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École Polytechnique Fédérale de Lausanne (EPFL),
1015 Lausanne, Switzerland. email: alireza.karimi@epfl.ch

Abstract

The feedback relay test is usually used to identify one
point on the Nyquist diagram of the plant model. It is
shown that the derivatives of amplitude and phase of
the plant model with respect to frequency at that point
can be approximated by the Bode’s integrals without
any model of the plant. The precision of the approx-
imation for typical industrial plant models is studied.
The derivatives are used to design a PID controller for
slope adjustment of the loop Nyquist diagram and im-
prove the closed-loop performance. Simulation exam-
ples illustrate the effectiveness and the simplicity of the
proposed method to design the PID controllers.
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1 Introduction

The Ziegler-Nichols methods [8] are still extensively
used for determining the parameters of PID controllers.
The design is based on the measurement of the critical
gain and critical frequency of the plant and using sim-
ple formulas to compute the controller parameters. In
1984, Åström and Hägglund [3] proposed an automatic
tuning method based on a simple relay feedback test
which gives, using the describing function analysis, the
critical gain and the critical frequency of the system.
This information can be used to compute a controller
with the desired gain or phase margins. However, in
order to obtain the desired phase margin, the closed-
loop system should oscillate at the desired crossover
frequency (the frequency at which the loop gain is equal
to 1). This can be obtained using a relay with hystere-
sis [3] or with introducing an adjustable time delay in
the closed-loop system [5]. The hysteresis or the time
delay should slowly change up to obtain a limit cycle
at crossover frequency. This experiment, compared to
the standard one, is more time consuming. A closed-
loop relay test scheme was proposed in [7] which iden-
tifies directly the crossover frequency. In this scheme
the plant operates in closed loop with an existing con-
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troller and the output of the relay is connected to the
reference of the closed-loop system. The advantage is
that the noise effect is attenuated and the amplitude
of the relay can be easily adjusted.

After identifying a point on the frequency response
of the plant, the so-called modified Ziegler-Nichols
method can be used to move this point to another posi-
tion in the complex plane [4]. Two equations for phase
and amplitude assignment are obtained which can be
solved to find the parameters of a PI controller. For a
PID controller, however, an additional equation should
be introduced. In the modified Ziegler-Nichols method,
the ratio between integral time Ti and derivative time
Td is chosen to be constant (Td = 0.25Ti) in order to
have a unique solution. In [4], it was proposed to ad-
just the slope of the Nyquist curve at the crossover
frequency such that a minimum distance to the crit-
ical point can be assured in the high frequencies. In
this way the robustness of the closed-loop system with
respect to the unmodeled dynamics may be improved.
However, this method requires inevitably the deriva-
tives of the plant transfer function with respect to fre-
quency which are not known a priori.

The main contribution of this paper is the use of Bode’s
integrals for slope adjustment in PID controller design.
The Bode’s integrals [1] show the relation between the
phase and the amplitude of minimum phase stable sys-
tems. It will be shown how these integrals can be used
to approximate the derivatives of the amplitude and
the phase of a system with respect to frequency at a
given frequency. It is interesting to notice that the ap-
proximation is made only with the knowledge of the
amplitude and the phase of the system at the given
frequency and the system static gain. The derivatives
can be used in the modified Ziegler-Nichols method to
adjust the slope of the Nyquist curve at the given fre-
quency.

The paper is organized as follows: In Section 2 a for-
mula is derived which gives the relation between Ti and
Td for obtaining the desired slope of the Nyquist curve
of the loop transfer function at a given frequency. The
Bode’s integrals are used to approximate the deriva-
tives of the plant transfer function in Section 3. Sec-
tion 4 shows the precision of the approximations. A



PID controller design method for phase margin and
slope adjustment is proposed in Section 5. Section 6
presents the simulation results. Finally, Section 7 gives
some concluding remarks.

2 Loop slope adjustment

The slope of the Nyquist curve at crossover frequency
affects drastically the performance and robustness of
the closed-loop system. In this section, a formula is
derived which gives the relation between Ti and Td for
obtaining the desired slope of the Nyquist curve of the
loop transfer function at a given frequency.

Consider the loop transfer function L(jω) =
G(jω)K(jω) where

K(jω) = Kp(1 +
1

jωTi
+ jωTd) (1)

is the PID controller. The slope of the Nyquist curve
of the loop transfer function L(jω) at ω0 defined by
ψ is equal to the phase of the derivative of L(jω) at
ω0. The derivative of the loop transfer function with
respect to ω is computed as follows:

dL(jω)
dω

= G(jω)
dK(jω)
dω

+K(jω)
dG(jω)
dω

(2)

Furthermore one has:

lnG(jω) = ln |G(jω)|+ j � G(jω) (3)

Differentiating this equation gives:

d lnG(jω)
dω

=
1

G(jω)
dG(jω)
dω

=
d ln |G(jω)|

dω
+ j

d � G(jω)
dω

(4)

On the other hand, the derivative of the controller with
respect to ω is:

dK(jω)
dω

= jKp(Td +
1

ω2Ti
) (5)

Substituting Eqs (1), (4) and (5) into Eq. (2), one
obtains:

dL(jω)
dω

= KpG(jω)
[
j(Td +

1
ω2Ti

)

+
(

1 + j(Tdω −
1
ωTi

)
)

×
(
d ln |G(jω)|

dω
+ j

d � G(jω)
dω

)]
(6)

Hence, the slope of the Nyquist curve at ω0 is given by:

ψ = � dL(jω)
dω

∣∣∣∣
ω0

= ϕ0 + arctan (7)

(TdTiω2
0 + 1) + (TdTiω2

0 − 1)sa(ω0) + sp(ω0)Tiω0

sa(ω0)Tiω0 − (TdTiω2
0 − 1)sp(ω0)

where ϕ0 = � G(jω0) and sa(ω0) and sp(ω0) are defined
as follows:

sa(ω0) = ω0
d ln |G(jω)|

dω

∣∣∣∣
ω0

(8)

sp(ω0) = ω0
d � G(jω)

dω

∣∣∣∣
ω0

(9)

It is desired to adjust the slope of the Nyquist curve of
the loop transfer function L(jω) to a specified value ψ.
Then straightforward calculation gives:

Td = [sa(ω0)− 1 + sp(ω0) tan(ψ − ϕ0)
−Tiω0(sp(ω0)− sa(ω0) tan(ψ − ϕ0))]
×[ω2

0Ti(1 + sa(ω0) + sp(ω0) tan(ψ − ϕ0))]−1

In the next part, sa(ω0) and sp(ω0) are directly approx-
imated using the Bode’s integrals.

3 Bode’s integrals

The relations between the phase and the amplitude of
a stable minimum-phase system have been investigated
for the first time by Bode [1]. The results are based on
Cauchy’s residue theorem and have been extensively
used in network analysis. Two integrals are presented
in this section. The first one, which is well known in the
control engineering field, shows the relation between
the phase of the system at each frequency as a function
of the derivative of its amplitude. But the second in-
tegral, to the best of the authors’ knowledge, has been
never used in the control design. The integral shows
how the amplitude of the system at each frequency is
related to the derivative of the phase and the static
gain of the system.

3.1 Derivative of amplitude
Bode has shown in [1] that for a stable minimum-phase
transfer function G(jω), the phase of the system at ω0

is given by:

� G(jω0) =
1
π

∫ +∞

−∞

d ln |G(jω)|
dν

ln coth
|ν|
2
dν (10)

where ν = ln ω
ω0

. Since ln coth |ν|2 decreases rapidly
as ω deviates from ω0, the integral depends mostly on
d ln |G(jω)|

dν (the slope of the Bode plot) near ω0. There-
fore, assuming that the slope of the Bode plot is almost
constant in the neighborhood of ω0, � G(jω0) can be
approximated by:

� G(jω0) ≈ 1
π

d ln |G(jω)|
dν

∣∣∣∣
ω0

∫ +∞

−∞
ln coth

|ν|
2
dν

≈ π

2
d ln |G(jω)|

dν

∣∣∣∣
ω0

(11)



This property is often used in loop shaping where the
slope of the amplitude Bode plot at crossover frequency
is limited to -20dB/decade in order to obtain approxi-
mately a phase margin of 90◦. Here the measured phase
of the system at ω0 is used to determine approximately
the slope of the amplitude Bode plot (sa):

sa(ω0) =
d ln |G(jω)|

dν

∣∣∣∣
ω0

= ω0
d ln |G(jω)|

dω

∣∣∣∣
ω0

≈ 2
π
� G(jω0) (12)

3.2 Derivative of phase
The second Bode’s integral shows that the amplitude
of a stable minimum-phase system can be determined
uniquely from its phase and its static gain. More pre-
cisely, the logarithm of the system amplitude at ω0 is
given by [1]:

ln |G(jω0)| = ln |Kg| −
ω0

π

∫ +∞

−∞

d(� G(jω)/ω)
dν

ln coth
|ν|
2
dν

where Kg is the static gain of the plant. In the same
way, assuming that � G(jω)/ω is linear (in a logarith-
mic scale) in the neighborhood of ω0, one has:

ln |G(jω0)| ≈ ln |Kg| −
ω0

π

d(� G(jω)/ω)
dν

∣∣∣∣
ω0

π2

2

ln |G(jω0)| ≈ ln |Kg| −
πω2

0

2

[
1
ω0

d � G(jω)
dω

∣∣∣∣
ω0

−
� G(jω0)

ω2
0

]
(13)

which gives:

sp(ω0) = ω0
d � G(jω)

dω

∣∣∣∣
ω0

(14)

≈ � G(jω0) +
2
π

[ln |Kg| − ln |G(jω0)|]

Note that for the systems containing an integrator, the
static gain cannot be computed. For such systems, the
static gain of the system without the integrator should
be estimated and used in the above formula (note that
the phase of the integrator is constant and its derivative
is zero).

4 Precision of the estimates

The precision of the estimates of the derivatives of am-
plitude and phase depends on the system dynamics and
on the frequency at which the experiments are per-
formed. However, extensive simulations on the typical

models of industrial plants have shown that the ab-
solute normalized error of the estimates is within an
acceptable range. In order to give an idea about the
precision of the estimates, let us consider the following
system:

G(s) =
1

(s+ 1)n
(15)

where n is a positive integer. The true values of sa(ω)
and sp(ω)/ω computed on the basis of the model for
different frequencies, are compared with the estimated
ones based on the Bode’s integrals in Fig. 1 and Fig. 2,
respectively. It can be observed that the maximum of
the absolute normalized error does not exceed 0.1 for
this system.
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Figure 1: Comparison of true sa(ω) and the estimated
one based on Bode’s integral (solid line: true
values, dashed line: estimates )
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Figure 2: Comparison of true sp(ω)/ω and the estimated
one based on Bode’s integral (solid line: true
values, dashed line: estimates )

Similar results can be obtained for the systems pre-
sented by several first-order models in cascade. For



oscillatory systems, the estimation may be poor in cer-
tain frequencies, but in general the results remain sat-
isfactory. For non-minimum-phase systems the Bode’s
integrals are no longer valid and the proposed formulas
give incorrect results. However, it will be shown next
that the pure time delay has no effect on the estima-
tion of sp and its effect on the estimation of sa can be
neglected if it is small with respect to the dominant
time constant of the system.

4.1 Effect of pure time delay
Consider the following system with a pure time delay
τ :

Gτ (jω) = G(jω)e−jτω (16)

where G(jω) is a stable minimum-phase system. Dif-
ferentiating the amplitude and phase of Gτ (jω) with
respect to ω gives:

d ln |Gτ (jω)|
dω

=
d ln |G(jω)|

dω
(17)

d � Gτ (jω)
dω

=
d � G(jω)

dω
− τ (18)

Now using the Bode’s integral from Eq. (11), the phase
of Gτ (jω) at ω0 is approximated by:

� Gτ (jω0) = � G(jω0)− τω0

≈ π

2
d ln |G(jω)|

dω

∣∣∣∣
ω0

− τω0 (19)

Then sa(ω0) and sp(ω0) for a system including a pure
time delay are computed as follows:

sa(ω0) = ω0
d ln |Gτ (jω)|

dω

∣∣∣∣
ω0

≈ 2
π

(� Gτ (jω0) + τω0) (20)

sp(ω0) = ω0
d � Gτ (jω)

dω

∣∣∣∣
ω0

= ω0
d � G(jω)

dω

∣∣∣∣
ω0

− τω0

≈ � G(jω0) +
2
π

[ln |Kg| − ln |G(jω0)|]− τω0

≈ � Gτ (jω0) +
2
π

[ln |Kg| − ln |Gτ (jω0)|] (21)

The above relations show that the pure time delay
should be known for the calculation of sa(ω0) but it
has no effect on the calculation of sp(ω0). It should be
remembered that τ represents the pure time delay of
the system which is usually related to the mass trans-
port delay and is often negligible or can be easily mea-
sured. This value should not be confounded with the
time delay that is used to model a high-order system as
a first- or second-order system with delay. For exam-
ple, G(s) = 1/(s+ 1)5 has no pure time delay whereas
it can be approximated by a first-order model with a
large time delay.

5 PID design

Suppose that the amplitude and the phase of a plant at
crossover frequency ωc are known. These values may
be obtained using the existing controller and by the
method proposed in [6]. Suppose also that the static
gain of the process is measured. The objective is to
improve the controller performance by adjusting the
phase margin and the slope of the Nyquist curve at
the crossover frequency. The modified Ziegler-Nichols
method is used but the derivatives are approximated
by the Bode’s integrals, so no model for the system is
required. To obtain a desired phase margin Φd at the
crossover frequency ωc we have the following equations
to solve:

� G(jωc) + � K(jωc) = Φd − π (22)
|G(jωc)K(jωc)| = 1 (23)

Solving these equations one obtains:

Kp =
cos(Φd − ϕc − π)
|G(jωc)|

(24)

Tdωc −
1

Tiωc
= tan(Φd − ϕc) (25)

where ϕc is the phase of G(jωc). Now we exploit
Eq. (10) in order to obtain the desired slope ψ at the
crossover frequency. Combining Eqs (10) and (25), we
obtain after straightforward calculations the parame-
ters Ti and Td as follows:

Ti =
1

ωc(Tdωc − tan(Φd − ϕc))
(26)

Td =
1

2ωc
[(sa(ωc)− sp(ωc) tan(Φd − ϕc))

× tan(ψ − ϕc) + (1− sa(ωc)) tan(Φd − ϕc)
−sp(ωc)] (27)

The improved PID controller is now defined by (24),
(26) and (27).

6 Simulation Results

The PID design method presented above will be illus-
trated via a simulation example. Consider the following
model:

G(s) =
1

(s+ 1)5
(28)

The specifications are set at 0.4 rad/s for the crossover
frequency and 50◦ for the phase margin. First, the
control parameters are obtained using the modified
Ziegler-Nichols method. The resulting PID controller
is:

K(s) = 1.35 (1 +
1

3.44s
+ 0.86s) (29)



This controller moves the point G(0.4 j) of the Nyquist
curve to a point of K(jω)G(jω) on the unit circle hav-
ing a phase of 130◦. This conforms to the closed-loop
system with the specifications mentioned above.

In order to improve the closed-loop performance, let us
calculate now a controller that gives to the closed-loop
system the same crossover frequency and phase mar-
gin, but with the desired slope of the open-loop Nyquist
curve at the crossover frequency of 65◦. This reduces
the current slope of the Nyquist curve by 25◦ and en-
sures a greater distance of the Nyquist curve from the
critical point in high frequencies. The controller pa-
rameters are obtained from Eqs (24), (27) and (26),
where sa(0.4 j) and sp(0.4 j) are approximated using
Eqs (12) and (14).

K(s) = 1.35 (1 +
1

2.81s
+ 1.27s) (30)

Although the approximation error for sa and sp leads to
a resultant slope of 74◦ (about 13% error), a compar-
ison of the closed-loop performance for the two con-
trollers shown in Fig. 3 illustrates a significant im-
provement of the closed-loop performance. The over-
shoot is about the same but the settling time is 44 %
smaller with the proposed method. The Nyquist di-
agrams (Fig. 4) further show that the proposed con-
troller modifies the slope of the Nyquist curve and as a
result improves the gain margin as well as the modulus
margin (the minimum distance between L(jω) and the
critical point) of the system.
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Figure 3: Step response of the closed-loop system (dashed
line: modified Ziegler-Nichols, solid line: pro-
posed)

Consider again the same plant model with a new initial
PID-controller:

K(s) = 0.57 (1 +
1

1.89s
+ 1.89s) (31)
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Figure 4: Nyquist diagram (dashed line: modified Ziegler-
Nichols, solid line: proposed)

This controller has been proposed for the above men-
tioned plant in [2] to achieve a phase margin of 60◦

and a gain margin of 3. Suppose that only the static
gain of the plant is a priori known. A closed-loop ex-
periment as proposed in [6] measures for this system
a phase margin of 52.8◦ and a crossover frequency of
0.243 rad/s (while the true values are 52.27◦ and 0.240
rad/s, respectively).

Let us define new specifications with the same crossover
frequency in order to improve the closed-loop perfor-
mance with the proposed method. The phase margin
is set at 60◦ and the slope of the Nyquist curve in the
crossover frequency at 80◦. As the point G(0.243j)
is known from the closed-loop experiment mentioned
above, Eqs (24), (27) and (26) can be used to compute
the new controller

K(s) = 0.687 (1 +
1

2.91s
+ 0.421s) (32)

A comparison of the closed-loop performance between
the initial controller (dashed line) and the new con-
troller (solid line) in Fig. 5 shows that a much smaller
settling time and overshoot is achieved by the new con-
troller.

7 Conclusions

The derivatives of phase and amplitude of minimum-
phase and stable plant models with respect to the fre-
quency have been approximated using the Bode’s in-
tegrals. Only the value of the transfer function at the
given frequency is used for the approximation and no
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Figure 5: Step response of the closed-loop system (dashed
line: initial, solid line: proposed method)

parametric model of the plant is required. The pre-
cision of the approximation for typical industrial plant
models is adequate for PID controller tuning. The esti-
mated derivatives of phase and amplitude of the plant
can be used to adjust the slope of the Nyquist curve
and improve the robustness of the closed-loop system
with respect to the unmodeled dynamics. The pro-
posed method requires a minimum information about
the plant which can be obtained with a simple closed-
loop relay test. Simulation examples have shown that
the closed-loop performance is significantly related to
the slope of the Nyquist curve and can be improved
using the proposed method.
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