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Abstract

Hysteresis in smart actuators presents a challenge in control of these actuators. A fundamental

idea to cope with hysteresis is inverse compensation. But due to the open loop nature of inverse

compensation, its performance is susceptible to model uncertainties and to errors introduced by inverse

schemes. In this paper we develop a robust control framework for smart actuators by combining

inverse control with the l1 robust control theory, where the inversion error is modeled as an exogenous

disturbance with a magnitude bound quantifiable in terms of parameter uncertainties and inversion

schemes. Through the example of controlling a magnetostrictive actuator, we present a systematic

controller design method which guarantees robust stability and robust trajectory tracking while taking

actuator saturation into account. Simulation and experimental results are provided.

1 Introduction

Smart materials, such as magnetostrictives, piezoelectrics, shape memory alloys (SMAs), and magne-

torheological (MR) fluids, all display certain coupling phenomena between applied electromagnetic/thermal

fields and their mechanical/rheological properties. Smart actuators and sensors made of these materials

have been receiving tremendous interest due to their broad applications in areas of aerospace, manufac-

turing, defense, and civil infrastructure systems, to name a few. The hysteretic behavior widely existing

in smart materials, however, makes the effective use of these actuators and sensors quite challenging.
∗This research was supported by the Army Research Office under the ODDR&E MURI97 Program Grant No. DAAG55-

97-1-0114 to the Center for Dynamics and Control of Smart Structures (through Harvard University).
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Models for smart actuators that capture both hysteresis and dynamic behaviour have a cascaded

structure as shown in Figure 1(a) [1], where W is a hysteretic operator (with possibly some other

nonlinearities) and Ĝa(λ) is a linear system. In this paper we consider the discrete-time setting in the

interest of digital control, and Ĝ(λ) denotes the λ-transform of a linear time-invariant (LTI) system G.

We recall that the λ-transform Ĝ(λ) is just the usual z-transform of G with λ = z−1 [2].
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Figure 1: (a) The model structure for smart actuators; (b) The closed-loop system incorporating inverse

compensation.

In Figure 1(b), Ĝ0(λ) denotes the plant to be controlled by the actuator. A basic approach to cope

with the hysteresis is to design an (approximate) right inverse operator W̃−1 for W , then ũ ≈ u and

the controller design problem is reduced to designing a linear controller K̂(λ) for the composite linear

system Ĝ0(λ) ◦ Ĝa(λ). The idea of inverse compensation can be found in, e.g., [3, 4, 5, 6, 7].

The most popular hysteresis model used in control of smart actuators has been the Preisach operator

[3, 8, 9, 7]. The Preisach operator provides a means of developing phenomenological models that are

capable of producing behaviors similar to those of physical systems. For a detailed treatment of the

Preisach operator, we refer to [10, 11, 12].

Due to the open loop nature of inverse compensation, its performance is susceptible to model uncer-

tainties and to errors introduced by inversion schemes. To combat this problem, adaptive inverse control

schemes were proposed for a class of hysteresis nonlinearities with parameterizable inverses [4, 13]. For

the Preisach operator-based hysteresis models, however, their inverses are not parameterizable in general.

In this paper we develop a robust control framework for smart actuators by combining inverse control

with the l1 control techniques [2]. The inversion error is modeled as an exogenous disturbance with a

magnitude bound quantifiable in terms of parameter uncertainties and inversion schemes. The design

requirements for the controller K̂(λ) can be roughly stated as: in the presence of the inversion error and

the uncertainties in Ĝa and Ĝ0, for all desired trajectories in a certain class, a) the closed-loop system
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is stable, b) the tracking error is minimized, and c) the output of K̂ does not exceed the saturation

limits. We take the saturation constraint (a common nonlinearity for actuators) into account in the

design of K̂ to ensure that the overall system operates in the linear region and thus predictions based

on the linear design are credible. The controller design method will be illustrated through the example

of robust trajectory tracking of a magnetostrictive actuator.

The remainder of the paper is organized as follows. In Section 2 we introduce the Preisach operator

and an identification scheme for the Preisach operator. In Section 3 we describe the model for a mag-

netostrictive actuator. We discuss quantification of bounds on inversion errors in Section 4. We then

formulate and solve the robust control problem in Section 5. Simulation and experimental results are

provided in Section 6. Finally we conclude in Section 7.

2 The Preisach Model

For a pair of thresholds (β, α) with β ≤ α, consider a simple hysteretic element γ̂β,α[·, ·], as illustrated in

Figure 2. For u ∈ C([0, T ]) and an initial configuration ζ ∈ {−1, 1}, the function v = γ̂β,α[u, ζ] : [0, T ] →
{−1, 1} is defined as follows [11]:

v(0)
�
=




−1 if u(0) ≤ β

ζ if β < u(0) < α

1 if u(0) ≥ α

,

and for t ∈ (0, T ], setting Xt
�
= {τ ∈ (0, t] : u(τ) = β or α},

v(t)
�
=




v(0) if Xt = ∅
−1 if Xt 	= ∅ and u(maxXt) = β

1 if Xt 	= ∅ and u(maxXt) = α

.

This operator is sometimes referred to as an elementary Preisach hysteron (we will call it a hysteron

in this paper), since it is a building block for the Preisach operator.

The Preisach operator is a weighted superposition of all possible hysterons. Define P0
�
= {(β, α) ∈

R
2 : β ≤ α}. P0 is called the Preisach plane, and each (β, α) ∈ P0 is identified with the hysteron γ̂β,α.

For u ∈ C([0, T ]) and a Borel measurable initial configuration ζ0 of all hysterons: ζ0 : P0 → {−1, 1}, the
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Figure 2: The elementary Preisach hysteron.

output of the Preisach operator Γ is defined as [11]:

y(t) = Γ[u, ζ0](t) =
∫
P0

γ̂β,α[u, ζ0(β, α)](t)dν(β, α), (1)

where ν is a finite, signed Borel measure on P0, called the Preisach measure.

We call the Preisach measure ν nonsingular if |ν| is absolutely continuous with respect to the two-

dimensional Lebesgue measure, and singular otherwise. By the Radon-Nikodym theorem [14], if ν is

nonsingular, there exists a Borel measurable function µ, such that

Γ[u, ζ0](t) =
∫ ∫

P0

µ(β, α)γ̂β,α[u, ζ0(β, α)](t)dβdα. (2)

The weighting function µ is often referred to as the Preisach function [10] or the density function [12].

To simplify the discussion, throughout the paper we assume that µ has a compact support, i.e.,

µ(β, α) = 0 if β < β0 or α > α0 for some β0, α0, and without loss of generality, we let α0 = −β0 =: r0 > 0.

Then it suffices to consider the finite triangular area P �
= {(β, α) ∈ R

2|α ≥ β, β ≥ −r0, α ≤ r0}.

At time t, P can be divided into two regions: P±(t)
�
= {(β, α) ∈ P| output of γ̂β,α at t is ± 1}. In

most cases of interest, each of P− and P+ is a connected set [10], and the output of Γ is determined by

the boundary between P− and P+ if the Preisach measure is nonsingular. The boundary is also called

the memory curve. The memory curve has a staircase structure and its intersection with the line α = β

gives the current input value. The memory curve ψ0 at t = 0 is called the initial memory curve and it

represents the initial condition of the Preisach operator.

If the Preisach measure is nonsingular, we can identify a configuration of hysterons ζψ with a memory

curve ψ in the following way: ζψ(β, α) = 1 (−1, resp.) if (β, α) is below (above, resp.) the graph of ψ.

Note that it does not matter whether ζψ takes 1 or −1 on the graph of ψ. In the sequel we will put the

initial memory curve ψ0 as the second argument of Γ, where Γ[·, ψ0]
�
= Γ[·, ζψ0 ].
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A constrained least squares scheme was proposed to identify the Preisach measure in [7]. In the

scheme, the input is discretized into L+ 1 levels for some L > 0 and that leads to a discretized Preisach

operator (Figure 3), i.e., a weighted sum of finitely many hysterons. What is identified in [7], is a

collection of weighting masses sitting at centers of cells in the discretization grid (see the dark dots in

Figure 3), which forms a singular Preisach measure. We can then obtain a nonsingular approximation

νp to the true Preisach measure ν by assuming each identified mass is distributed uniformly over the

corresponding cell. Note that the density µp corresponding to νp is piecewise uniform.

α

βu1 u2 u3 u4

u1

u2

u3

u4

Figure 3: Discretization of the Preisach plane (L = 3).

3 The Model for Magnetostrictive Actuators

Magnetostriction is the phenomenon of strong coupling between magnetic properties and mechanical

properties of some ferromagnetic materials (e.g., Terfenol-D). Figure 4 shows a sectional view of a

Terfenol-D actuator. By varying the current in the coil, we vary the magnetic field in the Terfenol-D

rod and thus control the displacement of the rod head.

Flux Path

Aluminum Housing

Terfenol - D rod

Coil

Coil

Preloaded Springs

Stainless Steel Push Rod

Threaded Preload Cap
with Bronze Bushing

Figure 4: Sectional view of a Terfenol-D actuator [15](Original source: Etrema Products, Inc.).

When the input frequency is low (typically below 5 Hz), the magnetostrictive hysteresis is rate-

independent: roughly speaking, the shape of the hysteresis loop is independent of the input frequency,
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and a model for the actuator is [7]:



H(t) = c0I(t)

M(t) = Γ[H(·), ψ0](t)

y(t) = cMM
2(t)

, (3)

where I is the input current, y is the displacement of the actuator head, M and H are the bulk magneti-

zation and the magnetic field (assumed uniform) along the rod direction, respectively, Γ is the Preisach

operator, and c0 and cM are positive constants.

When the input frequency gets high, the magnetostrictive hysteresis is rate-dependent. Venkatara-

man and Krishnaprasad proposed a bulk magnetostrictive hysteresis model for the thin rod actuator

based on energy balancing principles [16, 15]. The model has a cascaded structure as shown in Figure 5.

Note the resemblance of Figure 5 with Figure 1(a). W̄ takes care of the M - H hysteresis and the eddy

current losses, and the magnetoelastic dynamics of the rod is lumped into a second order linear system

G(s). G(s) has a state space representation [16, 15](after some manipulations):

ÿ(t) + 2ξω0ẏ(t) + ω2
0y(t) = ω2

0cMM
2(t), (4)

where ω0 and ξ are positive constants.

I M
W (  )2
_ M2 y

G(s)

W

Figure 5: Model structure of a magnetostrictive actuator.

By replacing the switching ODE model in [16, 15] with a Preisach operator Γ for theM - H hysteresis,

we have proposed a new dynamic model [17, 18] for the W̄ block:



Ḣ(t) + Ṁ(t) = c1(I(t) − H(t)
c0

)

M(t) = Γ[H(·), ψ0](t)
, (5)

where c1 is a positive constant.

Note if we set derivatives in (4) and (5) to zero, the dynamic model degenerates to the rate-

independent hysteresis model (3).

Remark 3.1 A variety of smart actuators have been modeled by essentially the Preisach operator alone

as (3), e.g., see [3, 9]. On the other hand, the rate-dependent model (4) and (5) captures important

6



dynamic effects in the frequency region of practical interest. We choose the magnetostrictive actuator as

the example, because this allows us to cover both the rate-independent case and the rate-dependent case.

4 Quantification of the Inversion Error

Recall Figure 1(b). There are two possible ways to model the inversion eu = ũ − u. The first one

is to model it as the output of some uncertainty block ∆, and the other one is to simply model it as

an exogenous disturbance v. For the Preisach operator-based models, eu is independent of u and it is

possible that eu 	= 0 for u = 0. Therefore there exists no stable ∆ such that eu = ∆u, and we will treat

eu = v as an external noise.

The inversion error for the Preisach operator is bounded in magnitude instead of in energy. Hence

a natural choice for the signal spaces is l∞ and not l2. Also it is more appropriate to use l∞ for the

desired trajectory and the tracking error. Another advantage of using l∞ for signals is that the actuator

saturation constraint can be easily handled in the corresponding l1 robust control theory, while it’s very

hard to be formulated in the H∞ control theory.

We now quantify the error bounds in inversion of the Preisach operator and the dynamic model

(5). Here we are concerned with eM = M̃ −M , where M̃ and M denote the trajectories of achieved

magnetization and desired magnetization, respectively. The bound on eu when the square nonlinearity

in Figure 5 is included can be easily derived from the bound on eM .

4.1 Inversion of the Preisach operator Γ

If the Preisach measure ν is given, and if it is nonnegative and nonsingular, an iterative inversion

algorithm is available and ‖ eM ‖≤ ε, where ε is the stopping criterion [17].

If ν is unknown, we can obtain a nonsingular approximation νp with a piecewise uniform density µp as

discussed in Section 2. The Preisach operator with measure νp can be inverted exactly (in finite number

of steps) [17]. Hence the inversion error eM is solely due to the measure error |ν − νp|. It turns out that

we can quantify the error bound in terms of the relative error of identification and the discretization

level L of the Preisach plane:
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Proposition 4.1 Let the true Preisach measure ν be nonnegative and nonsingular with density µ. Let

µ be bounded by a constant µ̄ > 0. Given a discretization of level L, denote the integral of µ over a cell

i as ν0
i , 1 ≤ i ≤ Nc, where Nc is the total number of cells. Denote by νi the identified mass for cell i.

Assume the relative error in identification is δI , i.e., |νi−ν0
i |

ν0
i

≤ δI , 1 ≤ i ≤ Nc. Then

‖ eM ‖∞≤ δIMs +
8µ̄r20
L

,

where Ms is the positive saturation corresponding to ν.

The proof is omitted due to space limitation and it can be found in [17].

4.2 Inversion of (5)

An inversion scheme was proposed for the model (5) [18]. But if there is uncertainty in the model

parameters, it is very hard to derive a bound for the inversion error. We now present another inversion

algorithm. Eq. (5) can be rewritten as:



Ḣ(t) = c1
1+g(t)(I(t) − H(t)

c0
)

M(t) = Γ[H(·), ψ0](t)
, (6)

where g(t) carries the interpretation of “dMdH ” at time t, and it depends on both the state ψt (the memory

curve at t) and the sign of Ḣ [17]. Under mild conditions, 0 ≤ g(t) ≤ C. We can view (6) as perturbed

from the following decoupled system:



Ḣ(t) = c1
1+ḡ (I(t) − H(t)

c0
)

M(t) = Γ[H(·), ψ0](t)
, (7)

where ḡ ∈ [0, C] is some constant. Based on (7), an approximate inversion scheme for (6) is given formally

by 


H(t) = Γ−1[M(·), ψ0](t)

I(t) = 1+ḡ
c1
Ḣ(t) + H(t)

c0

. (8)

In the discrete-time implementation, a delay is introduced in the inversion due to the dynamics.

Hence the inversion error is defined as eM [k]
�
= M̃ [k] −M [k − 1]. We can choose an explicit or implicit

Euler scheme in discretizing (5) and (8), and for either scheme, we can quantify the error bound in terms

of model parameters, see [17].
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Figure 6: Robust control of a magnetostrictive actuator.

Remark 4.1 The inversion algorithm (8) leads to an inversion error even if the exact parameters are

known. But the payoff is that, this scheme allows us to quantify the inversion error when parameter

errors are present.

5 Formulation of the Robust Control Problem

In this paper, we consider Ĝ0(λ) to be the identity operator, i.e., we are interested in trajectory tracking

of the actuator head itself. Figure 6 shows the closed-loop system after the inverse compensation is done,

where the exogenous noise v represents the inversion error. From the previous section, ‖ v ‖∞≤ v̄, and

v̄ is quantifiable in terms of inverse schemes and parametric uncertainties. The composition ∆ ◦ Ŵ0(λ)

represents the deviation of the actual plant from the nominal plant Ĝa(λ). We assume that ∆ can be

any nonlinear operator with ‖ ∆ ‖l∞−ind< 1. Ŵ0(λ) is a weighting function and it reflects that the

model uncertainty is larger at a higher frequency.

Let ‖ yref ‖∞≤ r̄, where yref is the reference trajectory. The error ey
�
= yref − y is fed into the

controller K̂(λ). The delay λ following K̂(λ) is due to inversion of the dynamic hysteresis model. Let

the saturation limits of the actuator be −ū and ū respectively. Then the saturation constraint translates

into ‖ u0 ‖∞≤ 1, where u0 is as defined in Figure 6. The case umin 	= −umax can be handled by defining

ū = umax−umin
2 and ub = umax+umin

2 , where ub is a bias input to be injected into the system [17].

There are two delays in the loop since Ĝa(λ) contains a pure delay. This motivates us to define the

tracking error e0 as

e0[k] =
yref [k − 2] − y[k]

γ
, (9)
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Ĝ

∆

u

{ } zw (   )λ

(   )λK
^

v1 n1

ey

∆ P

Ĝ
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Figure 7: Formulation of the robust control problem.

where γ > 0 is the desired disturbance attenuation level. To ease the formulation, we normalize signals

v and yref , and regard v0 and r0 as inputs to the system with ‖ v0 ‖∞≤ 1, ‖ r0 ‖∞≤ 1 (Figure 6).

The transfer function Ĝ(λ) from (v1, v0, r0, u)T to (n1, e0, u0, ey)T can be easily written down. In

terms of Ĝ, the closed-loop system in Figure 6 can be simplified as in Figure 7 (a).

The control objective is: find the smallest γ and a stabilizing controller K̂(λ), such that

1. the closed-loop system is stable for any ∆ with ‖ ∆ ‖l∞−ind< 1,

2. ‖ e0 ‖∞≤ 1 if ∆ = 0, ∀v0, r0 with ‖ v0 ‖∞≤ 1 and ‖ r0 ‖∞≤ 1, and

3. ‖ u0 ‖∞≤ 1 if ∆ = 0, ∀v0, r0 with ‖ v0 ‖∞≤ 1 and ‖ r0 ‖∞≤ 1.

If we define the exogenous input w and the regulated output z as

w
�
=


 v0

r0


 , z

�
=


 e0

u0


 ,

then items 2 and 3 above are equivalent to ‖ Φzw ‖1≤ 1,, where Φzw denotes the transfer function from

w to z, and ‖ · ‖1 denotes the l1 norm of a LTI system [2]. By the small gain theorem, (5) is equivalent

to requiring robust stability of the system when we wrap a nonlinear uncertainty block ∆P from z to w

with ‖ ∆P ‖l∞−ind< 1, as shown in Figure 7 (b).

Now the control problem can be reformulated as: find the smallest γ and a stabilizing controller

K̂(λ), such that the closed-loop system in Figure 7 (b) is robustly stable for all ∆̃ ∈ ∆̃, where ∆̃
�
=

{∆̃ = diag(∆,∆P ) : ∆ is nonlinear and of dimension 1 × 1, ∆P is nonlinear and of dimension 2 × 2,

‖ ∆̃ ‖l∞−ind< 1}.
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To solve the robust control problem, we need determine, for a fixed γ > 0, whether we can find a

stabilizing K̂(λ), such that the closed-loop system is stable for all ∆̃ ∈ ∆̃. This will be called the robust

control problem with disturbance attenuation level γ, and it is solvable if and only if

inf
stabilizing K̂

inf
D∈D

‖ D−1Fl(Ĝ, K̂)D ‖1≤ 1, (10)

where D
�
= {D = diag(d1, d2, d2) : d1, d2 > 0}, and Fl(·, ·) denotes the lower Linear Fractional Transfor-

mation [2]. How to solve (10) can be found in [2] and is omitted here.

6 Simulation and Experimental Results

6.1 Effects of design parameters on γ∗

We first present computation results on how the optimal attenuation level γ∗ is affected by the design

parameters. Corresponding to the sampling frequency 2000 Hz, Ĝa(λ) = 2.23×10−11λ2+4.28×10−11λ
0.147λ2−0.549λ+1 , and

Ŵ0(λ) = 1.1759cw(λ−1.0005)
λ−1.1765 , where cw > 0 determines the magnitude of the uncertainty. We let r̄ = 30.

Figure 8 shows how γ∗ is affected by the saturation constraint ū. We have used cw = 6.53 × 10−13

and v̄ = 0.1M2
s , where Ms is the saturation magnetization. Since the range of u for the magnetostrictive

actuator is [0,M2
s ], expressing v̄ and ū in terms of M2

s allows one to make more concrete sense out of

these numbers. From Figure 8, γ∗ drops when ū increases, but γ∗ becomes a constant when ū hits

4.5M2
s , beyond which the saturation constraint no longer plays a role. Effects of cw and v̄ on γ∗ have

also been studied, and we find that γ∗ drops as cw or v̄ does so [17].
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6.2 Results of trajectory tracking

As we have seen from Figure 8, the tracking performance deteriorates as the saturation constraint ū is

tightened. For the magnetostrictive actuator, ū = 0.5M2
s and strictly enforcing this constraint will lead

to large tracking errors. This reveals the limitation of pure linear design for an intrinsically nonlinear

plant. Hence a practical approach would be properly relaxing the constraint.

Figure 9(a) shows the simulation result of tracking a sinusoidal signal. The current I applied is also

displayed. The controller K̂(λ) is designed based on cw = 3.3 × 10−13, v̄ = 0.1M2
s , and ū = 3.25M2

s .

Figure 10 shows the output of K̂(λ), and we see that although we set ū = 3.25M2
s in the controller

design, the control stays in the (true) unsaturated region [−0.5M2
s , 0.5M2

s ] except during the transient

period at the beginning.
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Figure 9: (a) Simulation result of trajectory tracking; (b) Experimental result of trajectory tracking.

Our composite controller (the linear robust controller plus the inverse algorithm) is compuation
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Figure 10: The control output u0.
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efficient and we can implement it in real-time. Figures 9(b) shows the experimental result of trajectory

tracking based on the same controller used in the simulation. It matches well with the simulation

result and the overall performance is satisfactory. We have also performed simulation and experiment

of tracking an irregular signal, and the results are similar to those in Figures 9(a) and 9(b) [17].

The saturation limit ū can not be “over-relaxed”. For example, we design another controller based on

r̄ = 25, cw = 3.3×10−13, v̄ = 0.05M2
s , and ū = 5M2

s . The simulation result (Figures 11(a)) based on this

new controller is better than that in Figure 9(a). But when we put the controller into the experiment,

the tracking performance suffers from the persistant saturation (Figure 11(b)).
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Figure 11: Results based on an “over-relaxed” controller. (a) Simulation result of trajectory tracking;

(b) Experimental result of trajectory tracking.

7 Conclusions

In this paper, we have presented a robust control framework for smart actuators by combining the

inverse compensation with the linear robust control theory. We studied inversion schemes for the Preisach

operator-based hysteretic models and modeled the inversion error as an exogenous noise whose magnitude

bound is quantifiable. Robust control techniques were then employed to attenuate the impact of the

inversion error as well as ensure stability in the presence of uncertainty. The saturation constraint was

also incorporated into the controller design. Simulation and experimental results have demonstrated the

13



effectiveness of the approach.
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