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Abstract 

A physical control problem is studied with the p method- 
ology. The issues of modelling, uncertainty modelling, 
performance specification, controller design and labo- 
ratory implementation are discussed. The laboratory 
experiment is a double inverted pendulum placed on a 
cart. The limitations in the system with respect to per- 
formance are the limitation in the control signal and the 
limitation of the movement of the cart. It is shown how 
these performance limitation will effect the design of p 
controller for the system. 

1 Introduction 

The pendulum system is one of the classical examples 
used in connection with feedback control. The single 
inverted pendulum is a standard example in many text 
books dealing with classical as well as modern control. 
The reason is that the system is quite simple, non-linear 
and unstable. In connection with the classical control, 
the single inverted pendulum system has among other 
thing been used to show that the system cannot be stabi- 
lized by using just a P controller. In spite of that the sys- 
tem is unstable, the design of stabilizing controllers for 
the system can be done reasonable easy. However, this 
is not the case when considering the quite more compli- 
cated double inverted pendulum system. It is quite more 
complicated to desigdtune stabilizing controllers for the 
system. Therefore, more advanced controller architec- 
tures and advanced design methods can be applied with 
advantage. This involved different types of model based 
controllers designed by using e.g. 312 based methods, 
31, based methods and p based methods. 

The main problem in the design of stabilizing controllers 
for the double inverted pendulum system is the trade-off 
between robust stability and performance. This trade- 
off is quite limited, there is not much space for reduc- 
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tion of the robustness to increase the performance of the 
system. The reason is the nonlinearities in the system 
together with the limitations/saturations in the system. 
The limitations in the system are e.g. maximal power to 
the motor (maximal acceleration of the cart), maximal 
length of the track for mention the two most important 
limitations. In spite of this limited trade-off between ro- 
bustness and performance of the system, it is possible to 
design controllers that can handle this trade-off in a sys- 
tematic way. Design methods as e.g. 312 based methods, 
31, based methods and p based methods can be applied 
for handling this trade-off in a systematic way. 

This paper describe a complete design procedure for the 
design of advanced stabilizing controllers for the double 
inverted pendulum system together with an implemen- 
tation of the controllers on a laboratory system. This 
lead to the following items that will be considered in the 
following: System modelling, system analysis, design 
problem formulation, uncertainty modelling, controller 
design, analysis of the closed loop system, implementa- 
tion of controllers on a microcontroller, validation of the 
closed loop system on the laboratory system. 

Due to the space limitation, the first three items will only 
be considered shortly. A more detailed description of 
these parts can be found in [3]. 

2 Model of a Double Inverted Pendulum 

In the following, a short description of the double in- 
verted pendulum system is given. Both the nominal as 
well as a real laboratory model are considered. A more 
detailed description can be found in [3]. The construc- 
tion of the pendulum system is described in [ 11. 

2.1 Description of the System 
The double inverted pendulum consist of a cart placed 
on a track, and two aluminium arms connected to each 
other. These are constrained to rotate within a single 
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plane. The axis of the rotation is perpendicular to the 
direction of the motion of the cart. The cart is attached to 
the bottom of the pendulum, and moving along a linear 
low friction track. The cart is moved by an exerting force 
by a servo motor system. A principal structure of the 
pendulum system is shown in Figure 1, where the forces 
acting on the system has been included. 

Figure 1: Principal diagram of the double inverted pendulum 
system. 

Some data for the complete system are as follows: 
mass of cart, m = 0.81kg, length of track, 2t = 1.34m, 
mass of lower arm, ml = 0.548kg, length of lower arm, 
11 = 0.535m, length of lower arm from bottom to center 
of mass, 21cm = 0.355m, inertia of lower arm around the 
lower joint, 11 = 2.678e-2kgm2, mass of upper arm, 
m2 = 0.21kg, length of upper arm, 22 = 0.512m, length 
of upper arm from bottom to center of mass, 22cm = 
0.12m, inertia of upper arm around the lower joint, 1 2  = 
5.217eP3kgm2. 

A nonlinear model for the complete system can be de- 
rived by using Newtons 2. low and 3. low on every 
part of the system. A detailed description of the nonlin- 
ear model can be found in [3]. Based on this nonlinear 
model, a linear model can be derived by a linearization of 
the nonlinear model around the working point. The lin- 
ear model CG for the complete system can be described 
by the following state space description 

& : {  x = Ax + B,w + Buu 
y = C,x + DYww + Dyuu 

(2.1) 
where x is the state, w is the exogenous inputs, U is the 
control input and y is the measurement output. The lin- 
ear model is of order 7 with the following states: 

2 = [Si 61 62 62  X, i, i]' (2.2) 

where 61 is the angle between vertical and the lower arm, 
81 is the angular velocity related to 81, 82 is the angle 
between vertical and the upper arm, 82 is the angular 
velocity related to 8 2 ,  2, is the cart position, x, is the 
velocity of the cart and i is the motor current. 
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The exogenous input vector are given by 

w = [rc ~d~ ~d~ 121 723 ~d~ n,]' (2.3) 

where rc is the cart position reference, Mdl and Md2 
are the torque disturbance on the joint on the lower arm 
and on the upper arm, respectively, n1 and 723 are noise 
signal in measuring 61 and 6 3  = 61 - 82, respectively, 
M d m  is the torque disturbance on the motor, and n2 is 
the noise signal in the measuring of the cart position x,. 

The measurement vector y is given by 

where e,  is the cart position error r ,  - 2,. 

The pendulum system is an unstable system with the fol- 
lowing open loop poles: 

poles = (0, -251, -7441, -6.4, 6.4, -4.1, 4.1) 

2.2 Formulation of Nominal Design Problem 
Based on the system setup in Section 2.1, we can now 
formulate the following main conditions to the pendulum 
system. 

e The cart position have to be close to a given ref- 
erence signal r,, with limit cycles as small as pos- 
sible. This means that the goal is to minimize 
e, = rc - x. 

The lower arm have to be as close as possible to 
vertical, while still allowing the cart to move. This 
means that the angle 81 are to be minimized. 

0 The upper arm are to be as close to vertical as 
possible. Meaning that the angle 6 2  are mini- 
mized, which in terms of system outputs means 
that 81 - 63 are minimized. 

This type of control problem is often referred to as a 
tracking problem, as in [4]. When designing a controller 
the performance and the bandwidth available have a ma- 
jor influent, and therefore it is important to include the 
controller signal U as an exogenous output. Selecting 
the signal U as an output gives the possibility to limit the 
bandwidth and magnitude of the designed controllers. 

Since the motor system is an isolated closed loop system 
it is not easy to influence its dynamics with the higher 
level controller. The only way to give the controller ac- 
cess to the motor system dynamics, is to select one of its 
signals as an exogenous output. A good reason to select 
the current i as the output is that it is proportional to the 
generated motor torque. 
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The exogenous output vector is selected as 

z =  [ e, el e2 U i I' (2.5) 

When the exogenous outputs are included in the state 
space setup the nominal system C p  are defined by 

X = A ~ + B l w + B z u  
z = C I X + D ~ I W + D I ~ U  (2.6) 
2) = C2X+D2lW+D22U 

E.:{ 

where the exogenous input w is define in Section 2.1. 

2.3 Model Uncertainties 
The model of the real system include a number of un- 
certainties. These uncertainties can be split up into two 
groups: 

0 parameter uncertainty 

0 neglected linear, nonlinear and unmodelled dy- 
namics uncertainty 

It is easy to identify a number of uncertain parameters. 
The parameter uncertainties can be caused by parame- 
ters are difficult or impossible to get a precise measure 
of or that the parameters tent to vary as function of time, 
temperature etc. For this pendulum system, the main un- 
certain parameters are the Coulomb friction constants. 

With respect to neglected dynamics, the pendulum sys- 
tem does have unmodelled dynamics like bearings, 
track inclination, all kinds of high frequency dynam- 
ics etc. Further, the system include also nonlinear ele- 
mentddynamic. The nonlinear dynamic appear from the 
special the sine and cosine functions in the nonlinear 
model. However, the system will only work with small 
angles, which will reduce the nonlinear effect from the 
sine and cosine functions. 

From simulations, it was found that the system is espe- 
cially sensitive to offsets on the angular measurements 
and in general any kind of disturbance on the measure- 
ments. Since it is not possible to make an uncertainty 
model of offsets, because of its nonlinear nature, it has 
been modelled as a general uncertainty. This implies that 
it will be reasonable to model the uncertainty as multi- 
plicative output uncertainty. Thereby trying to model all 
the uncertainty that influence the measured angles with 
a simple model; this is called lumping uncertainty. The 
multiplicative output uncertainty is described by 

G, = ( I  + WoAo)G (2.7) 

where the perturbation matrix A, is given as either struc- 
tured or unstructured and satisfies llAolloo 5 1 as in [4] 
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and where WO is a weight that indicate a percentage of 
error as function of frequency. A unstructured pertur- 
bation matrix is a matrix with complex numbers in all 
elements. Where as a structured perturbation matrix is 
a block diagonal matrix with either complex or real ele- 
ments. Due to the fact that all uncertainties are lumped 
into a single block, it will not give any meaning to con- 
sider specific parameter uncertainties, neglected dynam- 
ics etc. 

3 Controller Design 

Controllers has been designed by using the p synthesis. 
The setup for the designs are based on the nominal setup 
described in Section 2.2 and the uncertain description 
for the system given in Section 2.3. Combining the the 
nominal design setup with the uncertain model descrip- 
tion gives the complete design setup shown in Figure 
2, where Wp is the weight matrix for the performance 
specification and WO is the weight matrix for the multi- 
plicative output uncertainty. 

Figure 2: The complete system setup for design of robust 
feedback controllers 

Note that only weights at the outputs are applied in con- 
nection with the performance specifications (i.e. weight 
at the output z )  are included in Figure 2. However, 
weights at the external input w can be included without 
any problem if needed. 

The two weight matrices are given as diagonal matrices, 
i.e. 

The weight matrices for the p controller design has been 
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selected as follows: 

The controller design based on the weight selection 
given above result a p controller of order 19 (after 4 it- 
erations). 

Note that constant weights has been applied for the mul- 
tiplicative uncertainty in the system. 

4 Controller Analysis 

The p controller has been designed by using the DK- 
iteration, [5 ] .  The weights for the p design is so the per- 
formance of the closed loop system is optimized. The p 
value for the four iterations in the DK-iteration is shown 
in Figure 3. It is shown clearly in Figure 3, that the p 
value is reduced from the first iteration to the last itera- 
tion with a final value of p below 1. 

Figure 3: The p - values for the four steps in the DK-iteration. 

The four transfer functions between the uncertainty 
model input signal U A  and the uncertainty model out- 
put signal PA when the p controller is applied are shown 
in Figure 4. 

A simulation of the closed loop system is shown in Fig- 
ure 5. From Figure 5, it can be seen that the cart posi- 
tion reference tracking is slow. It does not settle around 
x = 0 within the 5 sec. of the simulation. The system 
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Figure 4: Transfer functions for the angles between the un- 
certainty model input signal U A  and the uncertainty 
model output signal PA when the p controller is ap- 
plied. 

is also very sensitive to the angles, showing large over- 
shots but very fast settling time. The limit cycles are very 
small. 

E::&; , ~ ,  , 

0 0 5  1 1 5  2 2 5  3 85  4 4 5  5 
lmelsec] 

-01 

0 0 5  1 1 s  2 25 3 3 5  4 4 5  5 
llmS [sec] 

Figure 5: Simulation of the nonlinear system with the p con- 
troller. The initial conditions are: & = 0.05~ad 
and 8 2  = -0.04rad, similar to what would hap- 
pen for the lab. model. 

A simulation of the initial angles from which the p con- 
troller stabilize the system has been derived. The result 
is shown in Figure 6.  

It turns out that the final ,U controller is of order 19. 
Therefore, a model reduction is needed to reduce the 
order of the controller. The reduction of the controller 
is derived by using the optimal Hankel norm approxi- 
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Figure 6: Simulation of the initial angles from which the p 
controller can stabilize the system. The contour 
formed by the dots, shows the area from where the 
closed loop system can be started in order to be sta- 
bilized. 

mation, see e.g. [4]. The result of the reduction of the 
controller order is shown in Figure 7. A reduction of the 
controller order to order 6 or 7 does not have any seri- 
ous effect on the performance of the system. A 7th order 
controller is implemented on the laboratory model. 

5 Laboratory Experiments 

The 1.1 controller has been implemented as discrete-time 
controllers on a microcontroller. The microcontroller 
used here is a Motorola 68040 computer running with 
the real time operating system OS9. The microcontroller 
have an interface card with multiple 12 bit ADDA con- 
verters. The converters have a range of f5V.  Maximal 
sampling rate f, = 500Ht or a sampling period of 
T, = 2msec. 

The controller is implemented in Simulink. The AD 
inputs and the DA outputs are implemented in the 
Simulink library and can easily be used any other inputs 
and outputs. Using the Real-Time Workshop (RTW) 
Toolbox, the Simulink model is the compiled in to OS9 
executable code. 

The continuous-time controller is transformed into an 
equivalent discrete-time controller by using the bilinear 
Tustin transformation given by: 

0 " " '  

lo-= 10-9 1 00 1 0' 1 02 
1 M  Ireq":g~dNaacl . . . .  . . . . I  . . . .  . . . . I  . . . .  ..,.I . . . .  . . . . I  . . . .  

10-1 10-1 loo K(UO 1 
IW"E."C . . . . . . . .  , . . . . . . . .  , . 

Figure 7: Controller transfer functions for the full order con- 
troller and the two reduced controllers. 

The fastest sampling period has been selected, i.e. T, = 
Smsec. 

The result of the laboratory experiments are shown in 
Figure 8 for the four different controllers. Note that in 
all four cases, the system is started up with very small 
angles, i.e. el M 0 and e2 M 0. 
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Figure 8: Sampled data from laboratory model, running with 
the 1-1 controller. 

The p controlled system has a quite good performance, 
see Figure 8, and the robustness of the closed-loop sys- 
tem is also reasonable, see e.g. Figure 6. The tracking 
of the cart position is quite slow for the p controlled sys- 
tem. 
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6 Conclusion 

A complete design and implementation of controllers for 
an unstable system has been described in this paper. A 
linear model of a double inverted pendulum system to- 
gether with a description of the model uncertainties has 
been derived. A complete nonlinear model has been im- 
plemented in Simulink for use in connection with sim- 
ulation of the system. A controller has been designed 
using the p synthesis method. In [2, 31, three different 
controllers has also been designed by using the Xm and 
compared with the p controller. 

For simplifying the controller design, a graphical user 
interface (PCDT) has been derived in MATLAB. This 
PCDT interface handle the selection of the weights for 
the controller design, the controller design, simulation 
and animation of the system and finally, dump the con- 
troller data to the workspace for laboratory experiments. 
Finally, the designed controllers has been implemented 
on a micro controller for laboratory experiments. 

The four designed controllers has been validated both by 
simulation and calculation of various transfer functions 
as well as by laboratory experiments. In both the simu- 
lation as well as in the laboratory experiments, the trade- 
off between performance of the closed-loop system and 
robustness is shown clearly. However, the trade-off be- 
tween performance and robustness for this system is very 
limited. The unstable double inverted pendulum system 
need to be stabilized with a certain stability margin, else 
it is impossible to start the laboratory system up. This 
leaves only a minor freedom for the trade-off between 
performance and robustness. 

An extended version of this paper can be found in [2] 
with a complete description of the four designed con- 
trollers. 
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