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Abstract 

In this paper we extend the matching technique to  a 
class of nonholonomic systems with symmetries. As- 
suming that the momentum equation defines an inte- 
grable distribution, we introduce a family of reduced 
systems. The method of controlled Lagrangians is then 
applied to these systems resulting in a smooth stabiliz- 
ing controller. 

1 Introduction 

In this paper we consider the problem of stabilization 
of relative equilibria of underactuated nonholonomic 
systems with symmetry by the method of controlled 
Lagrangians. The method of controlled Lagrangians 
for holonomic systems originated in Bloch, Leonard, 
and Marsden [4] and was then developed in Auckly [l], 
Bloch, Leonard, and Marsden [5, 6, 71, Bloch, Chang, 
Leonard, and Marsden [8], and Hamberg [11, 121. A 
similar approach for Hamiltonian controlled systems 
was introduced and further studied in [2, 14, 15, 161. 

According to this method, the original controlled sys- 
tem is represented as a new, uncontrolled Lagrangian 
system for a suitable controlled Lagrangian. The en- 
ergy associated with this controlled Lagrangian is de- 
signed to be positive or negative definite at the (rela- 
tive) equilibrium to be stabilized. The time invariant 
feedback control law is obtained from the equivalence 
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requirement for the new and old systems. If asymp- 
totic stabilization is desired, the dissipation emulating 
terms are added to the control input. 

Our goal is to extend this approach to  systems sub- 
ject to  nonholonomic constraints. Some results in this 
direction were obtained in Zenkov, Bloch, and Mars- 
den [18]. An algorithm leading t o  the nonholonomic 
version of the method of controlled Lagrangians was 
suggested for stabilizing the steady state motions of un- 
deractuated systems with two internal degrees of free- 
dom. However, the practical implementation of this al- 
gorithm can lead to substantial difficulties, which have 
their roots in the complicated structure of the local in- 
variant manifolds of the system in the neighborhood of 
the relative equilibrium subject to  stabilization. 

In the present paper we consider a somewhat restricted 
class of nonholonomic systems. We assume that the 
momentum equation is in the form of an integrable 
transport equation, which results in a simple structure 
of the global invariant manifolds of the system. We 
then apply the matching; technique to the Lagrangian 
systems on these invariant manifolds. 

To illustrate the theory. we consider the problem of 
stabilization of slow upright steady state motions of 
the unicycle along a straight line. It is well known that 
this motion becomes unstable if the forward speed of 
the unicycle is smaller than some critical value. We 
implement the controller by means of a balanced rotor 
placed on the top of a rod attached to  the center of the 
unicycle. We then find t'he explicit stabilizing feedback 
control input. 
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2 Overview of Nonholonomic Dynamics 

In this section we give a brief exposition of nonholo- 
nomic dynamics. We refer the reader to  Bloch, Krish- 
naprasad, Marsden, and Murray [3] and Zenkov, Bloch, 
and Marsden [17] for a complete exposition. 

Symmetries. Suppose we are given a nonholonomic sys- 
tem specified by the Lagrangian L : TQ -+ R and a 
(nonintegrable) constraint distribution V. The Lagran- 
gian has the form of kinetic minus potential energy. As 
usual, the kinetic energy is defined by a Riemannian 
metric on the manifold Q. We can then look for a group 
G that acts (freely and properly) on the configuration 
space Q. It induces an action on the tangent bundle 
T Q  and so it makes sense to  ask that the Lagrangian 
L and the distribution V are invariant. If these prop  
erties hold, we say that G is a symmetry group. In 
many examples the symmetry group will be evident. 
For instance, for the system considered below, the uni- 
cycle with rotor, the symmetry group is SO(2) x S E ( 2 ) .  
The manifold Q/G is called the shape space. The phase 
coordinates of a system with symmetry naturally form 
three groups: the shape, the momentum, and the group 
variables. The dynamics of the group variables is gov- 
erned by the reconstruction equation. Since the system 
is G-invariant, this reconstruction equation decouples 
from the full system of equations of motion. Remaining 
equations are specified in the next paragraph. 

Reduced Equations. These equations govern the evolu- 
tion of the shape and momentum variables of the sys- 
tem. They are derived in Bloch, Krishnaprasad, Mars- 
den, and Murray [3]. In the present paper we consider 
a class of nonholonomic systems that satisfies the fol- 
lowing assumptions: 

1. The curvature of the nonholonomic connection is 

2. The controls affect some of the shape variables 

3. The momentum equation is in the form of the 

zero. 

of the system. 

parallel transport equation. 

The Routhian of the system equals 

1 W ~ , + , P )  = sgap(r)i.*ip - U(r ,p ) ,  

where the first term represents the shape metric and the 
second term, called the amended potential, is defined by 

Here and below, IQb(r)  are the components of the in- 
verse locked inertia tensor and V ( r )  is the potential 
energy of the system. As usual, the shape configura- 
tion variables and the nonholonomic momentum are de- 
noted by r and p ,  respectively. The reduced equations 

of a system satisfying the assumptions 1-3 become 

In the above, ra’ and T*” are the unactuated and ac- 
tuated shape variables, respectively, and U,!/ are the 
control inputs. The operators V, are defined by . 

See [3, 171 for details. The equilibria of these equa- 
tions represent the steady state motions of the original 
system. 

In the present paper we require, as a part of the 
controller design, that the actuated variables r“ are 
cyclic, in which case the reduced equations are written 
as 

(3) 

Note that our definition of cyclic variables allows only 
non-cyclic shape velocities to occur in the momentum 
equation (3). Hence, the internal position of the con- 
troller has no impact on its performance. 

Elimination of the Momentum Variables. Since the mo- 
mentum equation is in the form of a parallel transport 
equation, it defines a distribution 

We assume in this paper that the curvature of this dis- 
tribution vanishes (hence the name flat in the title of 
the paper). This defines the global invariant manifolds 
Q, of (1)-(3): 

p, = P,(ra’, cb), cb = const. ( 5 )  

Each of these invariant manifolds is diffeomorphic to 
the tangent bundle T(Q/G) of the original system’s 
shape space. The dynamics on these invariant mani- 
folds is governed by the equations 

d 813, aL, - d dL,  -- --=- dt &.*I are, 9 dt ai.*’, - U*”,  ( 6 )  

where 

Lc(ra’, ia) = R(ra’,  P, P,(ra’, cb)) 
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We thus obtain a family of the underactuated con- 
trolled Lagrangian systems on Q/G. The Lagrangians 
L, of these systems are represented by the formula 

find the explicit solution of the system of partial dif- 
ferential equations that represents the matching condi- 
tions for a special class of Lagrangians. Tke controlled 
Lagrangian is constructed in the form of L = K - V ,  

= K ( x , i ,  y + k(x):i.) + K,(x, k(z)S), (10) 

K and V are the original kinetic and potential energies, 
K,  is the quadratic form in j, (with coefficients depend- 
ing on z), and k(x) is a vector-valued linear form in x. 

(7) where 
1 c - -gap+“+@ - U(T*’,P(P’,C)) .  , - 2  

The structure of the Lagrangians C, reveals the inde- 
pendence of the kinetic energy IC, on the vector param- 
eter c. 

The coefficients of the forms k and KG are denoted by 
k,$ and uartptt, respectively. According to [7], one can 

3 Matching and Controlled Lagrangians 

In this section we briefly discuss the matching tech- 
nique. We refer the reader to  [l,  4-8, 11 ,  121, for a 
detailed exposition. 

Lagrangian Matching. Consider a mechanical system 
specified by the Lagrangian L = K - V. The kinetic 
energy K is given by the Riemannian metric gij  on 
the configuration manifold Q. The potential energy 
V ( q )  has a critical point at 90. Assuming that the 
equilibrium qo is unstable, we would like to  find the 
feedback control inputs that stabilize this equilibrium. 
This problem becomes interesting and nontrivial if the 
system is underactuated, i.e., the number of the control 
inputs is smaller than dim Q. 

Denote the unactuated and actuated variables by x = 
(z’, . . . ,zm) and y = (y’, . . . , y“), respectively. The 
controlled dynamics is governed by the equations 

(8) 
d d L  aL -- - -- d aL aL 

dt aa: ax’ dt ay ay -- - - - 

where U = ( ~ 1 , .  . . , un) represents the control inputs. 

According to  the method of co_ntrolled Lagrangians, 
one introduces a new function L = K - V and con- 
siders the system 

One then requires that the vector fields defined by (8) 
and (9) are identical. This determines the feedback 
control inputs U .  If in addition + v has a minimum 
(maximum) at (90, 0), the equilibrium qo of the closed 
loop system (8) is neutrally stable. 

The equivalence of the systems (8) and (9) imposes 
certain restrictions on L and represented by a sys- 
tem of nonlinear partial differential equations called the 
matching conditions. See [I,  11, 121 for details and dis- 
cussion of solvability of this system. 

match equations (8) and (9) if the following matching 
conditions are satisfied: 

I ,  I ,  

kz:’ = -oa ga)p”,  (11) 
,I I ,  

ua”p”(uplryll,a’ + gpuy” ,ar )  = 2g* p gpl lY l l , ,~ ,  (12) 
k0” a,,p, - k$:,I, = ga”Pi’gp~r7~~,,,k~:‘. (13) 

There is a certain freedom in choosing k ( z )  and K,, 
which allows one to acconiplish the problem of stabi- 
lization of relative equilibria. We omit here the details 
(see [7]), but note that this approach is applicable to  
systems whose kinetic energy_ is a quadratic form with 
constant coeficients. After L is constructed, the con- 
trol inputs can be evaluated explicitly. 

Application to  Nonholonomic Systems with Integrable 
Momentum Equation. We now apply the matching pro- 
cedure to the family of systems (6). Recall that the 
flatness of the distribution (4) is essential for defining 
this family. Each of the matching procedures outlined 
above starts from kinetic shaping, i .e.,  from construct- 
ing the controlled kinetic energy form. Since the ki- 
netic energy of each system in (6) is c-independent, the 
kinetic shaping can be accomplished for the whole fam- 
ily of Lagrangians Lc at once. In particular, if kinetic 
shaping is sufficient for stabilization, the control law 
obtained this way is represented by the same formula 
for all of the systems in (16). If potential shaping, i.e., 
the change of the potential energy, is required for sta- 
bilization, it is performed for each of the systems in (6) 
separately. 

Assuming that potential shaping is not needed, we 
now discuss the procedure of obtaining the controlled 
Routhian from the family ‘of the controlled Lagrangians 
(7). First, apply (10) to  the family (7) and ob- 
tain ;he family of controlled Lagrangians .& = - 
U ( r a  , P ( P ’ ,  c ) ) .  Then define the controlled Routhian 
bY 

Et = i7 - U(r’ ,p) .  

In [4-71 the technique of controlled Lagrangians is de- 
veloped for stabilization of relative equilibria of me- 
chanical systems with cyclic symmetries. The algc- 
rithm suggested in this series of papers allows one to 

Theorem 1. Assume that the distribution ( 4 )  is flat 
and the matching conditions (11)-(13) are satisfied. 
Then equations (1)-(3) are equivalent to the equations 
of motion of a nonholonomic system associated with the 
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In the above, 

through the contact point with the plane (i.e., the a p  
propriate controller has already been implemented). 

The configuration space for this system is Q = S’ x S’ x 
S’ x SE(2), which we parameterize with coordinates 
( e , x ,  +, 4,z, y ) . -  As in Figure 1, B is the tilt of the 
unicycle itself, and $J and x are the angular positions 
of the wheel of the unicycle and the rotor, respectively. 
The variables (4,z, y ) ,  regarded as a point in SE(2),  
represent the angular orientation and position of the 
point of contact of the wheel with the ground. 

and To‘‘ can be eliminated, if desired, by making use of 
the relation with rotor. 

Figure 1: The configuration variables for the unicycle 

I 

In the last formula, J,,, are constants. 

Stability of-the relative equilibria of the system associ- 
ated with R can be analyzed using the nonholonomic 
energy-momentum method (see [17]). 

Remark. The equilibria and steady state motions of 
nonholonomic systems are not isolated. The above 
technique is used to  stabilize the manifold of relative 
equilibria, but not a single relative equilibrium. For 
the latter goal, one needs a discontinuous feedback 
controller. However, it is possible to  include dissipa- 
tion emulating terms in the control input and achieve 
asymptotic stabilization of the manifold of steady state 
motions (see [9, 101 for details). 

4 Stabilization of the Unicycle with Rotor 

This mechanical system is SO(2) x SE(2)-invariant; the 
groups SO(2) represent the symmetry of the wheel, 
that is, the symmetry in the $ variable, while the 
group SE(2) represents the Euclidean symmetry of 
the overall system. The action by the group ele- 
ment ( C Y ,  p, a, b)  on the configuration space is given by 

a ,  z sin ,O + y cos p + b). 

System Parameters. We will use the following nota- 
tions: 

(0, x, $, 4,z, Y )  ++ (4 x, $ + C Y ,  4 +P,  z cosP - y sin P + 

M = the mass of the disk, 
R = the radius of the disk, 

A,  B = the principal moments of inertia of the disk, 
A, l3 = the principal moments of inertia of the rotor, 

r = the rod length, 
/I = the rotor mass. 

In this section we apply the technique developed above 
to  the problem of stabilization of the slow vertical 
steady state-motions of the unicycle with rotor. 

The Model. We now present the dynamical model of a 
homogeneous disk on a horizontal plane with a rotor. 
The rotor is free to  rotate in the plane orthogonal to 
the disk. The rod connecting the centers of the disk 
and rotor keeps the direction of the radius of the disk 

Lagrangian and Constraints. The Lagrangian of this 
system has the standard form of kinetic minus potential 
energy: 

M 
2 2 p  

L = K d  + K, + -?I$ + - V, 

where, 

1 
2 Kd = - [A(e2 + d2 COS* e) + B(&sin e + d)zJ, 
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1 
K ,  = 

u z  = ( k  - R$sinec0s4)~  + (y - R$sinesin4)2 

+ R 2 ~ 2 + 2 R ~ c o s ~ ( y c o s $ - ~ s i n ~ ) ,  

uE=(k-(R+r)$sinecosq5)2 ~ 

+ (j, - ( R  + r)$sin e sin 4)' + ( R  + r ) ' i2  

+ 2 ( ~  + r)$cose(y cos 4 - a: sin 41, 

[d(i2 sin2 0) + B ( x  - 

V = MgRcos8+pg(R+r)cosB.  

The constraints are given by the standard conditions 
of rolling without slipping: 

x = -&Rcos$, y = -6Rsinq5. 

Constrained Lagrangian and Nonholonomic Momen- 
tum. The reduced Lagrangian for the unicycle with 
rotor is 

1 
c - 2  

L - -(ai, + 2pex + px2 

where 

(Y = A + M R 2  + p ( R + r ) ' + B ,  

are the components of the shape metric, and 

/3 = L3 

111 = Acos28 + A +  ( B  + MR2 + pR(R + r ) )  sin'e, 

112 = ( B  + MR2 + pR(R + r ) )  sine, 
1 2 2 = B + M R 2 + p R ( R + r )  

are the components of the locked inertia tensor. The 
components of the nonholonomic momentum are 

For the unicycle with rotor, pl is the vertical (i.e., or- 
thogonal to the zy-plane) component of the angular 
momentum of the system while p2 is the component of 
the disk's angular momentum along the normal direc- 
tion to  the disk. See Zenkov, Bloch, and Marsden [17] 
for details concerning the nonholonomic momenta. 

Reduced Equations. The reduced dynamics of the uni- 
cycle is governed by equations (1)-(3) with r1 = 8, 
r2 = x, and the Routhian 

1 
2 R = - (*e2 + apex + px2 - i a b ( q P , p b )  - v(e). 

As usual, IUb are the components of the inverse inertia 
tensor. 
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The shape equations for (e, x) describe the motion of 
the rod and rotor system, while the momentum equa- 
tions for (p1,pz) model the (coupled) wheel dynamics. 
The coefficients Vt, in (3) for the unicycle with rotor 
are computed to be 

VYl = 12"(MR + p(R + r))RcosO, 

DZal = - I1"(MR -t p(R + r))RcosO. 

See Zenkov, Bloch, and Marsden [17] for the details 
concerning how one derives and organizes such equa- 
tions. 

The slow vertical steady state motions of this system 
are represented by the relative equilibria 

0 e = 0, 2 = 0, p1 = 0, p 2  = P,. 

Momentum Reduction and Stabilization. This system 
satisfies all conditions of section 2. The momentum 
equations define an integrable distribution. The dy- 
namics on the invariant manifolds QC is governed by 
the equations 

where 

and 

1 
2 

uc(e) = -Iub(e)p,,(e, c), ?%(e, C) + v(e) 

is the amended potential for the unicycle with rotor 
restricted to the invariant manifolds ( 5 ) .  Observe that 
the components of the shape metric for the unicycle 
with rotor are constants. We thus apply the approach 
of Bloch, Leonard, and Marsden [4, 5 ,  71 and construct 
the controlled Lagrangians of the form 

where k and U are co_stants. The uncontrolled dynam- 
ics associated with C,, 

d a ~ ? ~  a.~?~. d azc 
d t  a i  de ' dt ax -0° ,  
--=-- 

is then forced to  be equivalent to  the controlled dy- 
namics (15). This requirement implies U = -P/k and 
defines the control laws by 



These control laws act on the systems on appropriate 
invariant manifolds (5). See [4-71 for details concerning 
the matching process and identification of the control 
inputs. 

Using the approach of section 3, we obtain the con- 
trolled Routhian for the unicycle with rotor: 

- 1  R =  -( ab2 + 2Pb();: + kb)  + P();: + k b ) 2 )  
2 

U 1 
2 2 

-k - (kb )2  - -Iabpapb - v(6). 

The control law rewritten in the terms of the amended 
potential U ( 8 , p )  becomes: 

Recall that p in the amended potential is a dynamic 
variable and not a function of r .  We emphasize that 
the derivative V e U  can be evaluated explicitly: 

We can conclude stability of the relative equilibria 8 = 
0, pl = 0, p2 = p: using the nonholonomic energy- 
momentum method applied to the controlled Routhian. 
The steady state motions under consideration become 
stable if one chooses 

0 - P  k > -  
P 2  . 

5 Conclusions 

The proposed method allows one to  establish explicitly 
the stabilizing control inputs for a class of underac- 
tuated nonholonomic systems. We intend in a future 
publication to relax some of the assumptions on the 
Lagrangian and constraints made in this paper. 
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