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Abstract 

In this paper, a finite horizon H ,  tracking con- 
trol (HTC) for continuous time-varying systems 
is obtained in a state-feedback form. Fkom the 
HTC, an intervalwise receding horizon H ,  track- 
ing control (IHTC) is obtained for continuous 
time-varying systems. It is shown that the pro- 
posed IHTC guarantees the closed-loop stability 
and an H ,  norm bound for continuous time- 
varying systems. Conditions are proposed un- 
der which the IHTC with integral action provides 
zero offset for a constant reference signal and 
time-invariant systems. The performance of the 
IHTC is illustrated via simulation studies. The 
results in this paper are also applicable to peri- 
odic and time-invariant systems which belong to 
the class of time-varying systems. 

1 Introduction 

The receding horizon control has been widely 
used for real applications. There are two kinds 
of receding horizon controls, pointwise and inter- 
valwise. In the pointwise receding horizon con- 
trol, the terminal point of a fixed-length finite 
cost horizon recedes continuously. In the interval- 
wise receding horizon control, the terminal point 
is kept fixed for a period of a finite cost horizon 
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and, after one period, the terminal point moves 
by one period and is fixed for the next period. 

The intervalwise receding horizon control requires 
more memory but has a much lower computa- 
tional cost than the pointwise receding horizon 
control as it requires calculation of control gains 
once in every period, while the pointwise strat- 
egy requires the same calculation at every time 
instant. The tracking performance of the inter- 
valwise receding horizon control also seems to be 
similar to that of the pointwise one as shown in 
the simulation example later in this paper. 

The pointwise receding horizon linear quadratic 
(LQ) control [1]-[4], and its extension to H ,  con- 
trol [5], [SI have been developed for time-invariant 
and time-varying systems. The intervalwise re- 
ceding horizon LQ control has only been devel- 
oped for time-invariant and periodic systems [7]- 
[9]. Recently, its extension to H ,  control [lo] 
has been developed for discrete periodic systems. 
If the stabilizing intervalwise receding horizon 
control can be considered for time-varying sys- 
tems, then it can handle the stabilizing point- 
wise receding horizon control as a special case 
for time-varying systems including periodic and 
time-invariant systems. However, the interval- 
wise receding horizon H ,  control including the 
tracking problem for continuous and/or time- 
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varying systems has not been investigated else- 
where. 

In order to obtain a receding horizon H ,  tracking 
control (HTC), a finite horizon HTC must be ob- 
tained first. A finite horizon HTC was proposed 
for continuous systems in [ll]. Even though the 
finite horizon HTC in [ll] can be used for obtain- 
ing a receding horizon HTC, we derive a different 
finite horizon HTC for a different system model 
from that of [ll] which is based on a different 
approach from that of [l l] .  Based on the de- 
rived HTC, an intervalwise receding horizon HTC 
(IHTC) is proposed for continuous time-varying 
systems in this paper. It is shown that the pro- 
posed IHTC guarantees the closed-loop stability 
and the infinite horizon H ,  norm bound for con- 
tinuous time-varying systems including periodic 
and time-invariant systems. Conditions are pro- 
posed under which the IHTC with integral action 
provides zero offset for a constant reference signal 
and time-invariant systems where the zero offset 
means that the tracking error goes to zero as time 
goes on. The performance of the IHTC is illus- 
trated via a simulation example. 

2 H ,  tracking control for continuous 
time-varying systems 

In this section, we derive a finite horizon HTC by 
using existing results [12] which investigate only 
the regulation problem. We consider the follow- 
ing continuous time-varying system: 

i ( t )  = A ( t ) z ( t )  + Bi ( t )w( t )  + B ~ ( t ) ~ ( t ) ( l )  

where z( t )  E R" is the state, u( t )  E R" the con- 
trol, w ( t )  E R1 the disturbance, y(t) E RP the 
system output, y r ( t )  E RP the given reference 
signal, and z ( t )  E Rp+m the controlled variable. 
For tracking problems, C(t )z ( t )  is expected to ap- 
proach yr (t) .  It is well known that for a given p x  n 
( p  5 n) full rank matrix C(t ) ,  there always ex- 
ist some n x p matrices L( t )  such that C(t )L( t )  

= I p x p .  Then, we consider the following dynamic 
game problem based on a finite horizon cost func- 
tion with the finite terminal weighting matrix Qf : 

min max J ( z ( t ) ,  t ,  t + T )  (3) u w  

where 

+[z(t + T )  - L(t + T)yr(t + T)IT 

Qf[z( t  + T )  - L(t + T ) y r ( t  + T ) ] .  

Here, Qf 1 0, y is the disturbance attenuation 
level, and y,-(~)s are reference signals which are 
assumed to be available over the future horizon 
T E [t, t+T]. Qf 2 0 is a critical design parameter 
for the closed-loop stability and thus, discussed in 
the next section. 

The matrices A ( t ) ,  Bl(t) ,  &(t) ,  and C(t )  are as- 
sumed to be bounded. Define Q(t) as Q(t) = 

as Q(t)  = Bz(t) @(t) - BY(t)  BT(t), and the 
threshold value +CL as ycL = inf {y > 0 : 
K ( T , ~  + T )  does not have a conjugate point for 
all T E [t, t + TI} where K(T,  t + T )  is calculated 
backward from 
- aK(T't  + 

a. 
A(.) + Q(7) - K(7,  t + T)Q(.)K(., t + T )  

CT(t )C( t )  1 0 ,  &(t) as BJt )  = Y-'Bl(t), Q(t)  

= AT(.)K(., t + T )  + K(T,  t + T )  

(4) 

with the terminal condition 

In order to find a solution of the above problem 
(3),, we introduce an existing result of the finite 
horizon H ,  regulation problem where yr(t)=O 
for V t .  In this case, the dynamic game theory 
described by (1) and (3) [12] admits a bounded 
unique feedback saddle-point solution, if and only 
if y > T c L .  The unique feedback saddle point so- 
lution is given for T E [t, t + T ]  by 

U*(.) = - B ~ ( T ) K ( T ,  t + T ) z ( T )  (6) 
la*(?-) = r-'B,T(T)K(T, t + T)z(r ) .  (7) 

Then, the saddle-point value of the dynamic game 
of (3) is given for T E [t, t + TI by 
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THEOREM 1 If y > y c L ,  then the dynamic 
game problem (3) for  the system (1) admits a 
unique feedback saddle-point solution which is 
given by 

U*(T) = -B?(T)[K(T, t + T)2(7)  + g ( 7 ,  t + T ) ]  ( 9 )  
W * ( T )  = p B : ( T ) [ K ( T ,  t + T ) Z ( T )  + g ( 7 , t  + T ) ]  (10) 

where g ( r ,  t + T )  is calculated backward from 

with the boundary condition g ( t  + T,t + T )  = 

-QfL( t  + T ) y r ( t  + T ) .  

Proof: The detailed proof is omitted because of 
the page limit. For the full version, refer to the 
website http://cisl.snu.ac.kr/-kkb. 0 

Now, we will compare the proposed HTC with 
that of [ll]. Under the assumption that B3 = 0, 

Dr2D13 = 0, X ( T )  = K(T,t + T ) ,  and O(T) = 
g(-r,t + T )  in [ll] ,  the solutions (9) and (10)  are 
the same as (3.15) and (3.5) of [ll]. However, 
we can easily know that the above assumption is 
impossible. Moreover, X ( t  + T )  in [ll] ,  which 
corresponds to  Qr, is assumed to be zero while 
Q f  in this paper is non-negative definite matrix 
including zero. Thus, the proposed HTC in this 
paper is not the same as that in [ll] and cannot 
be derived from the result in [ll]. 

C1 = C, DT2Cl = 0, DT2D12 = I ,  Dl3 = - I ,  

3 IHTC for continuous time-varying 
systems and its stability 

In this section, using the HTC derived in the pre- 
vious section, we propose an intervalwise reced- 
ing horizon HTC (IHTC) which guarantees the 
closed-loop stability and H ,  norm bound for con- 
tinuous time-varying systems. For the closed-loop 
stability, we introduce the following sufficient con- 
dition based on the result in [5]: 

Note that there exists a finite Q f  satisfying (12) 
if the pair (A( - ) ,  & ( a ) )  is uniformly stabilizable. 
Also note that in many systems like one included 
in a polytope, the set of all pairs ( A ( o ) , Q ( o ) )  
can be represented by using a finite number of 
pairs. In these cases, we have only to  solve finite 
number of linear inequalities by using the well- 
known Linear Matrix Inequality (LMI) Toolbox 
as in [13]. 

Assume that T 2 A > 0 for an intervalwise hori- 
zon A. Then, the IHTC strategy is as follows. 

(a) Let k = 0. 
(b) At the present time to  + kA, obtain u*(T) 

over T E [to + kA, t o  + kA + T ]  by solving 
the problem (3) with Q f  satisfying (12) .  

(c) Implement the control inputs u*(T) for T E 
[to + kA, t o  + (k + :L)A). 

(d) Let k = k + 1 and repeat procedure (b)-(c). 

The resulting IHTC u*(T) for T E [to + kA,to + 
( k  + 1)A) is given by 

u*(T) = -Br(T)[K(T,tO + kA + T ) z ( T )  

+g(T, t o  + kA + T ) ]  (13)  

where k = 0 , 1 ,  ,CO and Q f  satisfies (12).  

Now, we are ready to state the closed-loop stabil- 
ity of the proposed IHTC (13)  with yr( . )  = 0 and 
W(.) = 0. 

THEOREM 2 I f  the pair (A( t ) ,C( t ) )  is unz- 
formly observable (or uniformly detectable), the 
system (1) with (13) is uniformly asymptotically 
stable for A 5 T < CO. 

Proof: By optimality, for all t o  + kA 5 7 1  5 r2 5 
t o + ( k + l ) A a n d i n t e g e r k 2 0 ,  J * ( z ( T I ) , T ~ , ~ ~ +  
LA + T )  = S,:"[zTQz + u * ~ u *  - y 2 ~ * T ~ * ] d 7  + 
J * ( z ( T ~ ) ,  72, to+kA+T) 2 J 7 : [ ~ r Q ~ 2 + ~ ' * ~ * ] d ~  
+ J * ( z ~ ( T ~ ) , T ~ , ~ o  + kA -t T )  where 2 2 ( . )  is the 
state trajectory from ~ 2 ( 7 ~ )  = ~ ( 7 1 )  when U(.) = 
u*(T) and W ( T )  = 0 for T E [ T I , T ~ ) ,  and U(.) = 
U;(.) and W ( T )  = w;(T) for T E [72 , to  + kA + 
T ) .  Here, U ; ( . )  and w;(-) are the saddle-point 
solution for J * ( z ~ ( T ~ ) , T ~ , ~ o  + kA + T ) .  
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From Theorem 1 in [5],  we can easily know that 
under the condition (12) ,  J*(to + ( k  + l )A ,  to  + 
k A  + T )  2 J*(to + ( k  + l)A,to + ( k  + 1 ) A  + T )  

Since the saddle-point value is nonnegative, as 
t -+ 00 u*(t) + 0. Then, by uniform ob- 
servability, as t -+ 00 z ( t )  + 0 ,  i.e., the 
closed-loop system is uniformly attractive when 
w ( t )  = 0 for all t .  Since the closed-loop matrix 
[A(T) - B ~ ( T ) B T ( T ) K ( T , ~ ~  + k A  + T ) ]  for all T 

E [to + k A ,  to  + (k + 1 ) A )  is bounded, the closed- 
loop system when w ( t )  = 0 for all t is uniformly 
asymptotically stable from Lemma 1 in [5]. 

Remark 1 The above results are also applicable 
to periodic and time-invariant systems which be- 
long to  the class of time-varying systems. For 
periodic systems, b y  selecting A and T appropri- 
ately, we can get a very simple stabilizing IHTC 
as follows. Assume that the system matrices A( . ) ,  
Ell( .) ,  B2(-), and C(.) are N-periodic. Then, let 
A = N and Q f  satisfy 

AT(c)Qr + QrA(o) + Q(0) - QjQ(c>Qf 

5 Ofor all (T E [to + T,to + T + A]. (14) 

I n  this case, the solutions of K ( ~ , t o  + T )  over 
[ to , to  + A] from (4) at the initial point t o  are 
repeated since the systems are continuous A -  
periodic. Thus, we have only to solve the Riccati 
equation (4) only once at the initial time. I t  is 
the same for time-invariant systems. 

In the following, we show that the stabilizing 
IHTC guarantees the H,-norm bound for con- 
tinuous time-varying systems. 

THEOREM 3 For any &norm bounded distur- 
bances, the stabilizing IHTC U* ( t )  guarantees the 
H,-norm bound of the closed-loop system when 
20 = 0, i.e., 

l l ~ z w l l m  L Y where llTzwllm. (15) 

Proof: From Theorem 2, J*( to , to+T)  2 J::+kA 

(IIz(t>ll~-Y211W(t)Il~)dt + J*( to+kA,  to+kA+T). 
Since the closed-loop system is uniformly asymp 
totically stable, J*(to + k A ,  to  + k A  + T )  + 0 as 
k + co. Since J*(tO, t o  + T )  = 0 with zo = 0, we 
have (15). 

In the following section, we show how to guaran- 
tee zero-offset with the IHTC. 

4 Stabilizing IHTC with integral action 

In this section, we investigate the zero offset prop- 
erty of the proposed stabilizing IHTC with inte- 
gral action when the tracking command is con- 
stant and the system is time-invariant. In order 
to derive IHTC minimizing the cost function with 
integral action, we transform the model ( 1 )  and 
the cost function (3) as follows. 

Corollary 1 Assume that Q f e  satisfies the fol- 
lowing inequality condition: 
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Then, if the pair ( A , C )  is observable (or de- 
tectable), the system (16) with the resulting IHTC 
is asymptotically stable for A 5 T < CQ. 

Prooj We can easily know that if the pair ( A ,  C) 
is observable, then the pair (Ae ,  Ce)  is observable. 
The remaining proof here follows that of Theorem 
2. 0 

Now, we are ready to introduce the zero offset 
property of the proposed stabilizing IHTC with 
integral action. 

THEOREM 4 The stabilizing IHTC with inte- 
gral action provides zero ofset. 

Pro05 The detailed proof is omitted because of 
the page limit. For the full version, refer to the 
website http://cisl.snu.ac.kr/Nkkb. 0 

Note that the proof method of Theorem 4 cannot 
be applied to periodic or time-varying systems. 

5 Simulation Studies 

We compare the tracking performance of the pro- 
posed IHTC with those of the pointwise reced- 
ing horizon H, tracking control (PHTC) and the 
pointwise receding horizon LQ tracking control 
(PLQTC). Here, the PHTC and the PLQTC are 
obtained by using a finite horizon HTC derived 
in this paper. 

We consider the following time-invariant system 
matrices: 

0.5 -0.3 
A =  [ 0.2 -1 1 ,  Bi= [ ::;I, B2= [ 

C = [ 3 0  2 3 ,  L =  [ $ 1  . 
1 99.4630 5.5002 1 

For this example, Qr = 
5.5002 0.6610 ’ 

L J 

which is obtained by using “feasp()” function in 
LMI Toolbox [13]. In this simulation, we assume 
that T = 0.2 sec, y = 1, A = 0.1, the sampling 
time T, = 0.02 sec, and $ ( t o )  = [0 0IT. Since 
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the simulation time is 2 sec, we have 100 steps as 
shown in z-axis of Fig. 1. and Fig. 2. 

Using these values, we ohtain a stabilizing IHTC. 
We make the disturbance by multiplying 20% of 
the tracking command value by a random sig- 
nal which has a normal distribution between -0.5 
and 0.5. 

Fig. 1 shows the given reference signal ( y r ( t ) )  
in. (a) and tracking errors ( y ( t )  - y r ( t ) )  of the 
IHTC, PHTC, and PLQTC in (b), (c), and (d), 
respectively. 

The online computation times of the PHTC and 
PLQTC are about 3.8 times longer than that of 
the IHTC, while the IH’I’C, PHTC and PLQTC 
have similar performances as shown in Fig. 1. 
This is the same when there is no disturbance. 

6 Conclusion 

In this paper, a finite horizon H ,  tracking control 
(HTC) is derived for continuous time-varying sys- 
tems. Using the derived HTC, an intervalwise re- 
ceding horizon HTC (IHTC) is proposed for con- 
tinuous time-varying systems. It is shown that 
the proposed IHTC guarantees the closed-loop 
stability and the infinite horizon H,-norm bound 
for continuous time-varying systems including pe- 
riodic and time-invariant systems. Conditions are 
proposed under which the IHTC with integral ac- 
tion provides zero offset for a constant reference 
signal and time-invariant systems. Through sim- 
ulation, it is shown that the proposed IHTC has 
a much less computational burden than those of 
existing pointwise receding horizon LQ tracking 
control (PLQTC) and pointwise receding hori- 
zon HTC (PHTC), while the performance of the 
IHTC is similar to those of the PLQTC and the 
PHTC. 

The advantage of the proposed IHTC is that com- 
putational burdens are less than those for the 
PHTC and the PLQTC, although more memory 
for control gains may be required. Therefore, the 
proposed stabilizing IHTC will be useful for real- 
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Figure 1: Reference signal and tracking errors 

time tracking control. The IHTC with integral 
action will be useful for an accurate control be- 
cause of the zero-offset property. 
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