
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Jitter Compensation in Digital Control Systems

Lincoln, Bo

Published in:
Proceedings of the 2002 American Control Conference, 2002

DOI:
10.1109/ACC.2002.1025246

2002

Link to publication

Citation for published version (APA):
Lincoln, B. (2002). Jitter Compensation in Digital Control Systems. In Proceedings of the 2002 American Control
Conference, 2002 (Vol. 4, pp. 2985-2990). IEEE - Institute of Electrical and Electronics Engineers Inc..
https://doi.org/10.1109/ACC.2002.1025246

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://doi.org/10.1109/ACC.2002.1025246
https://portal.research.lu.se/en/publications/83a2fe2c-43bc-47c8-97b4-c9292fa5a556
https://doi.org/10.1109/ACC.2002.1025246


Proceedings of t he  American Control Conference 
Anchorage, AK May 8-1 0,2002 

A m  

Jitter Compensation in Digital Control Systems 

Bo Lincoln 
Department of Automatic Control, LTH 

Box 118, 221 00 Lund, Sweden 
bo.lincoln@control.lth.se 

thod to  comp 

Abstract 

nsate for time-varying, possibly 
random, delays (jitter) in digital control systems is 
presented. Using time-stamps from the control sys- 
tem, a linear compensator is designed as an add- 
on to  an existing control system. Stability and per- 
formance analysis is performed, and leads to fre- 
quency domain conditions. Therefore, loop-shaping 
can be used for the compensator design. The design 
of the compensator can be done without a full process 
model. 

1 Introduction 

Many real-time control systems are subject to ran- 
dom time-delays caused by computation time, prop- 
agation delay in networks, task switching, etcetera. 
Throughout this paper, this random delay will be de- 
noted jitter. Whereas a constant time-delay can be 
accounted for in a linear process model during con- 
troller design, jitter compensation is harder. This 
paper presents a method to improve a control sys- 
tem’s behavior in presence of jitter. The idea is to 
add a time-delay-aware compensator to the original 
controller, so as to improve stability and performance 
of the control loop. The design of the compensator 
can be done without a full process model. One rea- 
son to use such a setup is that the compensation can 
be added to a control system with bad jitter perfor- 
mance, even if the original control design knowledge 
is not available. 

Previous work includes both model-based and model- 
free approaches. In both [6] and [4], LQ-optimal 
controllers are presented. These are based on time- 
stamps, just like our approach, but also on a perfect 
process model and delay statistics. At the other ex- 
treme, we have e.g. [5], where a linear filter is used 
as a predictor for the control output, to predict the 
next sample. No specific structure of the controller 
is assumed, and stability and performance are not 
discussed. Turning to specific controller structures, 
[2] presents the PIP-controller, a delay compensated 
PID controller using time-stamps, but essentially no 
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Figure 1: The control system with delay after the con- 
troller Gray blocks are discrete-time, and 
white blocks are continuous-time. ZOH is 
a zero-order-hold (converting from discrete- 
time to continuous time) and S h  is a sample- 
and-hold with period h (converting from 
continuous-time to discrete-time). 

process knowledge. 

Much of the analysis in this paper is based on the 
stability criterion for varying time delays in [3], but 
the central results from. that paper are repeated 
here. 

2 Problem formulation 

Many real-world control systems can be modeled 
as a linear continuous-time plant and a discrete- 
time controller (see Figure 1). We assume that 
all continuous-time parts of the model (including 
the upcoming compensator) are stable and strictly 
proper, so that sampled-data H ,  theory can be used. 
This restriction is not very severe, as almost all real- 
world systems pass it. The plant is sampled with an 
exact period of h seconds, and the controller and ac- 
tuator are completely event-driven, acting on new in- 
put. Delay in the system may occur both before and 
after the controller, but we will ignore any knowl- 
edge of the delay before the controller and act as if 
all delay is affecting the control signal after the con- 
troller. The delay for sample n is denoted ~ ( n ) ,  and 
is bounded by 
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Figure 2: The control loop with add-on delay compen- 
sator, hiding high-frequency delay errors to 
the controller. The structure is exactly the 
same as for the Smith predictor, although the 
delay is time varying. 

where N E Z'. Throughout the paper, N = 1 will be 
assumed for a more clear presentation. It is straight- 
forward to extend the results to any N, though, see 
[3]. One important property of our model is that the 
actuator sends time-stamps to the controller. This 
way, the controller may use knowledge of when for- 
mer control signals actually appeared at the plant. 
In practice, time-stamps from the actuator may not 
be a standard feature. It can be implemented if the 
actuator contains a microcontroller, see e.g. [4] for 
some more details. 

Using these time-stamps, an add-on compensator for 
a given system will be designed. The compensator 
has two main objectives: 

1. Maintain stability of the system in presence of 
jitter. 

2. Maintain control performance in presence of jit- 
ter. 

These two objectives are of course strongly con- 
nected. Without objective 2, though, a trivial way of 
stabilizing the control loop would be to turn off the 
controller as the plant P ( s )  is assumed to be stable. 

Our proposed compensator structure is shown in Fig- 
ure 2. It is based on measuring the difference be- 
tween the actual control signal and the wanted con- 
trol signal from the controller. This difference signal 
(from now on delay error) is piecewise constant, as 
the controller is discrete-time with a zero-order hold 
at  the output. The idea of the controller is to let the 
delay error pass two continuous-time linear systems 
( D l ( s )  and Dz(s) )  and add these signals before and 
after the compensator, respectively. 

Naturally, D l ( s )  and &(s) are implemented in 

discrete-time in the digital controller using time- 
stamps from the actuator. Using the continuous- 
time model, though, stability and performance of the 
system can be analyzed using standard linear sys- 
tems theory. 

The compensator structure is very similar to the 
well-known Smith predict,or with imperfect process 
model. In this paper, its effects on time-varying de- 
lays are discussed, as are the effects of choice of 
Dl(s )  and Dz(s) .  Ideally, we would like to require as 
little process knowledge a:: possible and still create a 
useful compensator. The following sections describe 
a stability criterion and an approximate performance 
condition, which both lead to loop-shaping design of 
D1 (s) and DZ (s) . 

3 Stability analysis 

If the controller is designed without jitter consider- 
ation (no matter which design method), it assumes 
the plant to behave in a certain way. Intuitively, bad 
performance of the control loop in presence of jitter 
is due to the unexpected behavior caused by the con- 
trol signal not appearing in time at the plant. The 
idea of our compensator is to hide the delay-error of 
the plant to the controller for a short period of time. 
Thus, the compensator is a delay-error cancellation. 

As both discrete-time and continuous-time transfer 
functions are used in the following sections, the no- 
tation s ( ~ )  is introduced for the system S(s)  sampled 
at period h with zero-order-hold input. 

If the delay z ( n )  fulfills (l), where h is the sample 
period of the controller, then the delay can be equiv- 
alently replaced by the structure in Figure 3 (as de- 
scribed in detail in [3]). 'The output from the delay 
is 

Therefore, it can be rewritten as 

U r ( t )  = u ( n )  + uerr(t) = 

u ( n )  + (.-.In) + u(n  - l ) ) A ( t )  (3) 

where 

The delay is split in a direct-feedthrough path and 
an error path, where the latter can be written as a 
discrete-time differentiator 

- z +  1 
& ( Z )  == - 
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Figure 3: The delay can be split in a direct-feedthrough 
path and an error path. 

in series with the “gate”-function A(t). 

Remark: If part of the delay is expected (e.g. mean- 
time-delay), this delay can be inserted as the “error- 
free-path, with delay error added just as described 
above. The A ( t )  can then take both positive and neg- 
ative values, but this does not change the analysis 
below. 

Rewriting Figure 2 using this delay formulation, Fig- 
ure 4 is obtained. If P ( s ) ,  &(s) and D Z ( S ) ,  as well 
as the closed loop of P(z) and C ( z )  are stable, it suf- 
fices to show stability of the “outer” loop. This can 
be done using the Small Gain Theorem as described 
in [3]. Define 

and the H ,  gain of the linear system is the maxi- 
mum of 

As the gain of A(t) 5 1, the Small Gain Theorem 
gives stability if 

Il‘r(w)ll < 1, va. (6) 

Remark: Approximating the criterion (6) in discrete 
time with compensation gives 

It can be seen from this criterion that without com- 
pensation, i.e. with &(s) = &(s) = 0,  high gain of 
the complementary sensitivity function at  hzgh fre- 
quencies (i.e high bandwidth) will destroy our sta- 
bility guarantee, and, empirically, stability. 

Process 

Figure 4: The control loop rewritten. Stability can now 
be proven using Small Gain Theorem. 

4 Performance analysis 

The stability compensation in the previous section 
gives a hard stability guarantee if Ill(.) and/or 
&(s) is designed so that (6) holds. This section 
presents an approximate method to determine how 
performance is affected by jitter and our compensa- 
tion. It will show how to choose &(s) and &(s) so 
that performance in presence of jitter is improved. 

Throughout this section, performance is based on 
plant output error. Naturally, control signal variance 
can also be included in the performance measure, but 
this is in some sense handled by the stability analy- 
sis in Section 3. As the effect of jitter is studied, our 
performance measure should only be affected by the 
increased error induced by jitter. Good performance 
means low impact from disturbance to plant output 
and control signal. 

4.1 Performance measure 
A disturbance U is introduced before the plant in Fig- 
ure 5. An approximate operator from U to output 
y will now be derived, and from this a frequency 
domain performance measure. To simplify matters, 
A(t) will be treated as an LTI gain, and discrete-time 
versions of all continuous-time blocks will be used. 
The relation between y and U in Figure 5 then be- 
comes 
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Figure 5: The control loop with a disturbance at the 
plant input. 

Removing (CBI + D 2  - CP)AB1 in the denominator 
does not change much if (6) holds with some margin. 
(As, at high frequencies Il(CDl+&-CP)II 1, and 
at low frequencies llBlll .g 1.) 

If there is no delay, i.e. A = 0, the relation becomes 

(9) 

On the other hand, using “worst-case” delay, i.e A = 
1 it can be written as 

P P - PCD1-  PD2 
I -  ll 1 - CP ll llull+ll 1 - CP )I IIB1II.IIUII - 

Cost for no jitter 

(10) 
The relation from disturbance to increased output 
error (due to jitter) can thus be approximated by 

-. 
Q P d W )  

Thus, for good performance, this should be as low as 
possible. Note that this measure is approximate but 
useful when comparing two alternative compensator 
(or controller) designs. Comparing with exactly com- 
puted results for many examples indicates that the 
performance plot gives good information on which 
controller is best. 

5 Compensator Design 

This section will describe illustrate how the compen- 
sators Dl(s )  and D~(s) can be chosen to increase sta- 
bility and performance. The results are obtained by 

comparing (7) and (11). First, consider two extreme 
cases: 

Error feedback Hypothetically, by letting 
Dl(s )  = 0 and D2(s) M 1, essentially all delay error 
is fed back to the next control signal (although this is 
not possible from the requirement of strictly proper 
D1 and D2). The approximate performance measure 
(11) shows that not much increase in output error 
due to jitter is to be expected. Tuming to stability, 
though, (7) becomes 

for high frequencies. As IIBl(eiWh)ll + 2 for high U ,  

(12) is not expected to hold. 

Perfect cancellation: Another extreme ap- 
proach is to let D l ( z )  = P ( s )  and D2(s) = 0, i.e. 
to hide all delay error from the controller (this is 
the classic Smith predictor). This means that (7) 
holds with infinite margin. On the other hand, (11) 
becomes 

IlYjitterll M Ilr’ll . IlBlll . IIuII, (13) 
and thus a P with e.g. a (double integrator will lead 
to very bad performance - as expected, as this ap- 
proach essentially hides all delay error. Note that for 
fixed delays (and a perfect. process model), the Smith 
predictor does not introduce performance problems. 
With varying delays, thou.gh, this delay error hiding 
can lead to large plant errors. 

A compromise: The two examples above en- 
hance either performance or stability, but not both. 
Using the fact that the tvvo approaches may be sep- 
arated in frequency, one can use the combination of 
the two: 

For Dl(s ) ,  a compensator which cancels P(s )  
at high frequencies should be used. The high- 
frequency characteristics of P(s )  is mainly de- 
termined by the roll-off RO(P(s ) ) ,  defined as 

RO(P(s ) )  = # of poles - # of zeros. 

As the compensator should also not affect the 
performance at low frequencies, the following 
structure for D1 (s) :is suggested: 

where u p  is the frequency from which the com- 
pensator is active and K is the gain. 

If low-frequency disturbance-rejection is im- 
portant, let &(s)  be a low pass filter with 
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& ( O )  = 1. This will increase performance 
at low frequencies, but not destroy stability at  
high frequencies. 

Using this compensator, only high frequency knowl- 
edge ofP(s) is required to  tune &(s) and &(s). For 
low frequencies, the “built-in” knowledge in the con- 
troller C ( z )  is reused by feeding back delay errors 
through Dz (s) . 
For complex control systems, it may not be feasible 
to use the structure in (14) to cancel P(s )  at high 
frequencies. Naturally, even &(s) may be used to 
accomplish this if it can be done with a less com- 
plex compensator. This is done in the DVD control 
example in Section 6.2. 

6 Evaluation 

Two examples of the proposed jitter compensation 
are presented in this section. The first is a classic, 
theoretical, jitter-sensitive control loop, whereas .the 
other is a DVD focus process model from the real 
world. For performance calculation, standard I LQ 
cost have been used in all cases. 

The cost evaluation is done using the the author’s 
MATLAB toolbox JITTERBUG (available upon request), 
which calculates steady-state variance (and thus 
cost) for mixed continuous/discrete-time systems 
with random delays. 

6.1 Example 1: A simple system 
The following simple system is taken from [l]. It 
is controlled by a LQG controller with h = 0.05 S .  

The choice of cost function J below makes it very 
sensitive to jitter. 

y = [ 2  1]x+r) 

35 a 
Q=80[d35 1 ] 
R =I 
h =0.05 

The cost function for which the LQG controller is 
designed, and which is used in the evaluation is the 
standard 

~ ( t ) ~ Q x ( t )  + ~ ( t ) ~ R u ( t ) d t .  (15) 

As can be seen in Figure 6, stability cannot be guar- 
anteed for the system if jitter with z < h is intro- 
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Figure 6: Qstab(m) (left) and Qped(m) (right) for the 
uncompensated (full line) and compensated 
(dashed) Example 1. The closer t o  & 
(dash-dotted), the less stability margin and 
performance. As Qstab(m) < &, the com- 
pensated system is guaranteed to be stable 
for all delays T < h. Also, the compensated 
system has a better Qped(u), even though 
Dz(s )  = 0. 

~ 105 Cost with jiner 

Uncomp. system - - - Comp. systsm 

_ _ _ _ _ _ - - - - -  

0.5 1 
T / h  

I M X  

.i 105 [ y j i n e r  ~ 

Uncomp. system - - - Comp. systsm 

Figure 7: Cost J for different amounts of jitter in Ex- 
ample 1. The jitter (delay probability) is uni- 
formly distributed in (0, zmax], and rma varies 
from 0 to h in the plot. The uncompensated 
system is destabilized for 7,,,,,, 2 0.4h. 

duced. Therefore, Ill(.) is chosen as in (14) to re- 
duce the effects of jitter: 

Dl(S) = -2- 
(s + 1 ) 2 ’  

i.e to mimic the behavior of P(s)  at high frequen- 
cies. In this case, the choice of Dl(s )  does not only 
increase stability, but also improves Q p e r f ( m ) ,  as can 
be seen in Figure 6. 

Calculating the exact steady-state cost J using JIT- 
TERBUG, using a delay z(n) uniformly distributed in 
[0, zmax], the cost in Figure 7 is obtained. 

6.2 Example 2 A DVD player 
In a DVD (or CD) player, a track on the disk has 
to be followed with high precision. This is done by 
controlling a lens so that the read laser spot is cen- 
tered on the track, both in radial and focus position 
(sideways and in height). The following is a sixth 
order linear model of the focus servo in a common 
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Figure 8 Q s t a b ( o )  (left) and Qper~(w) (right) for the 
uncompensated (full line) and compensated 
(dashed) focus loop in Example 2. Again, the 
compensated system is guaranteed to be sta- 
ble for all delays T < h, and has a better 
Qperf(w) for most w .  

DVD player: 

P(s )  = 

426(s2 + 1.1s + 3.5)(s2 + 1.9s + 119) 
(s2 + 0.26s + 0.84)(s2 + 0.96s + 45)(s2 + 3.3s + 228)’ 

- 

where the time has been scaled with a factor of 1000 
to avoid numeric problems. The controller runs at  
l / h  = 50 Hz (or 50 kHz for the real system), which 
is an appropriate sampling frequency. The system is 
very resonant, and therefore hard to control and sen- 
sitive to jitter. The focus controller in this example 
is a discrete-time PID: 

1 
Ti(% - 1) + z  

C(z)  =K (1 + ___ 

K =0.55, T d  = 10, Ti = 12 
. X‘QX =3011~(1~, U’RU = 1 1 ~ 1 1 ~  

with (15) as cost function (with our Q and R). In 
Figure 8, it can be seen that a resonance around 
w = 50 rad/s may cause stability problems. The 
resonance also makes it hard to design &(s) in the 
form (14) with good cancellation at  w M 50. Leaving 
Ill(.) = 0 and designing Dz(s)  as 

1764 
D2(s)  = 52 + 38.14s + 1764 

i.e. with D2(0) = 1 and Dz(iw) M C(eioh)p(eioh)  
at w M 50, Figure 8 shows that the stability mar- 
gin, i.e. the distance from Qstab(w) to * is im- 
proved. The performance, as indicated by Qperf(W) is 
improved over most frequencies. 

Calculating the exact cost under the same assump- 
tions as in Example 1 gives the plot in Figure 9. 
Again, using loop shaping and partial process knowl- 
edge, an add-on jitter compensator was designed, im- 
proving both control performance and stability. 

~ 
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Figure 9 Cost J for different amounts of jitter in Ex- 
ample 2. 

7 Conchusions 

In this paper, a method to do compensation for 
time-varying delays (jitter) in control loops, using 
time-stamps is presented. Stability and performance 
analysis leads to frequency domain conditions, which 
implies that loop-shaping can be used to design the 
compensator. The method can be used even in cases 
where a full process model is not available. 
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