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Abstract  Differential linear repetitive processes 
are a distinct class of 2D continuousdiscrete lin- 
ear systems of both applications and systems t h e  
oretic interest. In the latter area, they arise, for 
example, in the analysis of both iterative learn- 
ing control schemes and iterative algorithms for 
computing the solutions of nonlinear dynamic op- 
timal control algorithms based on the maximum 
principle. Repetitive processes cannot be anal- 
ysed/controlled by direct application of existing 
systems theory and to date there are few results 
on the specification and design of control schemes 
for them. This paper uses an LMI setting to 
develop the first really significant results in this 
problem domain. 
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1 Introduction 

The essential unique characteristic of a repetitive, 
also termed multipass in the early literature, pro- 
cess can be illustrated by considering machining 
operations where the material or workpiece in- 
volved is processed by a sequence of passes of the 
processing tool. Assuming that the pass length a 
(i.e. the duration of a pass of the processing tool) 
is finite and constant, the output vector, or pass 
profile, y r ( t ) ,  0 5 t 5 a (t being the independent 
spatial or temporal variable) produced on the kth 
pass acts as a forcing function on the next pass 
and hence contributes to  the dynamics of the new 
pass profile y x + ~ ( t ) ,  0 2 t 2 a, k 2 0. 
Industrial examples of these processes include 
long-wall coal cutting and metal rolling opera 
tions; see [l,  21 for a detailed treatment. Also 
cases exist where adopting a repetitive process 
setting for analysis has major advantages over al- 
ternatives, so-called algorithmic examples. This 

is especially true for classes of iterative learn- 
ing control (ILC) schemes [3] and of nonlinear 
dynamic optimal control problems based on the 
maximum principle [4]. In the former area, the 
stability theory for linear repetitive processes 
proves to  be a natural setting for the analysis of 
a powerful clam of control laws in a subject area 
which has seen many successful practical imple- 
mentations. 
The basic unique control problem for repetitive 
processes is that the output sequence of pass pro- 
files can contain oscillations that increase in am- 
plitude in the pass-to-pm direction (i.e. in the k- 
direction in the notation for variables used here). 
Such behavior is easily generated in simulation 
studies and on scaled models of industrial exam- 
ples such as long-wall coal cutting (see [I] for a 
detailed treatment). Also these processes cannot 
be stabilized/controlled, in all but a few very re- 
strictive special cases, by application of standard 
(or 1D) control systems techniques (such an a p  
proach would essentially ignore their key defin- 
ing feature and the effects of resetting the initial 
(or boundary) conditions before the start of each 
new pass). (Elements of 1D linear systems theory, 
such as stability tests, can, of course, be employed 
where appropriate/relevant.) 
To remove these deficiencies and provide the es- 
sential starting point for a comprehensive con- 
trol/systems theory for these processes, a rigorous 
stability theory has been developed [5,  61. This 
theory is based on an abstract model of the dy- 
namics in a Banach space setting which includes 
all processes with linear dynamics and a constant 
pass length as special cases. Also the results of 
applying this theory to  a range of subclasses have 
been reported - including the differential linear 
repetitive processes considered here where the re- 
sulting conditions can be tested by direct appli- 
cation of 1D linear systems stability tests, e.g. in 
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the frequency domain. 

Unlike the 1D linear systems case, however, the 
'Nyquist-like' stability tests which can he used 
in this case do not provide any measures of rel- 
ative stability or form the basis for systematic 
control systems design. In actual fact, little is yet 
available in this general area. This paper shows 
that using an LMI setting enables very significant 
progress to  be achieved in terms of the specifi- 
cation and computation of stability margins and 
systematic algorithm8 for the design of a (poten- 
tially) very powerful class of control laws. We 
begin in the next section by giving the required 
barkground definitions and results. 

2 Background 

The state space model of the differential linear 
repetitive processes considered here has the fol- 
lowing form over 0 5 t 6 a, k 2 0, 

i r + i ( t )  = Axr+i(t)  + Bur+i(t)  + Bovr(t)  
Yk+lW = CZk,l(t) + D=r+1(t) + DOYk(t) 

(1) 

Here on pass k, z r ( t )  is the n x 1 state vector, 
y r ( t )  is the m x 1 pass profile vector, and ur ( t )  is 
the 1 x 1 vector of control inputs. 
To complete the process description, it is neces- 
s a r y  to  specify the 'initial conditions' - termed the 
boundary conditions here, i.e. the state initial 
vector on each pass and the initial pass profile. 
Here no loss of generality arises from assuming 

is an m x 1 vector whose entries are known func- 
tions oft. 
The stability theory [5,6] for linear repetitive pro- 
cesses is based on an abstract model of the under- 
lying dynamics in a Banach space setting which 
includes all such processes as special cases. In ef- 
fect, this consists of two distinct concepts termed 
asymptotic stability and stability along the pass 
respectively where the former is a necessary cou- 
dition for the latter. Noting again the unique 
control problem for these processes, asymptotic 
stability demands that bounded input sequences 
(pass initial conditions, disturbances and control 
inputs) produce bounded sequences of pass pro- 
6les (in a well defined sense) over the finite pass 
length and stability along the pass demands that 
this property holds independent of this param- 
eter. Hence, in general, it will be the stronger 
property of stability along the pass which will be 
required. 
Several equivalent sets of necessary and sufficient 
conditions for stability along the pass of processes 

zr+1(0) = 0, k 1 0, and yo($)  = f ( t ) ,  where f (t)  

of the form defined by (1) have been reported 
[S, 61 but here it is the following set which will be 
required. 

Theorem 1 Suppose that the pair {A ,  Bo} is 
controllable and the pair { C , A }  is observable. 
Then a differential linear repetitive process of the 
form (1) (with the assumed boundary conditions) 
is stable along the pass if, and only if, r(D0) < 1, 
all eigenvalues of A have strictly negative real 
parts, and all eigenvalues of the transfer function 
matriz 

G(S) = c(dn - A ) - ' B ~  + D~ (2) 

have moduIus strictly less than unityVs = w,  w 2 
0. 

3 LMI  based Stability Analysis 

The starting point here is the third condition of 
Theorem 1. In particular, if the other conditions 
of this result hold then the example under con- 
sideration is stable along the pass if, and only if, 

det (=I,,, - (C (SI, - A)-' BO + D O ) )  # 0, 

121 2 1, s = aw. Also we will require the following 
well known definition and result. 

Definition 1 Let S ( 7 )  be a square matrix of 
real mtional functions an the complex variable 7. 
Then this matrix is said to be strictly continuous 
bounded real if, and only if, 
(a) all poIes of S(7) have stnctly negative ml 
parts; and 
(b) I - S T ( - w ) S ( w )  > 0, V W .  

Note. In this paper the symbols >, 2, and < 
will be used to  denote positive definite, positive 
semi definite and negative definite properties re- 
spectively of matrices. 
The conditions under (a) and (b) in this last defi- 
nition can be reduced to  conditions on the matri- 
ces of a minimal state space realization of S(7). 
In particular, suppose that S(y) has a minimal 
state space realization given by the quadruple 
{F, G, H, J }  such that 

(3) 

Then the following result is the well known 
so-called strictly continuous bounded real 
lemma(SCBR). 

Lemma 1 Suppose that S(7) is a square matriz 
of real mtional functions in 7 with minimal state 
space realization defined b y  {F ,G ,  H ,  J } .  then this 
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matriz is SCBR if, and only if, 3 a positive defi- 
nite symmetric matriz P such that 

F T P +  PF i HTH P G +  HJ Q := 

In what follows, we use the SCBR property to 
show that a solution of the following 2D Lya- 
punov equation is a sufficient condition for stabil- 
ity along the pass of processes described by (1). 

jiTw1,O + wl.Oz+ xTwo.1x- woJ = -Q (6) 

where W'.' = diag{W1,OmX,,,}, with W1 = 
WT an n x n positive deiinite matrix, WoJ = 
diag{O,,,Wz}, with Wz = WF an m x m posi- 
tive definite matrix, Q = QT an (n+m) x (n+m) 
positive definite matrix, and 

(7) 

Now we have the following theorem and corollary 
from [5, 61. 

Theorem 2 Consider a differential linear repet- 
itive process of the form (1). Then 3 symmet- 
ric positive definite matrices W1, Wz, and Q such 
that W = diag(W1.W~) and Q satisfy the 20 
Lyapunov equation (6) if, and an$ if, 3 an m x m  
nonsingular matrix T such that G(s)  defined by 

e(s) = TG(s)T-' (8) 

is SCBR. 

Corollary 1 Consider a differential linear repet- 
itive process of the form (1). Then this process i s  
stable along the pass if r(D0) < 1, all eigenvalues 
of the matriz A have strictly negative real parts 
and 3 positive definite symmetric matrices WI, 
W2 and Q which solve the 2D Lyapunov equation 
(6). 

In general, the reverse conclusion to  this last 
corollary is not true - a counter-example can be 
found in [SI. If, however, the example under con- 
sideration is singleinput singleoutput then the 
result of this corollary is necessary and sufficient. 
To develop an LMI solution of the 2D Lyapunov 
equation here, first note that (6) can be rewritten 
in the form 

xFG2AT - Wo*' +xTW1.o + W1,"& < 0 (9) 

where Gz = diag{Ws, WZ}, W3 is an arbitrary 
symmetric positive definite n x n matrix and 

Now apply the Schur complement and thenEre 
and post-multiply (9) by the matrix diag{I,, W2} 
to yield the equivalent condition 

which is clearly in the LMI form and we have the 
following result. 

Theorem 3 A differential linear repetitive pro- 
cess of the form (1) w stable along the pass if the 
LMI of (11) is feasible. 

4 Stability Margins 

First note that in the 1D differential linear sys- 
tems case the Lyapunov equation for stability of 
the system z( t )  = Az( t )  + Bu(t) can be written 
in LMI form as 3P > 0, : AP + PAT < 0.  Also 
the stability margin in this case can be defined as 
the m a d "  positive real number U such that 
(u1 + A) has all its eigenvalues in the open left- 
half of the complex plane. A lower bound for n 
in this case can be obtained from the constrained 
optimization problem: 
Maximize U subject to P > 0, U > 0 and the LMI 

AP +  PA^ + zUp < o (12) 

In the discrete 1D linear systems case, the Lya- 
punov equation for the system x(i + 1) = Ax(i )  + 
Bu(i) can be written in LMI form as 3P > 0, : 
ATPA - P < 0.  Also the stability margin in this 
case can be defined as the maximum positive real 
number U such that C ( z )  := det[l - zA] # 0 in 
U: = {z : IzI 5 1 +U}. To formulate this as 
an LMI problem, first note that this last condi- 
tion is equivalent to finding the maximum value 
of U E W : C ( z )  := det[I - (1 + u)zA] # 0 in 
U1 = { z  : Iz/ 5 1). Routine analysis then leads to 
the following LMI formulation of this problem: 
Maximize U E W subject to P = PT > 0 and the 
LMI 

[ (1 + - p  u)PA ( l+zyTp] < 0 (13) 

In the case of the differential linear repetitive pro- 
cesses, the generalized stability margin is defined 
as follows, where the fact that (14) below with 
U, = 0 is equivalent to the conditions of Thew 
rem 1 has heen established in [6]. 

Definition 2 The generalized stability maqin 
v,, for a differential linear repetitive process of the 
form (1) is defined as follows where 0 5 q 5 1 

~ ( s . 2 )  + o in 6:,= (14) 

31 



C(s ,z )  = deysI, 8 I ,  - [ 2 2o 11 (15) 

Note. It is not possible to  define a joint ( 5 , ~ )  

stability margin due to  the fact that the region 
Re(s)  > -a,, is not compact. 
The following is the first major new result in this 
paper and gives an Lh4I solution to  the comput* 
tion of U,,. 

Theorem 4 Lower bounds foru,, can be obtained 
as the solutions of the constmined optimization 
problem: 
Given 0 I 9 5 1, mazimize a., subject to Wl > 
0, Wz > 0, Wa > 0, a,, > 0 and the LMI 

[ -% ] < o  
(16) 

H = 2 q ~ , , W ' . ~  - W0*' + A7Wl.O + W~VO& 

HI = 11 + (1 - v ) u ~ ]  A, Wz T-- 

Proof. First note again that (11) is a combi- 
nation of the Lyapunov equations for differential 
and discrete 1D linear systems. The result now 
follows immediately on applying the LMI formu- 
lations of the stability margins for ditrerential and 
discrete linear systems summarized above as (12) 
and (13) respectively to  (11). 
One advantage of this latter approach is that we 
can see the 'trade-off' in terms of the value of 

between the along the pass and pass to  pass 
components of the two stability margins. This is 
highlighted in the following example. 

Example 1 Consider the case when 

-0.1831 0.0649 -0.0243 
A =  [ -0.1464 -0.0648 -0.2281 

0.0536 0.0376 -0.2364 
-0.0937 0.0916 0.0562 

Bo = [ -0.2436 -0.2036 0.0543 
-0.0580 -0.2323 -0.2421 

I 
1 
1 

1 
-0.2418 -0.2212 0.1088 

C = , -0.1550 -0.0662 0.0963 
0,0435 0.0657 -0.2080 

(17) 

-0.0228 -0.1732 0.1138 
-0.0291 0.0878 -0.0108 
-0.0734 0.0996 0.0274 

1 
Do = [ 

This process is  stable along the pass and the fol- 
lowing matrices solve the 2 0  Lyapunov equation 

ezpressed in LMI form 

334.6229 -70.5901 55.0677 
Wl = [ -70.5901 218.9137 -92.9743 

55.0677 -92.9743 367.3537 
220.5601 -22.2878 7.4615 

wa = [ -22.2878 250.0284 19.3149 
7.4615 19.3149 266.0832 

1 
1 

(18) 

and WJ = WZ. The following table gives the rele- 
vant Stability margins 

0.0529 
0.0638 
0.0680 

0.0719 
0.071 2 
0.0722 
0.0748 

0.0706 

0.0745 
0.0753 - 

a, 
1.7109 
- 
0.4rSj 
0.2550 
0.1586 
0.1059 
0.0719 
0.04 75 

0.0187 
0.0309 

0.0083 
0 

Here a. = vu,, is the component of the gener- 
alized stability margin referring to  the along the 
pass dynamics and U= = (1 - q)uv that referring 
to the pass to pass dynamics. 
A currently (essentially) open problem is how ex- 
actly these stability relate to  expected process 
performance. 

5 LMI based Controller Design 

In terms of the design of control schemes for dif- 
ferential linear repetitive processes, most work to  
date has been done in the ILC area [3]. Here 
it has become clear that a very powerful class 
of control laws results from using feedback ac- 
tion on the current pass augmented by feedfor- 
ward action from the previous pass. Here we 
consider a control law of the following form over 
0 5 t 5 a,: k 2 0 

where KI  and Ka are appropriately dimensioned 
matrices to  be designed. This results in the fol- 
lowing condition for closed loop stability along 
the pass (resulting from interpreting (14) with 
an = 0 closed loop) 

C c ( s , z ) # O , : V : ( s , t ) : R e ( s ) > O ,  1 ~ 1 5 1  (20) 
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where 

C,(s, z )  := det [SI" fB I ,  - s] (21) 

and 

( A + B K i )  (Bo+BKz)  ] 
= [ z(C + D K i )  z(Do + DKz) 

Now introduce the matrices 

Then we have the following which is the second 
major result in this paper (which results directly 
from interpreting (11) closed loop). 

Theorem 5 Suppose that a differential linear 
repetitive process of the form described by (1) i s  
subjected to a control law of the form (19). Then 
the resulting closed loop process is stable along the 
pass if 3 symmetric matrices W1 > 0, Wa > 0 and 
W3 > 0 such that 

F1 = -WOs' + (21 + &K)TW'*o 
+ W1,"(& + & K )  

The difficulty with the matrix inequality of The- 
orem 5 is that it is nonlinear in its parameters. It 
can, however, be replaced hy the following result 
where each of the inequalities is a strict LMI with 
a linear constraint which also gives a formula for 
computing K in (19). This follows hy first not- 
ing that the above condition can he rewritten (by 
direct substitution for the relevant submatrices) 
in the following form 

Fii = ( A  + B K I ) ~ W I  + W i ( A  + BKi)  
Fiz = Wi(Bo + BKz) 
5 4  = (C + DKi)TWa 
Fz, = (Do + DKz)TWa 

Theorem 6 The condition of Theorem 5 is 
equivalent to the requirement that 3 symmetric 
matrices Y > 0 ,  Z > 0,  and matrices N and M 
such that the following LMI holds. 

G i i =  Y A T  + NTBT + A Y  + BN 

Gia = BoZ + BM 
Gls = YCT + NTDT 
G I ~  = ZDT + MTDT 

Also if (25) holds, stabilizing K I  and Kz for the 
control law (19) are given by 

(26) 

Proof: First pre and post-multiply (20) by the 
matrix diag(W;', W;', W;', W;') and then 
note that the third block row and the third block 
column can be removed from the result without 
changing the underlying inequality solution. Now 
introduce the substitutions 

K1 = NY-', Kz = M Z -  1 

Y = WF1, z = w-1 a (27) 

and use (26) to  obtain (25). 
To illustrate this last result we now give the fol- 
lowing example. 

Example 2 Consider the model (1) in the case 
when 

I 0.8 0.4 -0.8 
A = [  -0.8 -0.8 -0.6 

0.5 0.9 0.5 - - 
0.4 0.6 0.1 

B = r 10.2 -0.5 0.05 1 . 1 0.2 -0.2 -0.2 J ' 
-0.7 

BO = [ -0.2 
-0.5 
-0.9 

C = [ -0.6 
0.6 

0.5 
D = [ 0.2 

0.4 
-0.8 

Do = [ -0.8 
-0.3 

-0.2 -0.2 
-0.2 
-0.9 E ]  , 
0.5 -0.9 

0.2 -0.25 

0.8 -0.5 
0.6 0.2 

This model w both asymptotically unstable (the 
eigenvalues of Do are (-1.0425, 
0.6213 f 0.574i)) and unstable along the pass (A 
has eigenvalues (0.05 f 0.8231i, 0.6)). Theorem 
6 can be successfully applied here since the LMI 
of (25) is feasible Also by (26) of Theorem 6 the 
stabilizing K1 and K Z  for the control law (19) are 
given by 

1 19.0682 3.0264 15.0061 

-6.9497 -0.2326 -7.5848 
Ki  = [ -9.9662 -1.7118 -7.4517 , 



(29) 
1 -0.0394 1.5696 -0.5988 

K2 = [ 0.3749 -0.2424 -0.7081 
1.2621 -0.4970 -0.0024 

If some prescribed stability margins of, U; are re- 
quired by the design specification, then Theorem 
5 generalizes in a natural manner and gives the 
following result. 

Theorem 7 Suppose that a differential linear 
repetitive process of the form described b y  (1) is 
subjected to a control law of the form (19)  and the 
stability margins U; and U; are required. Then 
the resulting closed loop system w stable along the 
pass with these stability maroins if 3 symmetric 
matrices Y > 0 ,  Z > 0, N and M such that the 
following LMI holds. 

Also stabilizing K1 and K2 for the control law 
(19) are again given b y  (26). 

fil = 2 4 Y  + YAT + NTBT + A Y  + BN 

FIZ =BoZ+BM 
F13 (1 +u;)(YCT + N T D T )  
F23 = (1 + o;)(ZD,T + MTDT)  

6 Conclusions 

Differential linear repetitive processes are a dis- 
tinct class of 2D continuous-discrete linear sys- 
tems of both applications and systems theo- 
retic interest. In applications, they arise in 
iterative learning control schemes and in sc- 
lution algorithms for nonlinear dynamic opti- 
mal control algorithms based on the maximum 
principle. Repetitive processes cannot be anal- 
ysed/controlled by direct application of existing 
systems theory and to date there have been few 
results on the specification and design of control 
schemes for them. This paper has used an LMI 
setting to develop the first really significant re- 
sults in this key area. Starting from an LMI in- 
terpretation of a 2D Lyapunov equation based in- 
terpretation of stability, a complete design proce- 
dure for a class of control laws based on combining 
feedback control action on the current pass (here 
state feedback action has been used) combined 
kith feedforward action based on .the previous 
pass profile. (Experience in the iterative learning 
control application strongly suggests that such 

control laws are very powerful). The resulting 
design procedure can be implemented by direct 
application of standard MATLAB based LMI rou- 
tines. Also it has been shown that this method 
leads to easily computed stability margins and 
extends naturally to the problem of control law 
design to meet specified stability margins. 
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