Some Complexity Aspects of the Control of Mobile Robots*

Magnus Egerstedt

magnus@ece.gatech.edu
Electrical and Computer Engineering
Georgia Institute of Technology
Atlanta, GA 30332

Abstract

In an earlier work it was shown how the length of
the specification of a control procedure is affected by
the availability of sensory information. In particular,
it was shown that this length can be reduced by a factor
that depends on the ratio of the size of the entire state
space to the size of the set of states for which feedback
1s locally effective. In this paper we modify this result
to explain why landmark-based navigation through a
series of intermediary goals can be beneficial from a
complexity point of view. We furthermore show how to
choose the resolution of the sensors, i.e. the size of the
output space, in order to generate control procedures
with short description lengths.

1 Introduction

In this paper we continue the development begun
in [5] of understanding how the choice of inputs to
a dynamical system, e.g. a mobile robot, affects the
length of the specification of the control procedure. In
particular, in [5] we saw that when it is possible to use
feedback in the specification the length can be reduced
by a factor that depends on the ratio of the size of the
entire state space to the size of the set of states for
which feedback is locally effective. This result shows
how to generate control procedures, with short de-
scription lengths, that drives the dynamical system
between given boundary states. However, goals are
seldom final goals. More often they tend to be inter-
mediary goals in a grander scheme, which for instance
is the case when mobile robots are navigating using
landmarks. This paper modifies the results in [5] so
that this can be taken into account in a systematic
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way by designing a controller with short description
length that drives the system between intermediary
goal states.

The second topic along these lines that we inves-
tigate in this paper is how to choose the resolution
and the scope of the range sensors in order to manage
the task successfully at the same time as we keep the
description lengths short. It is clear that the size of
the output space, i.e. the number of observations we
make, affect the specification lengths of the control
procedures. It would thus be desirable to come up
with a theory that prescribes just how many observa-
tions should be made, e.g. a theory that tells us why
ultrasonic sensors are to prefer over laser scanners in
some applications, and vice versa.

To search for short descriptions of control proce-
dures is a novel enterprise with a broad range of
potential applications. For instance, in teleoperated
robotics, the control signals are transmitted over com-
munication channels in which the presence of channel
noise makes it preferable to transmit instructions that
are as short as possible. A related problem arises in
the area of minimum attention control, where an at-
tention functional is defined as a measure of the con-
trol variability. (See for example [2].) The problem
then becomes that of minimizing the cost functional
under the additional constraint that the servomech-
anism should perform in a satisfactory way. It can
also be argued that this way of imposing complexity
measures on control procedures has implications for
decentralized or embedded control strategies, where
the idea is to minimize the communication between
different control modules at the same time as suffi-
cient information must be available in order for the
overall system to meet its specifications.



1.1 Free-Running, Feedback Automata

In order to formalize the notion of specification
complexity we focus our attention on the finitely de-
scribable aspects of finite state machines. The input
symbols to our finite state machines will be drawn
from the finite set S, and we use S* to denote the
set of all words over S, including the empty one. We
let s € S denote an element in S, and use boldface
s € S* to denote elements in S*. If we define the as-
sociative operation of concatenation on S*, the empty
word serves as an identity under this operation. Thus
S* is the free monoid generated by S. Now, consider
the finite sets S,U. We will let SU denote the set of
mappings from U to S, and we use card(S) for the
cardinality of S.

If we let X,V be finite sets, and let § € XX*V,
then we can identify (X, V,§) with a finite automaton
(see for example [1, 6]), whose operation is given by

Ty1 = 6(Tk, vk)-

If we add another finite set Y and a mapping v €
YX to the definition, we get an output automaton
(X,Y,V,6,7), where zj1 = 6(zg,vx) and yi = v(x)-

Given a word v € V*, where v = vy -+ - vp, we use
d(z,v) as shorthand for

6(o(--- (0(,v1),v2) - - -

and we let v denote the word obtained by concate-
nating v with itself p — 1 times, i.e. v» =v---v.

We now introduce the main object of study, i.e. a
dynamical system called a free-running, feedback au-
tomaton, as defined in [5]. The idea is to let such an
automaton read an input from a given alphabet, and
then advance the state of the automaton repeatedly
(free-running property) without reading any new in-
puts until an interrupt is triggered. We furthermore
want to impose additional structure on the input set
to allow for feedback signals to be used. Hence a FRF-
automaton is a free-running automaton whose input
alphabet admits the structure ¥ = VXK x7T, where V
is a finite set, K C VY¥*V and T C {0,1}¥. Thus the
input to a FRF-automaton is a triple (v, k,7), where
veV,k: Y xV 5>V, and 7:Y — {0,1}.

vafl)a UP):

Definition 1.1 (Free-Running, Feedback Automa-
ton) Let X,Y be finite sets and let § : X XV — X, ~:
X =Y be given functions. Let ™ =V x K x T, where
V is a finite set, K C VY*V, and T C {0,1}¥. We
say that (X,X%,Y,4d,7) is a free-running, feedback au-
tomaton whose evolution equation is

Tr+1 = 6('7:/63 Ky, (’Y(mk)a U1, ))a

where _
oo = & i (y(@k41)) =0
k1 lp + 1 otherwise,

gwven the input string (v1, K1,71) - - - (Up, kp, Tp) € E*.

It should be noted that the free-running property of
the FRF-automata implies that they can, in general,
be guided along a path using fewer instructions than
the classical finite automata. However, since the input
set to a finite automaton is a finite set V', while the
input set to the corresponding FRF-automaton is of
the form V x K x T, where K C VY>*V T c {0,1}Y,
the input set has a higher cardinality in the latter of
these cases. Any reasonable measure of the complex-
ity of a control procedure must take the size of the
input space into account since the number of bits re-
quired to code a word over a given alphabet typically
depends logarithmically on the size of the alphabet.
(See for example [4].) This dependency is captured in
a natural way if we define the specification complexity
of a control procedure as the description length of the
input sequence.

Definition 1.2 (Description Length) Consider a fi-
nite set S. We say that a word s € S* has description

length
D(s, S) = |s|log,(card(5)),

where |s| is the length of s.

Definition 1.3 (Specification Complezity) Consider
a FRF-automaton, A, with state space X and input
set . Let o be the word of minimal description length
over Y. that drives the automaton between two given
states xo,xy € X. We then say that the task of driv-
ing A between xo and x¢ has specification complezity
C(A,xo,zf) = D(0,X).

2 Specification Complexity

We here review the main result from [5] in order to
see how the complexity of the instructions can be re-
duced when using landmark-based navigation. Since
the cardinality of the input set depends on the size of
the domain of the feedback mapping, a smaller domain
can be expected to reduce the complexity. In order
to make this observation rigorous, we need to intro-
duce the notions of ballistic reachability and control-
invariant reachability: A set Xy C X is ballistically
reachable from x if there exists a v € V such that
§(xz,v?) € X, for some ¢ € Z'. Furthermore, X,
is ballistically reachable from X; C X if there ex-
ists a v € V such that for all z € X; it holds that



§(z,v9®)) € X, for some ¢q(z) € Z*. An element
z € X C X is said to be control-invariantly reachable
in X, if it can be reached from all states in X, without
the trajectory leaving X;.

Now, in order to compare purely open-loop con-
trol, i.e. when no observations are made, with a situ-
ation where sensory information is available we must
be able to generate open-loop motions on the FRF-
automata. It is clear that the input sequence o, =
(v1, Kot Tot) - - - (Vg, Kot, Tot) € X*, where ko (v,y) =
vVYo €V, y€eY, q(y) =1Vy €Y achieves this.
However, this word has length ¢, and it is drawn from
the input alphabet ¥ = V x VY*V x {0,1}¥, and thus
the description length is D(o 4, X) = glog,(card(X)).
But, this is clearly not the result we would like to
have. Instead we can restrict the input alphabet to
be ¥, = V X {ku} X {7oi}, which has cardinal-
ity card(V). The description length of o, is now
D(o o, Xor) = qlogy(card(V)), relative to the smaller
input set X,;.

Consider the connected, classical, finite automaton
A= (X,V,6). We recall that the backwards eccentric-
ity of a state, ecc(A, x), denotes the minimum number
of instructions necessary for driving the automaton
from any other state to z. (See for example [3].) We
furthermore let the radius of A be given by

radius(A) = min ecc(A, x).

Now consider the FRF-automaton A. If we let

C(/LIL') = magc(C(fl, $0,IL'),

To€

then we directly get that
C(Ao,z) > radius(A)log,(card(V)),

where A,; is the FRF-automaton (X,Y,%,;,4,7), and
A is the classical automaton (X,V,§).

Theorem 2.1 (Egerstedt and Brockett [5]) Assume
that card(V') > 2. Suppose that z; € Xy, where Xy is
an observable subset for the finite automaton A, i.e. it
is possible to construct an observer that converges in a
finite number of steps on the subset Xy. Assume that
card(y(Xy)) < card(Xy) and v(Xf) Ny(X\X¢) = 0.
If Xy is ballistically reachable from X\Xy, and zy is
control-invariantly reachable in Xy, then there exists
a FRF-automaton Appr = (X,Y, %', 6,v) such that

C(Arrr,f) < 4card(Xy)
C(Ao,zy) ~ radius(A)’

3 Navigation Using Landmarks

It is clear that the premise on which the previ-
ous theorem is based is too restrictive to capture
the desired chained structure that intermediary goals
give rise to. Instead we need to extend the tra-
jectories from Theorem 2.1 through a chain of goal
states. This can be achieved by assuming that we
work with an automaton where subset-observers can
be designed around different states, i.e. the intermedi-
ate goals. We also assume that the sets on which the
observers are defined are ballistically reachable from
each other. We could then use open loop control for
driving the system between these sets on the parts of
the state space where the lack of sensory information
prevents effective use of feedback. We compliment this
with feedback controllers on the subsets where subset-
observers can be constructed.

However, before we are ready to formulate this as
a theorem, some comments about subset-observers
should be made. Consider the finite automaton
(X,Y,V,6,7). We define the output sequence map
O:Zt x X xVY 3Y* as

O(p,z,w) = y(z1) - v(22) - - Y(=p),
where w : Y — V, and z; = =z, zy =
81, w(y(@1))s - » Tp = 8(zp1, w(y(p-1)))- Note
that in the output sequence map y; - y» denotes the
concatenation of the letters y; and y-» from the finite
alphabet Y, and O(p,z,w) € Y? C Y*, where Y? is
the set of words of length p over Y.

Definition 3.1 (Observable Subset) Consider the fi-
nite automaton (X,Y,V,d,v). A subset X, C X such
that v(Xy) NY(X\Xy) = 0 is said to be observable if
there exist a positive integer pops and a Wops : Y =V
that satisfies the following conditions:

m

L4 O(pobsamlawobs) 75 O(pobsa'r?;wobs); vx1;$2
Xgaxl 75 T2y

e For all 1 € X, it follows that x4 € Xy, q =
1,...,Pobs; where Ta = 6(x1, weps(y(21))), 3 =
6(2, wobs (V(22))), ---

Definition 3.2 (Subset-Observer Automaton) Con-
sider the finite automaton A = (X,Y,V,4,v), where
X, C X is an observable subset. (Z,0,Q, g, h), where
Z,0 are finite sets, Q = VxVOV ¢g: ZxYxQ — Z,
and h : Z xY — O is a subset-observer automaton
to A if there exists a w = (v,w) € Q such that the
following conditions hold:

Tr4+1 = 6($kaw(0kav))a Y = ’)’(.fl?k)
Zkt1 = 9(2ks Yr, w(0k,v)), o = h(2zk,Yr)



gives that the current state in Z can be mapped
uniquely to the current state in X after sufficiently
many iterations. Also, for all v1 € X, it holds
that z, € Xy, ¢ = 1,...,D0bs, where o =
d(z1,w(o1,v)), 3 = §(x2,w(02,v)), and so on.

From [5] we have the following result, presented in
a form modified for the purpose of this paper:

Lemma 3.1 (Subset-Observers [5]) Let X, C X be
an observable subset to the finite automaton A =
(X,Y,V,8,7). Then a subset-observer automaton
(Z,0,92,9,h) to A can always be constructed with
state space of cardinality less than or equal to 1 +
card(v(Xy)) + card(X,).

Theorem 3.1 (Navigation Using Landmarks) As-
sume that card(V) > 2. Let the sets Xi,...,X, be
disjunct, observable subsets with cardinality less than
or equal to C, where card(y(X;)) < C, i =1,...,n,
V(X)) Ny(X\Xy) =0, v(Xa)) N y(X;) =0, i # j. Let
zy € X, be control-invariantly reachable in X, and
let X, be ballistically reachable from xy. Assume that
there exists intermediary goals x; € X;, i1 =1,... ,n—
1 such that x; is control-invariantly reachable in X;
and X;41 s ballistically reachable from x;. Then there
exists a FRF-automaton Aprr = (X,Y,%',0,7) such
that
C(AFRF,SUf) < 47’LC
C(Ao,zf) ~ radius(A)’

Proof: The proof is based on a combination of the
proofs of Theorem 2.1 and Lemma 3.1 respectively,
that can be found in [5]. We let &' = {6} x VO x
{0,1}9, where O is the state-space of the observer
obtained by combining the subset-observers defined
on the different observable subsets, and where © is any
arbitrary 0 € V. It is already shown in [5] that it is
possible to drive this FRF-automaton from any initial
state to zy using only one input.

An upper bound on the size of the input space can
be derived from Lemma 3.1 as

card(E') S (20ard(V))Z?=1 (14card(v(X;))+card(X;))
< card(V)*C.

Now, since C(Ao,z5) > radius(A)logy(card(V)),

we have
C(AFRF,IIIf) < 4nC

C(Ao,zf) ~ radius(A)’

The theorem thus follows. ]

One conclusion to be drawn from Theorem 3.1 is
that the increase in description length, caused by

the summation over many intermediate goals, can be
counter-acted by making the sets where feedback is
effective small. In the mobile robot case, this would
correspond to using many easily detectable landmarks
as a basis for the navigation system.

4 Sensor Selection

Another issue that can be tackled within the speci-
fication complexity context is how sensor selection for
mobile robots affects the description lengths of the
control procedures. In other words, we want to be
able to determine which observations to make. For
this we assume that the state space is defined on a
bounded lattice, which is reasonable in mobile robot
applications.

4.1 Lattice Automata

Consider a lattice £ in Z? with the Manhattan met-
ric defined on it, i.e. if z1,29 € £ then M(z1,z5) is
given by the number of transitions along edges that
one needs to make in order to go from z; to z5. If we
assume that from a given node we allow transitions
along all adjacent edges, then the input set U has car-
dinality card(U) = 2d, where d > 2 is the dimension
of the lattice.

We now introduce the concept of a k-sensor. The
idea is that if we have a k-sensor we can, from any state
xg, directly observe all states z such that M(zg,z) <
k. The number of such states that we can observe are
given by 2d*, if we exclude zj itself.

Let us now assume that the state space is given by a
bounded lattice, £p, forming a hypercube in Z¢, and
that we have a method for distinguishing boundary
states from non-boundary states in the lattice, i.e. we
can determine whether a node is on the boundary of
the lattice or not. Since we can observe all states of
distance less than or equal to &k from the goal with our
k-sensor, we get the output space

5$2d’“}5

where n denotes “no boundary”, b denotes “bound-
ary”, e denotes “not k-close to the goal”, and the
remaining outputs correspond to the 2d* + 1 states
that are visible from the goal, as long as the goal state
satisfies M(z4,zp) > k for all boundary states xy.

Since we have already established that card(U) =
2d our entire input space has cardinality

card(S) = 2d(2d)>? +192d" 1,

Y = {n,b, ex, x0, ...

and the associated FRF-automaton becomes:



Definition 4.1 (Lattice Automaton) Let the automa-
ton Ag, be given by (Lp,X,Y%,0,7), where Lp is a
hypercubical lattice, ¥ = U x UY* x {0,1}¥*, with
card(U) = 2d. Furthermore, § : L x U — Lp and
v : L = Y} are directly induced by the lattice struc-
ture of the state space.

Since a bounded lattice is a traceable graph (see for
example [4]), i.e. it admits a Hamiltonian, or spanning
path that visits each node exactly once then the worst
case number of instructions, necessary for intersecting
a goal state at an unknown location, in the open-loop
case, is card(X). However, the question that needs to
be answered is how many instructions suffice in the
closed-loop, free-running case.

Lemma 4.1 Given the FRF-automaton in Definition
4.1, with a goal point that satisfies M(x4,xp) > k for
all boundary states xy,. Then it is possible to traverse
the lattice and intersect the region containing the 2d* +
1 states around x4 using less than or equal to

9 4-1
(E) card(X)(@-1/d

instructions.  Furthermore, when the goal is wvisi-
ble it can be reached using only one instruction, i.e.
in the closed-loop case we get an upper bound of
(2/k)? eard(X)4V/4 4 1 instructions.
Proof: Along each dimension, a total of card(X)'/¢
nodes can be visited. We first assume, without loss
of generality, that we traverse a 2-dimensional layer of
the state space, starting at the “south-western” cor-
ner. Then we can move along the y-axis using only one
instruction, until a boundary state is intersected. We
then move k steps “east” along the z-axis, and repeat
this procedure until the entire 2-dimensional lattice-
plane is traversed, giving us a total of 2(card(X)'/%)/k
instructions.

Now, by repeating this along the remaining dimen-
sions we directly get a total number of

(=)

instructions, and the lemma follows. ™

d—1

It should be noted that since the proof of Lemma
4.1 is constructive, we have no guarantee that this is
in fact the shortest procedure on the average. Instead
it is merely a construction that serves as a tool when
we discuss how to actually choose the value of & in our
k-sensor.

4.2 Optimal Sensor Selection

In light of Lemma 4.1, the complexity ratio between
the specification complexities associated with the free-
running, closed-loop case and the purely open-loop
case becomes

((%)d_lcard(X)(d_l)/d+l) (1+1ogy d-+(2d*+4)(2-+log, d))
card(X)(1+log, d) '

Now, let k take on values over the reals and assume
that card(X) and d are fixed. Then the second deriva-
tive of the numerator in the complexity ratio is of the
form

C(k) + D(k) (lnd - %) ,

where C(k) and D(k) are positive, which implies that
f(k) is convex as long as k > 2/Ind, as seen in Figure
1, and we state this fact as a proposition.

Complexity ratio (d=2, card(X)=100000)
T T T T

25

CL-OL ratio

Figure 1: The ratio between the closed-loop and open-
loop specification complexity is shown as a function of
k.

Proposition 4.1 (Optimal Sensor Selection)
Given the FRF-automaton in Definition 4.1. Then
there exists a (not necessarily unique) value k* € Z%
such that k* minimizes the complexity ratio.

However, if we observe directional information in-
stead of the actual states, i.e. we perform some pre-
processing of the data, we can think of this as hav-
ing a new output set Y, with cardinality card(Y;) =
2d + 3, since we have 2d directions to the goal that we
can observe, together with the three original outputs
{ex,b,n}. This can thus be thought of as adding a
preprocessor to the sensor that performs a very struc-
tured data compression that only keeps angular but



no radial information. Our new FRF-automaton thus
becomes:

Definition 4.2 Let the FRF-automaton Ap, be given
by (LB, %,Yy,0,%), where Lp and X are given in Def-

inition 4.1, and Yy is given in the previous paragraph.

In this “preprocessing” case the complexity ratio
becomes

((%)d_lcard(X)(d_l)/d—{-l) (1-+(2d+3)(2+log, d)+log, d)
card(X)(1+log, d) .

The derivative of the numerator of this ratio is

2card(X)'/4)d-1
(-2 pa)

where F(d) is positive for all d, which implies that
the derivative is negative for all positive k. Hence the
ratio is monotonously decreasing, which is consistent
with Figure 2.

Proposition 4.2 In the “preprocessing” case, i.e.
given the FRF-automaton in Definition 4.2, the com-
plexity ratio decreases monotonously in k.

Remark 4.1 What this implies is that in the prepro-
cessing case, the stronger the sensor the better.

Complexity ratio (d=2, card(X)=1000)
T T T T

.
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Figure 2: In this figure it is shown that in the
preprocessing case, the complexity ratio decreases
monotonously in k.

5 Conclusions

The results reported in this paper extends those
in [5] in two specific areas. First of all, it is shown

how the specification complexity of the control pro-
cedure for driving a mobile robot can be reduced if
the robot traverses through a collection of intermedi-
ary goal states. This is the case when robots navigate
using landmarks, or when directional instructions are
based on easily recognizable waypoints.

Secondly, it is shown how it is possible to evalu-
ate the performance of particular sensors (or more
specifically, the size of the output alphabet) within
this framework. This has implications to both how
mobile robots should be controlled, as well as how to
design these vehicles in terms of sensor selection. A
natural extension of this result would be to investigate
the choice of the input set U as well. This would thus
provide a unified treatment of actuator and sensor se-
lection, as well as control design.
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