systems [ 17] has shown that time can be an intrinsic 
part of computational models. Recent advances in timekeep- 
ing [1], time synchronization [14][25], and smart sensors 
and actuators [24] also show that the cost is relatively low to 
maintain a global notion of time in distributed MC systems. 
These technologies enable new infrastructure for real-time 
systems and time-based models [ 13] [22]. 

3. Run-Time Models 

In this section, we give some examples of run-time models. 
This is by no means a complete list. The intent is to give a 
hint of the diversity of run-time models, their assumptions, 
and their quality of service. 

• P r i o r i t y - d r i v e n  mu l t i t a sk ing  

Most real-time operating systems take priority-driven multi- 
tasking as their run-time model [2]. In this model, the soft- 
ware components are tasks, which are finite computations 
that process inputs and produce outputs. Individual tasks are 
usually highly dataflow oriented. Tasks may communicate 
through global variables, buffers, or queues. Tasks become 
eligible when they have enough inputs. When multiple tasks 
are eligible but the resources are limited, the run-time sys- 
tem chooses a task with the highest priority to execute. 

There are various algorithms deal with when and how to 
assign priorities to tasks. The most famous ones are the rate 
monotonic scheduling and the earliest-deadline-first sched- 
uling [18], which yield optimal CPU utilization under cer- 
tain conditions. A basic assumption in these algorithms is 
that tasks can be arbitrarily preempted. In reality, this 
assumption may not always hold, and brute-force applica- 
tion of the algorithms may introduce undesirable phenom- 
ena, l ike pr ior i ty  invers ion  [20]. An a l t e rna t ive  is 
nonpreemptive scheduling or cooperative multitasking. 
Although nonpreemptive scheduling may have weaker 
schedulability and lower CPU utilization than preemptive 
ones, they are more robust and easier to scale up. If tasks 
are short enough, nonpreemptive scheduling may provide 
close-to-optimal performance with small context switching 
overhead. 

Priority-driven models are typically used within one compu- 
tational node. The distribution of such models requires the 
syste m to be coherent [21], which is stronger than priori- 
tized event dispatching and a system-wise understanding of 
priorities. These requirements may be hard to maintain 
across heterogeneous platforms. 

• T i m e - t r i g g e r e d  arch i t ec tures  

Time-triggered architectures [ 14], assume the state seman- 
tics of messages, and control the execution of components 
solely based on elapsed time. A distributed time-triggered 
architecture needs a time-division-multiple-access (TDMA) 
communication protocol and (roughly) synchronized clocks 
across nodes, which may require additional hardware sup- 
port. In these models, time is segmented into frames. Com- 
putation and communication are both triggered by the start 
of a time frame, and they must finish by the end of the time 
frame. Since time triggered architectures directly address 
time in the computation, they can guarantee to deliver hard 
real-time performance. On the flip side, they usually have 
low CPU utilization and are too rigid for soft real-time 
applications. 

• S ta te  m a c h i n e s  

At run time, state machine models can be used in two levels, 
within a component or across components. Within a compo- 
nent, state machines are sequential and apply precise control 
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to component  states and transit ions among them. State 
machines are amenable to in-depth analysis and formal veri- 
fication, which make them desirable for safety critical sys- 
tems. Many design-time models, like Statechart [7], Esterel, 
Signal, and Lustre [6], synthesize their components into 
state machines to be executed. 

State machines can also be used across components to coor- 
dinate other models. The typical use is to specify operation 
modes and sequences among components. The Statechart 
formalism is an example of using high-level state machines 
to coordinate low-level state machines. The "*charts" (pro- 
nounced star-charts) model [5] extends the coordination to a 
huge variety of concurrent models. Hierarchically combin- 
ing state machines with concurrent  models makes state 
machines concurrent and helps to prevent the explosion of 
the number of states in complex systems. But when and how 
to make state transitions remain challenging issues. Care- 
lessly implemented concurrent models and randomly made 
transitions may lead the system to non-quiescent states, 
which should be avoided at all cost. 

• Asynchronous message passing 

In asynchronous message passing, components are pro- 
cesses communicate by sending messages through FIFO 
queues.  The sender of a message  need not wait for the 
receiver to be ready to receive the message. There are sev- 
eral variants of this model, for example, various dataflow 
models, but they share the same property that components 
are loosely coupled. Thus, these models are easy to distrib- 
ute. Most  asynchronous message  passing mechanisms  
impose few constrains on the execution order of compo- 
nents, which makes the performance of such models highly 
unpredictable. 

Synchronous dataflow (SDF) [16] is a particularly restricted 
specia l  case  of a synchronous  m e s s a g e  pass ing  with 
extremely useful properties. In SDF, whenever an compo- 
nent executes, it consumes a fixed amount of input data and 
produces a fixed amount of outputs. This property makes 
questions like deadlock and boundedness decidable [12]. 
For a consistent SDF model, a schedule can be computed, 
such that the components do not have to test for sufficient 
data before execution. So, for computation that has a fixed 
structure, SDF is very efficient and predictable. 

• Publish and subscribe 

Publish and subscribe (P/S) models extent event dispatching 
mechanisms to distributed systems. In P/S models, event 
channels [11], also known as a persistent object spaces, 
mediate the communication between senders and receivers. 
Since no direct channel needs to be established between 
senders and receivers, P/S models are good for managing 
communicating peers that join and leave a federation. Prior- 
itized P/S models dispatch events according to their priori- 

ties [9], so it gives more fine-grained control on the order of 
transmitting events. 

• Time-Synced event driven 

When there is a highly accurate synchronized time across a 
distributed system, the nodes can coordinate their operation 
with respect to time. In particular, sensor nodes can attach 
time stamps to their readings and these time stamps will 
make sense at the computational  nodes. Computat ional  
nodes can send time-stamped outputs to actuators and the 
actuator will perform the output at the right time without 
further involvement from computational nodes. This mecha- 
nism frees the computational nodes from time tracking and 
allows them to process events faster than real time, and thus 
called faster-than-real-time computation [22]. 

4. Hierarchical Run-Time Models 

Complex MC systems usually have multidimensional qual- 
ity of service requirements. Some parts of a system may 
require hard real-time guarantees, some parts may require 
high utilization of resources, and some other parts may 
require immediate response to spontaneous events. These 
requirements  may also change with respect  to time and 
operational modes. Ad-hoc integration of different run-time 
models may bring emergent behaviors and destroy the ana- 
lyzability and reliability of a system. We propose a compo- 
nent-based architecture to hierarchically integrate multiple 
run-time models. This architecture is based on the Ptolemy 
II component framework and models of computation. 

As in Ptolemy II, a basic software component is an actor. 

Actors have well-defined communication points, which are 
called ports. How a port is implemented depends on the run- 
time model that the actor is in. An actor, when executed, 
performs a finite atomic execution and reaches a quiescent 
state. Such execution is called a precise reaction. A run-time 
model is implemented as a director, which defines the com- 
munication style (i.e. the ports) and the execution order of 
the actors under its control. For example, a priority-driven 
multitasking director will manage the priorities of actors and 
an event queue that dispatches events according to their des- 
tination actor's priority. A time-triggered architecture direc- 
tor may provide state semantics with double buffering for 
communication and use synchronized timers to schedule 
computation and communication. A publish/subscribe direc- 
tor will realize an event channel and dispatch events over 
network. 

An aggregation of actors, together with their director is 
called a composite actor. With careful design of directors, a 
composite actor can work exactly like an atomic actor. That 
is, a composite actor will have well-defined communica- 
tion points and precise reactions. Such a composite actor 
can be integrated with other actors under the control of a dif- 
ferent director. In this fashion, multiple models can be hier- 
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Figure 1. Hierarchical models for a test and measure- 
ment system. 

archically integrated, and within each level there is a well- 
defined model. This architecture localizes the run-time mod- 
els only to the components that need them and preserves 
their properties within that range. 

For example, consider a typical test and measurement appli- 
cation, where the plant to be tested is first stabilized and 
driven to a neutral operation point, then a sequence of stim- 
uli (a.k.a. test vectors) is injected and the response of the 
system is measured, and finally the data collected are pro- 
cessed to extract testing results. The run-time system may 
work in the following hierarchical way, as illustrated in Fig- 
ure 1. The top level is a finite state machine, which controls 
a sequence of operations: stabilizing, measuring, and ana- 
lyzing. In the stabilizing state, a periodically sampled feed- 
back control is used to drive the plant to the neutral state. A 
time triggered architecture guarantees the timing of the con- 
trol. In the measuring state, a time-synced event driven 
model can be used to apply a sequence of test vectors to the 
plant and start the data collection process accordingly. In the 
analyzing state, the system is off-line. Since the analysis 
algorithms, like filtering and spectrum analysis, have static 
structures, SDF provides high computational throughput. 
Each operational mode has precise reaction, and the mode 
switching points are well-defined. 

Consider another example of a fault tolerant control system 
for air-vehicles, as shown in Figure 2. Sensors, computers, 
and actuators can be connected by a publish and subscribe 
event channel. Multiple tasks, for example a high-priority 

actuator 
nodes 

~ ~ 1 . ~  ~'~ Time_ 
I ( " ~ J  " ~ ' ~  [ Triggered 
I ~ . ~ . ~  architecture 

Figure 2. Hierarchical models for a fault-tolerant control 
system. 

feedback control task and a low-priority fault detection task, 
run on the computer. Depending on the operational status, 
the feedback control task may have multiple modes, each 
taking care of a region of flight trajectory. In particular, 
there is a safety protection mode, and alarms from fault 
detection task will trigger the controller to go into that state. 
Within each state, a time-triggered architecture can be used 
to support the implementation of sampled-data control laws. 
The fault detection task is soft real-time and maintains its 
own data space. Thus, it can be preempted by the control 

' task at any time. 

5. Discussion 

Systematically integrating multiple models is crucial to 
design large-scale distributed real-time systems. Many 
active research projects address this issue and influence our 
architecture. For example, [3] gives conditions and architec- 
tures for distributing synchronous languages. By posing 
slight constrains on components and communication proto- 
cols, asynchronous event passing can be used to coordinate 
synchronous execution of components and the composition 
maintains the synchronous semantics. This leads to a glo- 
bally asynchronous and locally synchronous (GALS) archi- 
tecture for reactive systems. Giotto [ 10] integrates multirate 
time-triggered architecture with finite state machines. The 
open control platform (OCP) [19] integrates a prioritized 
publish and subscribe model for event dispatching with pri- 
ority-driven multitasking on single nodes. But most of these 
projects only integrate two models and assume a fixed con- 
tainment relation between them. 

It is important to understand the synergy and distinction 
between a heterogeneous design environment and a run- 
time system. Ptolemy II is a heterogeneous modeling and 
design environment, which is the root of this work. Design- 
time environments emphasize the understandability of 
models, syntax and semantics checking (like type systems), 
and component polymorphism, while run-time systems 
emphasize physical interface, performance, and footprint. 
There are certain design-time models that are unsuitable for 
run-time systems. Those models may be nondeterministic 
and possibly deadlock, may make extreme assumptions, or 
may only be useful for modeling physical environment but 
not embedded software. 

Code generation is a migration path from certain design- 
time models to run-time models [23]. A typical code genera- 
tion process assumes a flat operating system support and 
generates a stand-alone program that is then compiled into 
an application. The wide variety and irregularity of MC sys- 
tem platforms and operating systems make the code genera- 
tion process burdensome and unportable. We argue that 
having a hierarchical run-time system will greatly ease code 
generation and improve the quality of final applications. A 
run-time system can use platform dependent hardware sup- 
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port, instruction set and I/O to provide high quality services 
to applications. In addition, there are certain operations, like 
preemption, can only be achieved by OS-level run-time sys- 
tems, but not easily by applications. 

Notice that another view of integrating heterogeneous run- 
time models is to show that they can all be implemented by 
a grand unified model. This is the generalization of the tradi- 
tional operating system view that a flat layer of abstraction 
will fit for all applications. For example, it is possible to 
claim that all the models in section 3 could be implemented 
by a time-synced distributed priority-driven model. There 
are at least two disadvantages in such viewpoint. 
1. A grand unified model usually provides little analys- 

ability. Undisciplined mixing of arbitrary features 
makes applications fragile. 

2. An applications usually does not need all the features 
provided by the grand unified model. Packaging and 
integrating only the necessary run-time support will 
help improve performance and reduce footprint. 

6. Conclusion 

Noticing a wide variety of run-time models for distributed 
measurement and control systems, their assumptions, and 
quality of service, this paper motivates a hierarchical archi- 
tecture to integrate multiple models. Unlike a traditional 
RTOS, which provide only one flat layer of run-time mod- 
els, this architecture keeps a clean model at each level and 
uses hierarchical composition to mix and match heterogene- 
ity. 
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