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Abstract

This paper deals with a stochastic stability concept for discrete-time Markovian jump linea
tems. The random jump parameter is associated to changes between the system operation m
to failures or repairs, which can be well described by an underlying finite-state Markov chain.
model studied, a fixed number of failures or repairs is allowed, after which, the system is brou
a halt for maintenance or for replacement. The usual concepts of stochastic stability are re
pure infinite horizon problems, and are not appropriate in this scenario. A new stability concep
troduced, named stochasticτ -stability that is tailored to the present setting. Necessary and suffi
conditions to ensure the stochasticτ -stability are provided, and the almost sure stability concep
sociated with this class of processes is also addressed. The paper also develops equivalenc
second order concepts that parallels the results for infinite horizon problems.
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1. Introduction

Let us consider a discrete-time linear system subject to abrupt parameter chang
can be modelled via a discrete-time finite-state Markov chain. Here, these chang
associated with failures or repairs of the running system. This class of systems is kn
the literature as discrete-time Markovian jump linear systems (MJLS); see (1) and (2

The study of MJLS, and in particular, the study of stochastic stability of MJLS
attracted the attention of many researchers. Ji and Chizeck [1] provided necessa
sufficient conditions to ensure second moment stochastic stability of MJLS. Ji et a
established the equivalence among various second moment stochastic stability co
and the relation of these with almost sure stability. Costa and Fragoso [3], using Kron
product, obtained necessary and sufficient conditions for mean square stability o
systems with additive noise included. Based on a stochastic version of the Lyap
second method, Fang [4] presented sufficient conditions for the almost sure stab
MJLS. Some less conservative conditions were derived by Li et al. [5].

Although, several stochastic stability concepts can be found in the literature, fo
class of systems treated here those stochastic stability concepts are not adequat
uation of interest arises when one studies this class of systems until the occurren
random eventτ , more specifically, a stopping timeτ of the joint process{xk, θk; k � 0}
described by (1) and (2). The stopping timeτ may represent interesting situations from
point of view of applications. For instance,τ can be the accumulatednth failure and repair
of the system. In an other situation,τ can represent the occurrence of a “crucial failur
(which may occur after a random number of failures). In both situations the system w
paralyzed after this event and the future behaviour is of no concern.

In this scenario, the usual stochastic stability concepts are not adequate, since t
suitable for pure infinite time horizon problems, but not for problems with unbou
but finite horizon defined by a stopping time as in the present setting. In this pap
propose a new stochastic stability concept associated with a class of stopping time
joint process{xk, θk; k � 0} for MJLS, called stochasticτ -stability. It is appropriate to
deal with the problem with horizon connected to the accumulatednth failure or repair of
the system, and it will be shown that every stochastic stable system isτ -stable, but the
converse is not true.

The paper is organized as follows. In Section 2 the basic definitions are presen
Section 3 the necessary and sufficient conditions forτ -stability are derived and referred
the stochastic stability concept by means of an example. In Section 4 equivalences
concepts ofτ -stability are presented, and in Section 5 the concept ofτ almost sure stability
is considered.

2. Notation and problem formulation

Throughout this paper, the following notation is adopted.R
n denotes then-dimensional

real space andMm×n (Mm) is the normed linear space of allm×n (m×m) real matrices
The transpose of matrixU is indicated byU ′ and a nonnegative definite matrix (positi
definite) is represented byU � 0 (U > 0). Thus, the closed convex (opened) of all the n
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negative definite (positive definite) matrices inMm is denoted byMm0 = {U ∈ Mm: U =
U ′ � 0} (Mm+). The linear space of all sequences ofs real matrices inMm×n (Mm) is
represented byMm×n = {U = (U1, . . . ,Us): Ui ∈ Mm×n, i ∈ {1, . . . , s}} (Mm). For the
sake of notational simplification,Mm0 is written whenUi ∈ Mm0, for all i ∈ {1, . . . , s}
andM

m+ is written whenUi ∈Mm+. The standard vector norm inRn is indicated by‖ · ‖
and the corresponding induced norm of matrixU by ‖U‖. In addition,λ(U) indicates an
eigenvalue andrσ (U) the spectral radius ofU ∈ Mm, respectively. Let1{.} be the Dirac
measure. ForU ∈ M

m0, the following operator is defined:

Ei (U)=
∑
j �=i
pijUj .

Consider the discrete-time Markovian jump linear systems (MJLS) defined on the f
mental probability space(Ω,F, {Fk},P ),

S: xk+1 =Aθkxk, (1)

where{xk, θk; k � 0} are the states of process with values inR
r × X; {θk; k � 0} is a

time homogeneous Markov chain taking values in a finite setX = {1, . . . ,E}, with initial
distributionµ and transition probability matrixP = [pij ], where

pij := P(θk+1 = j | θk = i), ∀i, j ∈ X, k � 0. (2)

The setX comprises the various operation modes of the system (1) and for eachθk =
i ∈ X, the matrixAθk ∈ Mr (associated to “ith” mode), will be assigned asAθk :=Ai . We
mention thatAθk may encompasses jump-dependent linear controls of typeGθkxk. The
MJLS as defined is trivially a strong Markov process.

This class of stochastic systems is associated to systems subject to failures in the
ponents or connections according to a Markov chain. The situation that we are inte
in arises when one wishes to study the stability of such a system until the occurre
a fixed numberN of failures and repairs. The paper recognizes the sequence of{Fk}-
stopping times containing the successive times of the occurrence of such failures a
it studies the stability of systems (1) and (2) according to these stopping times. L
introduce first the concepts of second momentτ -stochastic stability.

Definition 1. Consider a{Fk}-stopping timeτ . The MJLSS is

(i) Stochasticallyτ -stable (τ -SS) if for each initial conditionx0 and initial distributionµ

E

[∑
k�0

‖xk‖21{τ�k}
]
<∞; (3)

(ii) Mean squareτ -stable (τ -MSS) if for each initial conditionx0 and initial distributionµ

E
[‖xk‖21{τ�k}

]→ 0 whenk→ ∞; (4)

(iii) Exponentially mean squareτ -stable (τ -EMSS) if there exist constants 0< α < 1 and
β > 0, such that for each initial conditionx0 and initial distributionµ

E
[‖xk‖21{τ�k}

]
� βαk‖x0‖2, k � 0. (5)
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3. Stochastic τ -stability

In this section, necessary and sufficient conditions are given for a certain class o{Fk}-
stopping times. Let us define the sequenceT N = {Tn; n= 0,1, . . . ,N} of stopping times
associated to jump times:

T0 = 0,

Tn = min{k > Tn−1: θk �= θTn−1}, n= 1,2, . . . ,N;
eventually,Tn = · · · = TN = +∞ for somen � 1, with probability one. In this work, we
assume thatτ = Tn for some finiten. The next lemma, which the proof is omitted, will b
used as support. For notational simplicity we sometimes writeEk[·] instead ofE[· | xk, θk].

Lemma 2. For all m� 1 and i, j ∈ X

P(T1 =m,θm = j | θ0 = i)=
{
pij1{m=1} if pii = 0,

pii
m−1pij1{pii<1} if pii > 0.

Note thatP(T1 = 1 | θ0 = i) = 1 andP(T1 = +∞ | θ0 = i) = 1, wheneverpii = 0 and
pii = 1, respectively.

Theorem 3. For τ ∈ T N , the following assertions are equivalent:

(i) The MJLS S is τ -SS.
(ii) For any given set of matrices Q ∈ M

r+, there exists a unique set of matrices L ∈ M
n+,

satisfying the Lyapunov equations

piiA
′
iLiAi −Li +Qi = 0, ∀i ∈ X. (6)

(iii) rσ (p
1/2
ii Ai) < 1, for all i ∈ X.

Proof. (ii) ⇔ (iii) This equivalence is well known from the Lyapunov stability theo
see [6].

(i) ⇐ (ii) The proof employs an induction argument on the sequenceT N . First, define
the functional

Vk(x, i) := x ′(Pi1{T1>k} + Si1{T1=k})x,

whereSi ∈ Mr+, andPi ∈Mr+ is the solution of

piiA
′
iPiAi − Pi +Qi +A′

iEi (S)Ai = 0, ∀i ∈ X. (7)

The existence of suchP ∈ M
r+ relies on (ii). Hence, we can write that

Ek
[
Vk+1(xk+1, θk+1)− Vk(xk, θk)

]
= −x ′

kSθk xk1{T1=k} +Ek
[
(x ′
k+1Sθk+1xk+1 − xkPθkxk)1{T1=k+1}

]
+Ek

[
(x ′
k+1Pθk+1xk+1 − xkPθkxk)1{T1>k+1}

]
.

Calculating the expected values above, we get that
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Ek
[
Vk+1(xk+1, θk+1)− Vk(xk, θk)

]
= −x ′

kSθk xk1{T1=k} + x ′
k

[
pθkθkA

′
θk
PθkAθk +A′

θk
Eθk (S)Aθk − Pθk

]
xk1{T1>k},

sinceP(T1 = k + 1 | θk)= 1− pθkθk andP(T1> k + 1 | θk)= pθkθk .
However, if there existsL ∈ M

r+ solving (6) then there isP ∈ M
r+ solving (7), and the

previous relation can be written as

Ek
[
Vk+1(xk+1, θk+1)− Vk(xk, θk)

]= −x ′
k(Qθk1{T1>k} + Sθk1{T1=k})xk. (8)

Now, observe that

κ∑
k=0

E0
[
Vk+1(xk+1, θk+1)− Vk(xk, θk)

]

=
κ∑
k=0

E0
[
Ek
[
Vk+1(xk+1, θk+1)− Vk(xk, θk)

]]
.

Applying (8), and considering thatQ,S ∈ M
r+,

E0
[
Vκ+1(xκ+1, θκ+1)

]− V0(x0, θ0)

= −
κ∑
k=0

E0
[
x ′
k(Qθk1{T1>k} + Sθk1{T1=k})xk1{T1�k}

]

� −
κ∑
k=0

δE0
[‖xk‖21{T1�k}

]
(9)

for someδ > 0. SinceE0[Vk(xk, θk)] � 0, ∀k � 0, we get from (9) that

lim sup
κ→∞

κ∑
k=0

E0
[‖xk‖21{T1�k}

]
� 1

δ
V0(x0, θ0) <∞

holds. Therefore, the MJLSS is τ -SS.
Now, for the sake of an induction argument, let us assume that for somen the inequality

lim sup
κ→∞

κ∑
k=0

E
[
x ′
kQθk xk1{Tn�k}

]
< x ′

0P̂θ0x0

holds and thus, by settingQ ≡ I, E[‖xTn‖21{Tn�k}]<∞. However,

lim sup
κ→∞

κ∑
k=0

E
[
x ′
kQθk xk1{Tn+1�k}

]

= lim sup
κ→∞

E

[
κ∑
k=0

x ′
kQθkxk1{Tn>k} +

κ∑
k=Tn

x ′
kQθkxk1{Tn�k�Tn+1}

]
. (10)

Notice that using the strong Markov property and the homogeneity property, the s
term conditioned to the knowledge of(xTn, θTn) can be written as
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cing

,

lim sup
κ→∞

E

[
κ∑

k=Tn
x ′
kQθkxk1{Tn+1�k} | xTn, θTn

]

= lim sup
κ→∞

E

[
κ−Tn∑
k=0

x ′
kQθk xk1{k�T1}

∣∣ x0 = xTn, θ0 = θTn
]
< x ′

θTn
P̂θTn xθTn . (11)

Thus, one concludes from (10) and (11) that

lim sup
κ→∞

κ∑
k=0

E
[
x ′
kQθk xk1{Tn+1�k}

]
� lim sup

κ→∞

κ∑
k=0

E
[
x ′
kQθkxk1{Tn>k} + x ′

Tn
P̂θTn xTn

]

� lim sup
κ→∞

κ∑
k=0

E
[
x ′
kQθk xk1{Tn�k} + x ′

Tn
(P̂θTn −QθTn )xTn

]
< 2x ′

0P̂θ0x0.

Hence,

lim sup
κ→∞

κ∑
k=0

E
[‖xk‖21{Tn�k}

]
<∞ for anyTn ∈ T N,

implying τ -SS.
(i) ⇒ (ii) As in the previous part define the functional

x ′
0Pθ0x0 :=E0

[ ∞∑
k=0

x ′
kQθk xk1{T1>k} + x ′

T1
SθT1
xT1

]
, (12)

for all (x0, θ0) ∈ R
r × X. The right-hand side of (12) can be expressed as

E0

[
x ′

0Qθ0x0 +ET1

[( ∞∑
k=1

x ′
kQθk xk1{T1>k} + x ′

T1
SθT1
xT1

)
1{T1�1}

]]
. (13)

In addition,

ET1

[( ∞∑
k=1

x ′
kQθk xk1{T1>k} + x ′

T1
SθT1
xT1

)
1{T1�1}

]

=ET1

[( ∞∑
k=1

x ′
kQθk xk1{T1>k} + x ′

T1
SθT1
xT1

)
1{T1>1} + x ′

T1
SθT1
xT11{T=1}

]
. (14)

Thus, in view of the strong Markov property, applying homogeneity in (14) and introdu
it in (13), we have that

x ′
0Pθ0x0 = x ′

0Qθ0x0 +E0
[
x ′

1Pθ1x11{T1>1} + x ′
T1
SθT1
xT11{T1=1}

]
. (15)

Sincex0 is arbitrary, (15) implies that

piiA
′
iPiAi +A′

iEi (S)Ai − Pi = −Qi,
using the fact thatP(T1 = 1 | θ0 = i)= 1 − pii andP(T1 > 1 | θ0 = i)= pii . Thus, from
the Lyapunov stability theory, the existence of the setL ∈ M

r+ satisfying (6) is guaranteed
completing the proof forn= 1.
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Now, for the general case, we can write from (i) that

E

[ ∞∑
k=0

x ′
kQθkxk1{TN>k} + x ′

TN
SθTN

xTN

]
<∞

which implies, from the strong Markov property, that

ETn

[ ∞∑
k=Tn

x ′
kQθk xk1{Tn+1>k} + x ′

Tn+1
SθTn+1

xTn+1

]
<∞, (16)

for n = 0,1, . . . ,N − 1. By applying the homogeneity property, it follows that (16)
equivalent to (12) withx0 = xTn andθ0 = θTn , and the existence of a set of matricesL ∈
M
r+ satisfying (6) is assured, then completing the proof.✷
Although the stability of each operation mode is neither necessary nor sufficie

stochastic stability of systems (1), as pointed out by Ji and Chizeck [1] (see also [3
stability of thep1/2

ii Ai for eachi is a necessary condition to ensure that stability not
Notice however that, for MJLS with the present stability notion, the equivalent cond
(iii) of τ -stability in Theorem 3 is less restrictive. In fact, for such systems it can be s
that stochastic stability, as established in [1], implies stochasticτ -stability, but the convers
is not generally true. This is illustrated in the next example.

Example 4. Consider a two form scalar MJLSS with |p1/2
ii ai | < 1 for i = 1,2. Conse-

quently, the system isτ -SS according to Theorem 3. If systemS is also stochastically
stable as defined by Ji and Chizeck [1], the solutions of recursive equations inlκi , given by

lκ+1
i = piia2

i l
κ
i + (1−pii)a2

i l
κ
j + qi, i, j = 1,2, j �= i, (17)

are such thatli = limκ→∞ lκi , and(l1, l2) is the solution of a coupled Lyapunov equatio
Writing the preceding equation in matrix form, the eigenvalues of the matrix of recu
can be obtained from the expression

det

(
sI −

[
p11a

2
1 (1− p11)a

2
1

(1− p22)a
2
2 p22a

2
2

])
= 0.

This is equivalent to

s2 − (
p11a

2
1 + p22a

2
2

)
s + (a1a2)

2(p11 + p22 − 1)= 0. (18)

Notice from (18) that, if the module of the eigenvalues of the recursive matrix are g
or equal than one, then∣∣(a1a2)

2(p11 + p22 − 1)
∣∣� 1. (19)

On the other hand, given that|piia2
i |< 1 for i = 1,2, then

(a1a2)
2(p11 + p22 − 1) < a2

1 + a2
2 − a2

1a
2
2.

Thus, it is enough to seta2
1 + a2

2 − a2
1a

2
2 � −1 (for example,a1 = √

2 anda2 = √
3), to

verify (19). In this situation, the recursive equation (17) does not converge to the s
state solution, i.e., the systemS is not stochastically stable, but it isτ -stable.
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4. Equivalence of stochastic τ -stability concepts

In this section a result concerning the equivalence among stochasticτ -stability concepts
is proven. First, the equivalence is proven in Lemma 6 assuming thatpii > 0 for eachi ∈ X,
and the complete result appears in Theorem 7. Consider

Xni =E[znz′n1{φn=i}
]
, ∀i ∈ X, (20)

wherezn = xTn andφn = θTn , for n= 1, . . . ,N .

Lemma 5. Suppose that S is τ -SS. An equivalent form of expressing Xnj ∈ Mr0 for j ∈ X

is given by

Xnj =
∑
i �=j
pijW

n−1
i ,

where the matricesWni ∈ Mr are obtained as the solution of the recursive matrix equation

Wk−1
i = piiAiWk−1

i A′
i +AiXk−1

i A′
i , k = 1, . . . , n− 1, (21)

for each i ∈ X. Moreover,

E
[‖zn‖2]=

∑
j∈X

tr
{
Xnj
}

�
(

γ

1− α2

)n
‖x0‖2, (22)

where α := max{λmax(p
1/2
ii Ai)} and γ := max{‖Ai‖2}.

For the proof see Appendix A.
The following inequality will be useful. Setc > 0; then for anyd0 � −1/(ec4 ln c) > 0

one has that

kc2(k−2) � d0c
k, ∀k � 0. (23)

Lemma 6. For systems S , where 0< pii � 1 for all i ∈ X, τ -SS, τ -MSS and τ -EMSS are
equivalent.

Proof. Comparing (3), (4) and (5) notice that the implicationsτ -SS⇒ τ -MSS and
τ -EMSS⇒ τ -MSS are immediately valid. It remains to show thatτ -SS⇒ τ -EMSS and
τ -MSS⇒ τ -SS.
τ -SS⇒ τ -EMSS: The proof is obtained by an induction argument. LetÂi := p1/2

ii Ai .
Firstly considerτ = T1. In this case, it can be shown that

E0
[‖xk‖21{T1�k}

]= ∥∥Âk−1
i x0

∥∥2‖Ai‖2. (24)

Indeed, from the Lemma 2 we get thatP(T1 =m | θ0 = i)= pm−1
ii (1− pii)1{pii<1}. Then

E0
[‖xk‖21{T1�k}

]= E0
[∥∥Aki x0

∥∥21{T1�k}
]=

+∞∑
m=k

∥∥Aki x0
∥∥2
P(T1 =m | θ0 = i)

= ∥∥Âk−1x0
∥∥2‖Ai‖21{pii<1}.
i
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Whenpii = 1, sinceP(T1 � k | θ0 = i)= 1 for anyk > 0, one has thatE0[‖xk‖21{T1�k}] =
‖Aki x0‖2 and (24) remains valid. From (24) and Theorem 3(iii), we get that

E0
[‖xk‖21{T1�k}

]= ∥∥Âk−1
i x0

∥∥2‖Ai‖2

� λ2(k−1)
max

(
Âi
)‖Ai‖2‖x0‖2 � λk−1

max

(
Âi
)‖Ai‖2‖x0‖2.

Recalling thatα = max{λmax(Âi)} andγ = max{‖Ai‖2}, and settingc1 = α−1, we can
write

E
[‖xk‖21{T1�k}

]
� γαk−1‖x0‖2 = c1γαk‖x0‖2. (25)

Adoptingβ = c1γ > 0 we have that (5) holds forτ = T1.
Now, for the caseτ = Tn+2, first note that

E
[‖xk‖21{Tn+2�k}

]=E[‖xk‖21{Tn+1�k}
]+E[‖xk‖21{Tn+1<k�Tn+2}

]
. (26)

Considering the induction hypothesis (see (25)), there exists a constantcn+1> 0 such that

E
[‖xk‖21{Tn+1�k}

]
� cn+1γ

n+1αk‖x0‖2. (27)

Regarding the second term in the right-hand side of (26), applying the strong M
property and the homogeneity property (see (24)), it can be written as

E
[‖xk‖21{Tn+1<k�Tn+2}

]=E[ETn+1

[‖xk‖21{Tn+1<k�Tn+2}
]]

=E[∥∥Âk−Tn+1−1
φn+1

zn+1
∥∥2‖Aφn+1‖21{Tn+1<k}

]
=E

[
k−1∑
m=1

∑
j∈X

ETn
[∥∥Âk−m−1

j A
m−Tn
φn

zn
∥∥2‖Aj‖21{θm=j,Tn+1=m}

]]
. (28)

Now, applying Lemma 2 for 0<pφnφn < 1, (28) is equivalent to

E

[
k−1∑
m=1

∑
j �=φn

∥∥Âk−m−1
j A

m−Tn
φn

zn
∥∥2‖Aj‖2p

m−1−Tn
φnφn

pφnj1{pφnφn<1}

]

=
k−1∑
m=1

E

[ ∑
j �=φn

∥∥Âk−m−1
j

∥∥2∥∥Âm−Tn−1
φn

zn
∥∥2‖Aj‖2‖Aφn‖2pφnj1{pφnφn<1}

]
. (29)

Using the fact that 0<E[α−2Tn] �E[α−2TN ] := ρ and considering the inequality (23) fo
c= α, from (28) and (29) one has that

E
[
ETn+1

[‖xk‖21{Tn+1<k�Tn+2}
]]

�
k−1∑
m=1

E

[ ∑
j �=φn

λ2(k−m−1)
max

(
Âj
)
λ2(m−Tn−1)

max

(
Âφn

)‖zn‖2‖Aj‖2‖Aφn‖2pφnj

]

�
k−1∑
m=1

α2(k−2)γ 2E

[ ∑
j �=φn

α−2Tn ‖zn‖2pφnj

]

� kα2(k−2)γ 2E
[
α−2TN

]
E
[‖zn‖2]� d0ργ

2αkE
[‖zn‖2].
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By settingd1 = (1/1− α2)n > 0 and applying (22), one has that

E
[
ETn+1

[‖xk‖21{Tn+1<k�Tn+2}
]]

� d0d1ργ
n+2αk ‖x0‖2 . (30)

Finally, substituting (27) and (30) into (26) and settingcn+2 = cn+1γ
−1+d0d1ρ, it follows

that

E
[‖xk‖21{Tn+2�k}

]
� cn+2γ

n+2αk‖x0‖2, ∀k > 0 and 0� n�N − 2. (31)

Therefore, by adoptingβ = cn+2γ
n+2 > 0, (5) is valid forτ = Tn+2. On the other hand

wheneverpφnφn = 1, the second term in the right-hand side of (26) is null, sinceP(Tn+1 =
+∞ | θTn) = 1, and consequently the result follows straightforward from (27) withβ =
cn+1γ

n+1> 0, completing this part of proof.
τ -MSS⇒ τ -SS: Considerτ = TN . We can write

E
[‖xk‖21{TN�k}

]=E[‖xk‖21{T1�k}
]+E[‖xk‖21{T1<k�TN }

]
.

Assuming that limk→∞E[‖xk‖21{TN�k}] = 0, one has that limk→∞E[‖xk‖21{T1�k}] = 0.

It follows from (24) thatrσ (p
1/2
ii Ai) < 1, ∀i ∈ X. This implies thatS is τ -SS by Theo-

rem 3(iii). ✷
Theorem 7. For systems S , τ -SS, τ -MSS and τ -EMSS are equivalent.

Proof. In view of Lemma 6, it remains to prove the casepii = 0 for somei ∈ X.
τ -SS⇒ τ -EMSS: Considerτ = T1. If pii = 0, thenP(T1 = 1 | θ0 = i)= 1 and

E0
[‖xk‖21{T1�k}

]=



‖x0‖2 if k = 0,

‖Aix0‖2 if k = 1,

0 if k > 1.

(32)

Consequently,

E0
[‖xk‖21{T1�k}

]
� αk−1γ ‖x0‖2 (33)

holds for allk � 0 and arbitrary 0< α < 1. Assuming thatβ = γα−1, (5) becomes true.
Now, for τ = Tn+2, let us suppose thatpφn+1φn+1 = 0. This impliesP(Tn+2 =

Tn+1 + 1)= 1, and applying both the strong Markov property and the homogeneity p
erty (see (33)) one has that

E
[‖xk‖21{Tn+1<k�Tn+2}

]=E[ETn+1

[‖xk‖21{Tn+1<k�Tn+1+1}
]]

�E
[
αk−1γ ‖zn+1‖2].

Here, by settingd1 = (1/1− α2)n+1> 0 and applying (22), we can write

E
[‖xk‖21{Tn+1<k�Tn+2}

]
� αk−1d1γ

n+2‖x0‖2. (34)

By substituting (27) and (34) into (26) and settingcn+2 = cn+1γ
−1 + d1α

−1, (31) holds.
Hence, the proof is completed by adoptingβ = cn+2γ

n+2> 0.
τ -MSS⇒ τ -SS: Considerτ = T1 and suppose thatpii = 0. From (32) notice tha

E[∑k�0 ‖xk‖21{T1�k}]<∞ and theτ -SS is obtained by definition (see (3)).
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For the caseτ = Tn+2, considerpφn+1φn+1 = 0. Using the induction hypothesis, suppo
that limk→∞E[‖xk‖21{Tn+1�k}] = 0 impliesE[∑k�0 ‖xk‖21{Tn+1�k}]<∞. Suppose also

that limk→∞E[‖xk‖21{Tn+2�k}] = 0. We wish to show that

E

[∑
k�0

‖xk‖21{Tn+2�k}
]
<∞

holds, since by (3) this fact ensure theτ -SS. However, using (26) it remains to show tha

E

[∑
k�0

‖xk‖21{Tn+1<k�Tn+2}
]
<∞.

But, this result is immediate from the fact that

E0
[‖xk‖21{Tn+1<k�Tn+1+1}

]=
{

0 if k �= Tn+1 + 1,
‖Aφn+1zn+1‖2 if k = Tn+1 + 1.

It follows the equivalence amongτ -SS,τ -MSS andτ -EMSS as claimed. ✷

5. Almost sure τ -stability

The almost sure (or sample path) stability is a well suited property for real sys
because the sample path behaviour can be observed in practice. Contrary to deter
systems, for which all moments are stable whenever the sample path is stable, the m
stability for stochastic systems implies almost sure stability, but not vice versa, as p
out by Kozin [7]. If we consider that moments can often be obtained or approxima
is of interest to find out any implications in moment properties that leads to almos
stability.

In the last years, many results concerning the almost sure stability are to be fo
the literature. Regarding systems (1) and (2), Ji et al. [2] have shown that second m
stability implies almost sure stability, but the converse is not true. They have estab
that almost sure stability of the system is determined by the almost sure stability
subsystems. The development of the Lyapunov exponent method provided a tool
study of almost sure stability of stochastic systems, which leads to necessary and su
conditions, as demonstrated by Ji et al. [2] and Fang et al. [8].

In this section the almost sureτ -stability concept is introduced and Theorem 9 sta
that second momentτ - stability implies almost sureτ -stability.

Definition 8. The MJLSS is almost surelyτ -stable, if for every initial statex0 and initial
distributionµ,

P
(

lim
k→∞

∥∥xk(x0, θ0)
∥∥1{τ�k} = 0

)
= 1.

Theorem 9. For the MJLS S , second moment τ -stability implies almost sure τ -stability.
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Proof. Suppose that systems isτ -SS, i.e.,
∑∞
k=0E[‖xk‖21{τ�k}] � ∞. From Chebishev’s

inequality,
∞∑
k=0

P
(‖xk‖21{τ�k} � ε

)
� 1

ε2

∞∑
k=0

E
[‖xk‖21{τ�k}

]
� ∞.

Then from the first Borel–Cantelli lemma, it follows that

P
(
lim sup
k→∞

‖xk‖21{τ�k} � ε
)

= 0,

and thus,P(limk→∞ ‖xk‖1{τ�k} = 0)= 1. ✷

6. Conclusion

The stochastic stability of discrete-time Markovian jump linear systems limited t
occurrence of a random eventτ is studied here. The event represents the occurrence
fixed number of failures, after which the system is paralyzed. Although in the liter
there exists stochastic stability concepts for MJLS systems in general, previous n
show to be excessively conservative. In this sense the concept of stochasticτ -stability
developed here is more adequate to the deal with the stability in the formulated pro
We demonstrate that the concept is less conservative, and it is associated with a co
that is necessary but not sufficient for stochastic stability in the standard infinite ho
scenario as noted by Ji and Chizeck [1]. The related concept of almost sure stability
studied here.

Appendix A. Proof of Lemma 5

The result is shown by induction onn. Let n= 1.
Casepii > 0: Using Lemma 2, it follows that

X1
j =

∑
i∈X

∑
k�1

E
[
xkx

′
k1{θk=j,T1=k,θ0=i}

]=
∑
i∈X

∑
k�1

Aki x0x
′
0A

′k
i p
k−1
ii pij1{pii<1}.

IdentifyingX0
i , the last expression is equivalent to

X1
j =

∑
i∈X

(∑
k�1

Aki X
0
i A

′k
i p
k−1
ii pij

)
=
∑
i∈X

pijW
0
i ,

whereW0
i =∑

k�1A
k
i X

0
i A

′k
i p
k−1
ii .

Applying the induction hypothesis, with the fact that the system isτ -SS, one gets that

W0
i =AiX0

i A
′
i +

∑
k�2

Aki X
0
i A

′k
i p
k−1
ii =AiX0

i A
′
i + piiAi

(∑
k�1

Aki X
0
i A

′k
i p
k−1
ii

)
A′
i .

Notice that the matrixW0
i can be recognized between the parenthesis above, and Eq

is thus verified.
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Casepii = 0: Equivalently, using Lemma 2, sinceP(T1 = 1 | θ0 = 1)= 1,

X1
j =

∑
i∈X

Aix0x
′
0A

′
ipij .

In this situation, it is enough to setW0
i =AiX0

i A
′
i . Forn > 1, it is enough to use the stron

Markov property to conclude that (21) holds. For the second part of lemma, observe

E
[‖zn‖2]= tr

{∑
j∈X

Xnj

}
=
∑
i∈X

tr
{
Wn−1
i

}
(1−pii). (A.1)

Also,

Wn−1
i =

∑
k�1

Aki X
n−1
i A′k

i p
k−1
ii �

∑
k�1

λ2(k−1)
max (piiAi)A

′
iX
n−1
i Ai.

Settingα andγ as in the Lemma, (A.1) yields that

E
[‖zn‖2]�

(
γ

1− α2

)∑
i∈X

tr
{
Xn−1
i

}
�
(

γ

1− α2

)
E
[‖zn−1‖2].

Finally, the inequality (22) is obtained by iteration of the above relation.✷
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