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Abstract 

We show that the problem of deciding if there exists  
a control that drives a switched control system between 
two given states b undecidable. We firthermore in- 
vestigate what happens i f  we search for a qntrol that 
achieves this in a given number of steps, or with a 
given number of switches. These problems are shown 
to be respectively NP-complete and NP-hard. The re- 
sults follow as a consequence of recent complexity re- 
sults on matrix mortality. 

1 Introduction 

In this paper, we investigate the computational 
complexity of controllability questions associated with 
switched systems. The systems we consider are of the 
form 

where xt E Wn, ut E W, and A I ,  A2, b1, h, c are matri- 
ces and vectors of compatible dimensions. It should 
be noted, already at  this point, that the switch condi- 
tions are completely characterized by the current state 
of the system, since the switches take place on the s u b  
space {z E IR” I cTz = 0). 

Such systems have received considerable attention 
in the hybrid systems literature (see for example 
[3, 8, 151). Previous results concerning the compu- 
tational complexity of such systems, and of related 
hybrid systems, are surveyed in [2]. (See also [7] for re- 
cent results on the controllability and [lo] for an acces- 
sible survey on the stability of such switched systems.) 
In [4], the continuous time version of this type of sys- 
tem was studied, and bounds on the minimum en- 
ergy controller, that drives the system between given 
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points, were derived. The reason why this type of sys- 
tem is relevant is that it models a number of situations 
where the task is to control a device whose dynam- 
ics changes at given parts of the state space. This is 
the case, for instance, when legged locomotive robotic 
systems are controlled, where each stepcycle consists 
of a swing and a stance phase, or when autonomous 
helicopters make transitions between different flight 
modes [5]. Another scenario where this problem needs 
to be solved is in rough terrain path planning appli- 
cations for mobile robots. The idea is to plan a path, 
optimal with respect to some given cost functional, in 
such a way that routing through uneven or slippery 
environments is penalized, as suggested in [SI. The 
relevance of the results reported in this paper are to 
be understood in light of these potential applications. 

The paper is organized as follows: In Section 2 we, 
for the sake of easy reference, very briefly introduce 
the concepts of undecidability and NP-hardness. In 
Section 3, we define mortality questions for matrices 
and show that the problem of deciding whether there 
exists a control that drives the system (1) from a given 
state to the origin is undecidable. We then shift focus 
slightly and ask two different questions. The fist one 
asks whether it is possible to drive the initial state 
to the origin in k steps, which will turn out to be a 
NP-complete problem. In [14], it was shown that this 
problem belongs to the class of NP, using the results in 
[13] for establishing a correspondence between piece- 
wise linear systems and the polynomial hierarchy in 
logic. However, the NP-completeness result presented 
in this paper is constructive, and it is based on recent 
results on matrix mortality [l]. The second question 
concerns the possibility of going between these states 
while switching at most k times between the differ- 
ent dynamical regimes. In a number of applications 
such as mode scheduling for autonomous aerial vehi- 
cles, it is desirable to keep the number of switches 
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between different modes to a minimum. The number 
of switches needed to drive the system between states 
is thus a natural measure of cost in a number of hybrid 
control applications, as pointed out in (3, 5,  61. The 
problem of finding the minimal number of switches 
will be found to be NP-hard. (Note that the occur- 
rence of a switch depends solely on the state of the 
system, which is different from the situation studied 
in [2].) In a final Section 4, we show that the problem 
of determining if a given hyperplane can be reached 
&om a given initial state is undecidable as well. 

2 Computational Complexity 

For the sake of clarity of the presentation, we very 
briefly introduce the concepts of undecidability and 
"-hardness (see for example [Ill for an accessible 
introduction to the subject.) Throughout the paper, 
we focus our attention on decision problems, i.e., prob- 
lems where the desired output can be interpreted as a 
"yes" or a "no". An undecidable problem is a decision 
problem for which there is no algorithm, defined on a 
Turing machine or on an equally expressive mode of 
computation, that always halts with the right answer. 

There are many decidable problems of practical 
interest for which no polynomial time algorithm is 
known. A decision problem is said to belong to the 
class NP (nondeterministic polynomial time), which 
includes all problems of polynomial complexity, if ev- 
ery instance of the problem with a positive answer 
can be verified in polynomial time. The hardest of all 
such problems in NP, in the sense that every problem 
in NP can be reduced to any such problem in poly- 
nomial time, are called NP-complete. Any problem in 
N P  can thus be reduced to any of the NP-complete 
problems in polynomial time. Finally, a problem is 
said to be NP-hard if it is at least as hard as the NP- 
complete problems. 

3 Controllability to the Origin 

In this section we investigate whether or not we can 
decide if there exists a control that drives the system 
(1) between desired initial and final states. This ques- 
tion is relevant to any attempt to do path planning for 
switched systems, as indicated in the introduction. 

Theorem 3.1 The problem of determining for a 
given system (1)  and initial state 50, if there exists 
a control that drives xo to the origin (state controlla- 
bility), is undecidable. The problem of determining if 

there exisb a control that drives all initial states to the 
origin (global controllability) is also undecidable. 

Before we prove this theorem, we recall some no- 
tions associated with matrix products. A finite set of 
real matrices C i s  said to be mortal if there exists a 
finite product of matrices in C that is equal to the zero 
matrix. The set is said to be length-k-mortal (for some 
positive integer k) if the zero matrix can be expressed 
as a product of length k of matrices in the set. We 
also say that C is change-k-mortal if the zero matrix 
can be expressed as a product of matrices in the set in 
which there are k changes of matrices. For example, 
there are 2 changes in the product 

Ao Ao Ai Ao 

and 5 in the product 

AoAo Ai Ao AoAo Ai A1 AoAl- 

It is quite clear that length-k-mortality is decidable 
for all possible k since it suffices to compute all prod- 
ucts of the given length and to check the presence of 
the zero matrix. There is no such simple procedure 
for checking that matrices are change-k-mortal and it 
is unknown if this problem is decidable. On the other 
hand, mortality (with no length or change constraints) 
is known to be undecidable, even for the case of two 
matrices only, as stated in the following proposition: 

Proposition 3.1 (Matrix Mortality) Mortality of 
two integer matrices is undecidable. 

The first undecidability proof of mortality for inte- 
ger matrices is due to Paterson [ 121. The proof for two 
matrices is due to Blonde1 and Tsitsiklis [l]. With the 
help of Proposition 3.1 we can now prove Theorem 3.1. 

Proof of Theorem 3.1: 
Consider the matrix-tcwector bijective mapping 

Vec(-)  : Rnxn -+ Rn2 that arranges the entries of an 
n x n matrix in a n2-vector by taking the rows of the 
matrix one by one, i.e. if A = [aij] then 

T Vec(A) = ( ~ l 1 1 , ~ 1 2 , * * *  ,~1nra21,*** , h n )  

Thus, the entry (i,j) of the matrix A is mapped to 
the entry n(i - 1) + j of the vector Vec(A).  

Now, let A and B be n x n matrices. If we use 
A @ B to denote the Kronecker (tensor) product, 

a l lB  -.-  alnB 
A @ . = (  i 

annB i ) ,  anlB - e -  
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then it is easy to verify that 

(AB)  @ In = ( A  @ In)(B @In) 

and that 

Vec(AB) = ( A  @ In)Vec(B), 

where In is the identity matrix of size n. 

length product S over (A ,  B )  such that S = 0, e.g. 
If A and B are mortal, i.e. there exists a finite 

S = A B B .  * - A B  = 0, 

then (S @ I, = 0) as well. The f is t  tensor equality 
now gives US that ( A  @ I,) and ( B  @ In) are mortal as 
well. 

From the second equality it follows that if there 
exists a product P of the matrices ( A  @ I,) and ( B  @ 
In) for which P Vec(A) = 0 ,  then the matrices A 
and B are mortal. Combining these two observations 
we conclude that the following three conditions are 
equivalent: 

1. The matrices A and B are mortal; 

2. There exists a product P of the matrices ( A  @ I,) 

3. The matrices ( A  @ In) and ( B  @ In) are mortal. 

We now transform these conditions into controlla- 
bility questions for a particular switched system. Con- 
sider the switched system 

and ( B  18 I,) for which P Vec(A) = 0;  

Alxt + blut 
A Z X ~  + b2ut 

if cTxt 2 0 
i fcTz t  < 0,  Xt+l = 

with 

0 
xo = ( Vec(A) ) * 

By constructing the system matrices in this way we 
directly control which system to use, i.e. 

xt+l = Alxt + blut if ut-1 2 0 

and 
xt+l = A z ~ t  + Aut if ut-1 < 0. 

For this system, controllability of zo to the origin is 
equivalent to the existence of a product P of the ma- 
trices ( A  @ I,) and ( B  @ In) for which P Vec(A) = 0, 
and global controllability is equivalent to mortality of 
the matrices ( A @  I,) and ( B  @ In). If we could design 
an algorithm for one of these problems, we could then 
also design one for checking mortality of arbitrary ma- 
trices. Since this problem is known to be undecidable, 

So far we have asked whether there exists a con- 
trol that drives our piecewise linear control system 
between boundary states. Consider instead what h a p  
pens if we ask for the control that drives a state to 
the origin in a given finite number of steps or with a 
given finite number of dynamics changes. In terms of 
the encoding given in the proof of Theorem 3.1, these 
conditions constrain the type of matrix products we 
consider. We give below a small adaptation of the 
statement of Theorem 2 in [l]. 

Proposition 3.2 (Constrained Matrix Mortality) 
The problem of determining if a given pair of Boolean 
matrices (i.e., matrices with entries in (0,l)) i s  
length-k-mortal i s  NP-complete. !.?"he problem of 
determining if a given pair of Boolean matrices i s  
change-k-mortal is NP-hard. 

A proof that length-k-mortality is NP-complete is 
given in [l]. Here we prove that changek-mortality is 
NP-hard. The proof given in [l] is by reduction hom 
the NP-complete satisfiability problem SAT, which is 
the decision problem that investigates if a given a 
collection of q Boolean expressions (clauses) over p 
Boolean variables is satisfiable. 

Proof of Proposition 3.2: 
Starting from an instance of SAT, with p variables 

and q clauses, the authors in [l] construct two Boolean 
square matrices of size (p + l)(q + 1) that are mortal 
if and only if the instance of SAT is satisfiable. The 
construction is such that the matrices are mortal if 
and only if they are mortal of length 0, + l)(p + 3). 

This result can be directly applied to the change-k- 
mortality problem, since the previous result implies 
that if the matrices are mortal then they are also 
change-k-mortal with k _< (p + 1)(p + 3). But if they 
are change-k-mortal, with k 5 K then they are clearly 
change-K-mortal as well. Whermore, if they are 
change-k-mortal with k = (p+ 1)@+ 3) then they are 
obviously length-k-mortal as well. From this it follows 
that they are mortal of length (p+l)(p+3) if and only 
if they are change-k-mortal with k = (p + l)(p + 3). 

the proof follows. 
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From this it follows that change-k-mortality is NP- 

Now, combining Proposition 3.2 with the construc- 
hard, and the proposition follows. 

tion given in the proof of Theorem 3.1, we obtain: 

Corollary 3.1 The problem of determining, for a 
given system (1) and initial state ZO, if there exists 
a control that drives xo to the origin in at most k 
steps is NP-complete. The problem of determining if 
there &ts a w n h l  that drives xo to the origin with 
at most k switches between cTx 2 0 and cTx < 0 is 
NP-hard. 

This corollary follows if we use the same systems 
matrices as in the proof of Theorem 3.1. To reach the 
origin in k steps is thus equivalent to the length-k- 
mortality of the system matrices. Furthermore, con- 
trollability to the origin while crossing the switching 
surface k times is equivalent to the change-k-mortality 
of the system matrices. 

4 Controllability to a Hyperplane 

Theorem 3.1 and Corollary 3.1 are fairly discour- 
aging from a path planning point of view. But, one 
could ask what would happen if we relax the demand 
that we must reach a final point. Instead we could be 
content with reaching a subspace. 

However, this question is undecidable as well, as we 
will see in the following Theorem: 

Theorem 4.1 The problem of determining whether 
there &t a control ut that drives the system in Equa- 
tion l between xo and a given subspace drx = 0 is 
undecidable. 

In order to prove this result we consider Post's mr- 
respondence problem which is one of the classical, un- 
decidable problems. (See for example [9].) Let {0,1} 
be our alphabet, a word is a concatenation of fhitely 
many symbols taken from (0, l}, e.g. 011011, or the 
empty word. Now, consider finitely many pairs of 
such words ( 2 1 ,  y l ) , .  . . , (zN,~N). We wish to decide 
if there exists m 2 1 and a sequence (il, . . .a,) of 
integers (m < 00) in the range 1, ... ,N such that 

If we let Z(s) map a word 1: to Pa as l(s) = 10121, 
where 1x1 is the number of symbols in the word (101 = 
0). Then for each pair of words (xi ,yi)  we can con- 
struct the matrix 

Z j l X i l  "'Zi,,, = ' & I &  ..-yi,,,- 

Post's correspondence problem is then equivalent to 
finding a combination of Mi,. . . , MN such that 

which is a quite standard coding of Post's correspon- 
dence problem. But even for N = 7 this problem is 
known to be undecidable. 

Following the development in [l], we let 

A1 = diag(M1,. . . , M N )  

be the block-diagonal matrix with blocks 
M I , .  . . , MN,  and let 

a, = (*). 
We see that 
Ak-IAIAF-(k-l)  - - A!- lAIA;(k- - l )  

= diag(Mk,. . . , MN,  M i ,  . . . , Mk-1) 
= wk. 

Any sequence S = - - - 22 A?', where 
we without loss of generality let 0 <_ ti 5 N - 1, i = 
1, . . . , q +  l , c a n b e w r i t t e n a s S =  W,.,l.--WaqAtw P9 2 9 

for some t* 2 0 and 1 < p i  5 N ,  i = 1 ,... ,q. 
Hence the Post's correspondence problem has a so- 

lution if and only if 

1 

( 0  0 1 0  - - a  o ) (  ; ] = O  

has one. 
Proof of Theorem 4.1: We now, in a manner similar 
to that in the proof of Theorem 3.1, let our system 
matrices in Equation 1 be 
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Hence if the problem of driving from 50 = 
(0,1,-110,0 ,..., O)T to#x=O,with 

d = ( O  0 0 1 0 O ) T  

wodd be decidable then Poet’s correspondence prob- 
lem would be decidable as well, which concludes the 
proof. 
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