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Computation of Minimal Periodic Realizations of
Transfer-Function Matrices

Andras Varga

Abstract—We present a numerical approach to compute a minimal peri-
odic state-space realization of a transfer-function matrix corresponding to
a lifted state-space representation. The proposed method determines a real-
ization with time-varying state dimensions by using exclusively orthogonal
transformations. The new method is numerically reliable, computationally
efficient and thus well suited for robust software implementations.

Index Terms—Discrete-time systems, minimal realization, numerical
methods, periodic systems, time-varying systems.

I. INTRODUCTION

We consider the development of an efficient and reliable numerical
algorithm for the following periodic realization problem (PRP): Given
a Np�Nm transfer-function matrix (TFM) W (z), determine a min-
imal periodic realization (i.e., completely reachable and completely ob-
servable) of the form

x(k + 1) =Akx(k) +Bku(k)

y(k) =Ckx(k) +Dku(k) (1)

such that the TFM of the standard lifted representation of (1) (see Sec-
tion II) is equal to W (z). In (1), Ak 2 Rn �n , Bk 2 Rn �m,
Ck 2 Rp�n , Dk 2 Rp�m are periodic matrices with period N � 1.
Note that, generally, the minimal periodic realization of a given W (z)
is a periodic system with time-varying state dimensions [1].

A computational algorithm to solve the above PRP is useful in many
applications. For example, using lifted representations of periodic sys-
tems (as those introduced in [2], [5], [8], and [9]), it is relatively easy
to compute left or right inverses of a periodic system by manipulating
the associated system pencil matrix (see, for example, [11]). However,
from the resulting representation of the inverse it is impossible in gen-
eral to directly recover the underlying periodic representation. A min-
imal realization algorithm for periodic systems can be useful by al-
lowing the following computational detour: compute first the corre-
sponding TFM or a minimal state-space representation of the inverse
and then compute its minimal periodic realization.

Another possible application is in the identification of periodic sys-
tems. For example, one of proposed subspace identification algorithms
[14] is only applicable provided the underlying periodic system is uni-
formly reachable and observable (i.e., the periodic system has constant
state dimension). This condition is however not always fulfilled, a no-
table exception being the class of multirate systems modeled as peri-
odic systems. In this case, a computational detour is to identify first the
TFM or state-space realization of the lifted system by using appropriate
subspace identification methods, and then convert this model into a pe-
riodic minimal realization.
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Finally, the TFM to state-space conversion is a useful transformation
which must belong to any software toolbox devoted to the manipula-
tion of periodic system descriptions. Note that for the reverse trans-
formation (the state-space to TFM conversion), a numerically reliable
algorithm has been recently developed in [13].

A realization algorithm for periodic systems has been proposed by
Lin and King [7]. The resulting periodic realization is however not min-
imal, because the state dimension is forcedly chosen constant. The de-
termination of this state dimension requires checking of N � 1 rank
conditions. To compute a minimal realization, we need to combine this
algorithm with a minimal realization algorithm, as for instance, that
proposed in [10]. Besides the higher computational costs of the overall
approach, both main computational steps use nonorthogonal transfor-
mations. Thus, in general, this combination approach is numerically
not satisfactory.

In this note, we propose a computational procedure which improves
the algorithm of [7] in two directions. First, the new procedure com-
putes directly a periodic minimal realization with time-varying state
dimensions starting from a minimal realization of W (z) as a stan-
dard state-space system. Second, the procedure relies exclusively on
performing orthogonal transformations, thus is completely satisfactory
from numerical point of view. Therefore, the new method is well suited
for robust software implementations.

II. PERIODIC REALIZATION PROBLEM

First, we introduce some notations and recall the definitions of reach-
ability, observability and minimality of periodic systems (see [1] and
[3]). The transition matrix of the system (1) is defined by the nj � ni
matrix �A(j; i) = Aj�1Aj�2 . . .Ai, where �A(i; i) := In . The
state transition matrix over one period �A(j + N; j) 2 Rn �n is
called the monodromy matrix of system (1) at time j and its eigen-
values are called characteristic multipliers at time j.

Definition 1: The periodic system (1) is reachable at time i if

rankRi = ni (2)

where Ri is the infinite columns matrix

Ri = [Bi�1 Ai�1Bi�2 � � � �A(i; j + 1)Bj � � �] : (3)

The periodic system (1) is completely reachable if (2) holds for i =
1; . . . ; N .

Definition 2: The periodic system (1) is observable at time i if

rankOi = ni (4)

where Oi is the infinite rows matrix

Oi =

Ci

Ci+1Ai

...
Cj�A(j; i)

...

: (5)

The periodic system (1) is completely observable if (4) holds for i =
1; . . . ; N .

Definition 3: The periodic system (1) is minimal if it is completely
reachable and completely observable.

To define the TFM of the periodic system (1), we consider the time-
invariant representation corresponding to the associated lifted system
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introduced in [8] which uses the input-output behavior of the system
over time intervals of lengthN , rather than 1. For a given sampling time
k, the corresponding Nm-dimensional input, Np-dimensional output,
and nk-dimensional state vectors are defined as

uk(h) = u
T (k + hN) � � �uT (k + hN +N � 1)

T

yk(h) = y
T (k + hN) � � � yT (k + hN +N � 1)

T

xk(h) =x(k + hN): (6)

The lifted system has the form

xk(h+ 1) =Fkxk(h) +Gkuk(h)

yk(h) =Hkxk(h) + Lkuk(h) (7)

where

Fk =�A(k +N; k)

Gk = [�A(k +N; k + 1)Bk � � �Bk+N�1]

Hk =

Ck

Ck+1�A(k + 1; k)
...

Ck+N�1�A(k+N � 1; k)

Lk =

Dk 0 � � � 0

Lk;2;1 Dk+1 � � � 0
...

...
. . .

...
Lk;N;1 Lk;N;2 � � � Dk+N�1

withLk;i;j = Ck+i�1�A(k+i�1; k+j)Bk+j�1, for i = 2; . . . ; N ,
j = 1; 2; . . .N � 1, and i > j.

The system (7) is called the standard lifted system at time k of the
given N -periodic system (1). The lifted system (7) shares the same
structural properties as the original periodic system (1). In particular,
the system (7) is reachable (observable) if and only if the system (7) is
reachable (observable) at time k.

The associated TFM Wk(z) is

Wk(z) = Hk(zInk � Fk)
�1
Gk + Lk (8)

and depends on the sampling time k. Thus, a given TFM W (z) can be
realized in N instances as a periodic system.

In what follows, we assume that the given Np � Nm TFM W (z)
corresponds to the time moment k = 1 for which reason we will drop
the index k. Realizations at time moments k > 1 can be easily obtained
by cyclic permutations of the matrices determined for k = 1. We have
the following result showing the existence of periodic realizations [6]:

Theorem 1: The Np � Nm proper TFM W (z) has a periodic re-
alization of the form (1) if and only if the W (1) matrix with p �m

diagonal blocks is lower block triangular.
For our developments, we assume in what follows thatW (z) fulfills

the condition of Theorem 1 and has a minimal realization of order n,
as a standard system (A, B, C , D) satisfying

W (z) = C(zIn � A)�1B +D: (9)

To solve the PRP we have to compute the N -periodic system matrices
Ak , Bk , Ck , and Dk which satisfy the conditions

A = F B = G C = H D = L: (10)

Moreover, the periodic realization (Ak , Bk , Ck, Dk) is required to be
minimal, that is, completely reachable and completely observable.

III. PERIODIC REALIZATION ALGORITHM

If we partition the matrices B, C , and D to correspond to the N
block rows and N block columns of W (z), we have

B = [B1 B2 � � � BN ]

C =

C1

C2

...
CN

D =

D11 0 � � � 0

D21 D22 � � � 0
...

...
. . .

...
DN1 DN2 � � � DNN

:

From (10), we get the following equations to be satisfied by the periodic
system matrices Ak , Bk , Ck, and Dk

A =�A(N + 1; 1)

Bi =�A(N + 1; i+ 1)Bi; i = 1; . . . ; N

Ci =Ci�A(i; 1); i = 1; . . . ; N

Dii =Di; i = 1; . . . ; N

Dij =Ci�A(i; j + 1)Bj ; 1 � j < i � N: (11)

We solve the previous equations by generating recursively the system
matrices. We have immediately, that

BN = BN C1 = C1 Di = Dii i = 1; . . . ; N (12)

and, thus

n1 = n: (13)

Analogously to [7], we consider the (n+(N�i)p)�(n+mi) matrices
for i = 1; . . . ; N � 1

Ki =

A B1 � � � Bi

CN DN;1 � � � DN;i

...
...

. . .
...

Ci+1 Di+1;1

... Di+1;i

which can be factored in the form Ki = KC
i K

B
i , where

K
C
i =

�A(N + 1; i+ 1)

CN�A(N; i+ 1)
...

Ci+1

K
B
i = [�A(i+ 1; 1)j�A(i+ 1; 2)B1 � � � Bi] :

Let

ni+1 := rankKi (14)

and consider the full rank orthogonal factorization

Ki = UiRi (15)

with the (n+(N�i)p)�ni+1 matrixUi having orthonormal columns
(i.e., UT

i Ui = In ), and the ni+1 � (n+mi) matrix Ri having full
row rank. We partition Ui and Ri compatibly as follows:

Ui =
U i;1

U i;2

Ri = jRi;1jRi;2j
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whereU i;2 andRi;2 are p�ni+1 and ni+1�mmatrices, respectively.
We can immediately take

Bi = Ri;2 Ci+1 = U i;2: (16)

If i = 1, we can choose

Ai = R1;1 (17)

while for i = N � 1 we can choose

AN = UN�1;1: (18)

For i = 2; . . . ; N � 1, it is easy to see that Ai satisfies

UiAi = U i�1;1:

Provided range(U i�1;1) � range(Ui), and recalling that Ui has full
column rank and orthonormal columns, we get the unique solution

Ai = UT
i U i�1;1: (19)

To show that indeed range(U i�1;1) � range(Ui), we observe thatKi

and Ki�1 can be partitioned as

Ki = Xi

Bi

DN;i

...
Di+1;i

Ki�1 =
Xi

Ci Di;1 � � � Di;i�1

:

Taking into account the partitioning of Ui�1 in the form

Ui�1 =
U i�1;1

U i�1;2

it follows that range(U i�1;1) = range(Xi) � range(Ki) =
range(Ui).

We can easily prove our main result.
Theorem 2: The periodic realization computed by using the for-

mulas (12)–(19) is minimal.
Proof: We need to show that for the computed system matrices

satisfying the equations (11), the corresponding state dimensions (13)
and (14) satisfy

ni = rankRi = rankOi; i = 1; . . . ; N:

First, we show that

rankR1 = n1

where

R1 = [BN ANBN�1 � � �AN � � �A2B1 AN � � �A1BN � � �]:

Since the pair (A;B) is reachable, we have that

n1 = n = rank[B AB � � � A
n�1

B] = rankR1:

Similarly, from the observability of the pair (A; C), it follows that

n1 = rankO1:

By denoting

Wi+1 = [Bi AiBi�1 � � � �A(i+ 1; 2)B1]

we can partition Ri+1, for i � 1, as

Ri+1 = [Wi+1j�A(i+ 1; 1)R1] :

From the full rank factorization (15), we have that

rank [Wi+1j�A(i + 1; 1)] = ni+1:

Since R1 has full row rank, it is easy to show that

rank [Wi+1j�A(i + 1; 1)R1] = rank [Wi+1j�A(i + 1; 1)]

and, thus

rankRi+1 = ni+1:

Similarly, we can prove the observability properties.
There are two main improvements offered by our algorithm with re-

spect to the algorithm of [7]. The first improvement is that we deter-
mine directly a periodic realization with minimal order state dimen-
sions. The resulting periodic realization is minimal and has, in general,
time-varying state dimensions. In contrast, the algorithm of [7] deter-
mines generally a nonminimal realization with unreachable and/or un-
observable characteristic multipliers in the origin.

The second improvement is the overall numerically reliability of our
algorithm and the straightforward computation of the state matrices of
the periodic realization. The computation of the minimal periodic re-
alization involves performing N � 1 rank revealing QR-factorizations
(e.g., QR-factorizations with column pivoting or singular value decom-
positions [4]) and all matrices are generated in terms of the computed
quantities in these factorizations. By using the orthogonal full rank fac-
torizations (15), we can explicitly solve the equation UiAi = U i�1;1

satisfied by Ai. Thus all system matrices can be determined by using
exclusively orthogonal transformations. In contrast, the algorithm of
[7] determine Ai by solving two matrix equations involving both Ui
and Ri (see [7, Lemma 2.1]). Thus, our algorithm can be considered
completely satisfactory from numerical point of view along the lines
of requirements formulated in [12].

We can roughly estimate the computational effort required by our
algorithm assuming constant dimension ni = n, i = 1; . . . ; N for the
resulting periodic realization. We assume that we use QR-decomposi-
tions with column pivoting based on Householder transformations to
compute the full rank orthogonal factorizations (see [4] for details).
Note that for a generic m � n matrix X of rank r, the computa-
tion of the r � n matrix R in the full rank QR factorization X =
QR requires about r(2mn + (2r2=3)� (m+ n)r) flops (1 flop =
1 multiplication + 1 addition), while the economic accumulation
of the r Householder transformations in Q requires r2(2m� r) flops.
Thus, in total we need about r(2mn�(r2=3)+(m�n)r) flops. In the
minimal realization algorithm we need to computeN�1 full rank fac-
torizations of theKi matrices of dimensions (n+(N�i)p)�(n+im),
for i = 1; . . . ; N�1. By assuming n � n, this involves approximately

n(N � 1)
5n2

3
+

(3p+m)nN

2
+
pmN2

3

flops. To the above estimation we have to add the number of flops nec-
essary to compute the state-space realization of W (z).
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IV. EXAMPLE

We consider the example used in [7] to show the main computational
steps. For the sake of clarity, we will use nonorthogonal computations
to compute the full rank factorizations. Let

W (z) =
1

z � 1

z + 2 4 1

6z 3z + 5 2

9z z + 11 z + 2

and consider the same state-space realization as in [7]

A B

C D
=

1 3 4 1

1 1 0 0

2 6 3 0

3 9 1 1

:

We have immediately

B3 = 1 C1 = 1 D1 = 1 D2 = 3 D3 = 1:

From

K1 =

1 3

3 9

2 6

=

1

3

2

[1 j 3]

we obtain

A1 = 1 B1 = 3 C2 = 2:

Further, from

K2 =
1 3 4

3 9 1
=

1 4

3 1

1 3 0

0 0 1

we obtain

B2 =
0

1
C3 = [3 1] A3 = [1 4]:

A2 results from

1 4

3 1
A2 =

1

3

as

A2 =
1

0
:

The resulting periodic realization has state dimensions n1 = 1,
n2 = 1 and n3 = 2 and is minimal. In contrast, the realization ob-
tained in [7] has constant order n = 2 and is not minimal.

V. CONCLUSION

We proposed a numerically sound and computationally efficient ap-
proach to compute minimal periodic realizations of transfer-funtion
matrices. The resulting periodic representations have in general time-
varying dimensions. The proposed approach relies exclusively on nu-
merically stable algorithms, the key computations beingN�1 rank re-

vealing orthogonal decompositions. The proposed approach is straight-
forward to implement as robust numerical software. Numerical exam-
ples computed with a MATLAB-based implementation show the appli-
cability of this method to high order periodic systems.
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