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Abstract—This paper shows how we can apply z-transform 

theory to analyze the convergence of a terminal ILC 
algorithm. This approach uses an equivalent system viewed in 
the cycle domain and analyzes it with a z-transform. Then, 
conventional discrete time control is applied to the equivalent 
system. This control is viewed by the real system as a cycle-to-
cycle control. Therefore, the stability analysis of the controlled 
equivalent system corresponds to convergence analysis used in 
ILC. Furthermore, a “dead beat” convergence is feasible and 
corresponds to the fastest convergence rate of the ILC 
algorithm. 

I. INTRODUCTION 
HE idea of iterative learning control (ILC) is to use 

the knowledge of previous output error measurement to 
update the input so as to reduce the error. Many papers 
have been written about ILC; see the survey paper by 
Moore [1]. The terminal ILC control (also called point-to-
point ILC) is an approach whose goal is to reduce the error 
at the end of the cycle. In rapid thermal processing, 
terminal ILC helps to reduce thickness error [2-6]. In our 
project we want to apply terminal ILC to the reheat phase 
of the thermoforming process. To know more about 
thermoforming, refer to [7]. 

In most works [2-5] the behavior of the terminal ILC is 
analyzed via a classic convergence analysis, in the sense of 
the evolution of the norm of the error. 

In this paper, we will use a new approach based on an 
equivalent system built in the cycle domain, from the 
system in the time domain. A closed-loop analysis is done 
in the z-domain with a controller connected to the 
equivalent system. This control appears for the system in 
the time domain as a cycle-to-cycle control. The stability 
analysis done on the closed-loop equivalent system 
corresponds to a convergence analysis done with the 
corresponding cycle-to-cycle control. 

In Section II, we define the system analyzed with our 

approach. Section III considers terminal ILC control for the 
SISO version of the system defined in Section II. Section 
IV does the same for the MIMO case. Section V gives 
simulation results obtained with terminal ILC designed 
using the analysis done in Sections III and IV. Finally, 
Section V concludes and suggests some directions for 
future work with this approach. 
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II. DEFINING SYSTEM TO CONTROL WITH TERMINAL ILC 
 
In this paper, we apply terminal ILC control to a linear 

discretized system represented by: 
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where { }0, , 2 , ,t h h N∈ h , h is the sampling period, N+1 
is the number of samples per cycle, and the subscript 
k +∈  is the cycle number. Matrices A, B, and C are time 

invariant. The state vector is , the input vector is 

, and the output vector is 

( ) n
kx t ∈

( ) m
ku t ∈ ( ) p

ky t ∈ . Here, we 
assume that the number of inputs is the same as the number 
of outputs, so p m= . 

 
The control task is to update the control input  after 

cycle k-1 such that the terminal output  converges 

to a given terminal value  at time . From linear 
system theory, one can write the solution of (1) at t
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From this terminal state we calculate the corresponding 

terminal output as: 
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For the particular case of a thermoforming process, we 

keep the control input (heater temperature setpoint) 
constant during a cycle. So in this case, we can define 
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, ∀ ∈  and rewrite (3) as: 

 , (4) 0( ) ( ) ( )Ty k x k u k= Γ + Ψ
 

where ,  and the constant 
matrices  and  are defined as: 

( ) ( )T ky k y Nh= 0 ( ) (0)kx k x=
Γ Ψ
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The change in notation is to emphasize the fact that for 

the cycle-to-cycle control cycle k, can be looked at as a 
discrete step so that the system (4) is equivalent to discrete 
time system. Then, we will apply in cycle control on the 
terminal output (4) that will appear like cycle-to-cycle 
control to the system (1). 

 
The following assumptions are made for this paper: 

A1) Repetition of the initial state is satisfied. Then 
0(0) ( )kx x k=  must be at the same value for all cycles. 

A2)  There exists a unique input  such that the 
system exhibits the output . This forces the 
matrix  to be of full rank.  Hence, the system must be 
completely observable and controllable. 

( ) ( )ku t u k=

( ) ( )T ky k y Nh=
Ψ

III. ILC CONTROL OF AN SISO SYSTEM 
The terminal output (4) can be controlled by any in cycle 

control.  In this section, we assume that the corresponding 
system (1) is SISO. We analyze this SISO system 
controlled by proportional cycle-to-cycle control and by 
integral cycle-to-cycle control. 

A. Proportional cycle-to-cycle control of an SISO system 
The proportional cycle-to-cycle controller for (1) is 

defined as: 
 , (7) (( ) ( 1) ( 1)p p d Tu k k e k k y y k= − = − − )

)

 
where  is the proportional gain of the controller.   0pk >

 
We can use z-transform theory to analyze the behavior 

of the controlled system. Then, the z-transform of (4) can 
be written as: 
  (8) ( )0ˆ ˆ ˆ( ) ( )Ty z u z x z= Ψ + Γ

 
and the z-transform of (7) is: 
  (9) (1ˆ ˆ ˆ( ) ( ) ( )p d Tu z z k y z y z−= −

 
where  and ˆ ˆ ˆ( ), ( ), ( )T du z y z y z 0ˆ ( )x z  are the z-transforms of 

and ( ), ( ), ( )T du k y k y k 0 ( )x k , respectively. 

 
The closed-loop transfer function is obtained next: 

 ( )1
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Rearranging the terms in (10), one can write: 
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Proposition 1: Assume a constant initial state vector 

0 ( )x k χ=  and let the desired terminal value be dy γ= . 
With the constraint that , the proportional cycle-to-
cycle control will converge to a terminal value of: 

0pk >
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as k  iff: → ∞
 0 1pk< < Ψ . (13) 

 
Proof: The z-transform of 0 0( )x k χ=  and dy γ=  are: 

 ( )1
0 0ˆ ( ) 1x z χ −= − z

)

, (14) 

and: 
 ( 1ˆ ( ) 1dy z zγ −= − . (15) 

 
By applying the final value theorem, one can write: 
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The stability of the closed-loop system (corresponding to 

the convergence of the cycle-to-cycle control as given in 
(12)) depends on the root of the characteristic equation: 
 0pz k+ Ψ = . (17) 

 
From z-transform theory, we know that the closed-loop 

system is stable iff the root 1 : Pz = −Ψk  is strictly inside the 

unit circle. Since , we find that for 0pk > 1 1z < , we must 

have 0 1pk< < Ψ . 
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B. Integral cycle-to-cycle control of an SISO system 
Suppose we try to control the terminal output (4) with an 

integral control law expressed in the z-domain as: 

 (
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where  is the integral gain of the controller.   0Ik >

 



 
 

 

If we express this control law in the cycle domain, we 
can write it as: 

  (19) 
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One can see in (19), the usual ILC control law, named 

“integral type ILC” (I-ILC). On some papers about terminal 
ILC [2-5], a convergence analysis is performed. Here, we 
analyze the stability in the z-domain. The two analyses are 
equivalent (when we consider ILC control of order one in 
[2-5]), therefore stability in the z-domain implies 
convergence of the terminal I-ILC algorithm. 

 
Combining (8) and (18), we can get the closed-loop 

transfer function: 
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Rearranging all the terms, we have: 
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Proposition 2: Assume a constant initial state vector 

0 ( )x k 0χ=  and the desired terminal value dy γ= . The 
terminal I-ILC control will converge to the desired terminal 
value: 
 ( )Ty γ∞ =  (22) 
as  iff: k → ∞
 0 2Ik< < Ψ . (23) 

 
Proof: With the z-transform of 0 0( )x k χ=  and dy γ=  
defined in (14) and (15) and by applying the final value 
theorem, we can write: 
 ( )1

1
ˆ( ) lim ( ) lim 1 ( )T T Tk z

y y k z y z γ−

→∞ →
⎡∞ = = − =⎣ ⎤⎦ . (24) 

 
Again, the stability of the closed-loop system depends on 

the root of this characteristic equation: 
 . (25) ( )1 0Iz k+ Ψ − =

 
Then, the closed-loop root 1 : 1 Iz = − Ψk  must be strictly 
inside the unit circle to ensure stability (convergence). So 
to have 1 1 Iz k= − Ψ < 1 , the gain Ik  must satisfy 

0 2Ik< < Ψ . 
� 

 
As one can see, we have convergence of the terminal 

output to the desired one if the integral gain is selected 
properly. 

 
When the gain is set to 1Ik = Ψ , we have the root of the 

characteristic equation equal to 0. This is known as the 
“dead beat response” in discrete time control. For that 
particular gain, the convergence of the terminal I-ILC 
algorithm is obtained in only one cycle. That is the fastest 
rate of convergence that the I-ILC algorithm can achieve. 
 
Proposition 3: Assume a constant initial state vector 

0 ( )x k 0χ=  and the desired terminal value dy γ= . Assume 
also a gain 1Ik = Ψ . The terminal I-ILC control will 
converge to the desired terminal value in one cycle. 

 
Proof: With the selected gain we can rewrite (21) as: 
  (26) ( )1 1

0ˆ ˆ ˆ( ) ( ) 1 ( )T dy z z y z z x z− −= + − Γ

 
Using the inverse z-transform, we can write: 

 ( 0 0( ) ( 1) ( ) ( 1)T dy k y k x k x k )= − + Γ − −  (27) 
 
So at the second cycle, we have directly the desired 

terminal output as (1) (0)T dy y γ= =  and we stay on it for 
all subsequent cycle. 
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In practice, the knowledge of  is approximate and 

then, using an ILC algorithm is useful. Therefore, it is 
difficult to obtain the dead beat response. If knowledge of 

Ψ

Ψ  is perfect (and for a known constant initial state vector 
0 ( ) 0x k χ= ), one can calculate directly the input without 

using ILC, so it becomes useless. 

IV. EXTENSION TO MIMO SYSTEMS 
In the previous section, we analyzed the closed-loop 

behavior of (4) using proportional and integral control. 
Since the integral control was shown as the more effective 
approach in the SISO case, we will use only this control 
approach on MIMO systems. Here, we assume that the 
number of inputs is equal to the number of outputs. 

  
The integral control law for MIMO systems can be 

defined as: 
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where I ILCK −  is a positive definite diagonal matrix and: 
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From (8) and (28), one can write this MIMO closed-loop 

equation: 

 ( )
1

01
ˆ ˆ ˆ( ) ( ) ( ) ( )

1T I ILC d T
zy z K y z y z x z

z

−

−−= Ψ − + Γ
−

ˆ

) .

 (30) 

 
which we can simplify to: 
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Proposition 4: Assume a constant initial state vector 

0 ( )x k 0χ=  and the desired terminal output vector dy γ= . 
The MIMO terminal I-ILC control will converge to a 
terminal value of: 
 ( )Ty γ∞ =  (32) 

as  if all roots of  are 

such that: 

k → ∞ ( )det 0I ILCIz K I−+ Ψ − =⎡ ⎤⎣ ⎦

 [ ]1, 1, ,jz j< ∀ ∈ m  (33) 

 
Proof: Following the proof of Proposition 2, by applying 
the final value theorem, we can write: 
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Now, the stability of the closed-loop system depends on 

the root of the characteristic equation obtained by 
calculating: 
  (35) ( )det 0I ILCIz K I−+ Ψ − =⎡⎣

 
Because we assume that the number of inputs equals the 

number of outputs, the order of the characteristic equation 
will be equal to the number of inputs and outputs. For 
stability (convergence), the roots  must lie 

strictly inside the unit circle, then 
1 2, , , mz z z

[ ]1, 1, ,jz j< ∀ ∈ m

)

}

. 
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Case 1: Ψ  diagonal. That implies the complete 

decoupling of each input/output dynamic. In that case, we 
have:  

  (36) ( ) ( )(
1

det 1 0
m

I ILC jj Ij
j

Iz K I z k−
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+ Ψ − = + Ψ − =⎡ ⎤⎣ ⎦ ∏
 

where  are the elements of the diagonal of {, 1, ,Ijk j m∀ ∈

I ILCK − .  Then finally each gain kIj must be such that: 
 0 2Ijk< < Ψ jj  (37) 

to ensure stability (convergence). 
 
Case 2: Ψ  triangular. In that case, we have the same 

result as case 1, since the determinant of a diagonal matrix 
is the product of all element of the diagonal. So we can find 
the gains using (37). 

 
Case 3:  Ψ  is neither diagonal nor triangular. In that 

case no simplification can be made and we must calculate 
the roots of: 
 ( )det 0I ILCIz K I−+ Ψ − =⎡⎣ ⎤⎦  (38) 

 
From (38) we can find gains that ensure that all 

[ ]1, 1, ,jz j< ∀ ∈ m . 

 
Another way to state the roots condition of (35) is to say 

that the eigenvalues of I ILCK −Ψ  are strictly inside a unit 
circle centered at (1,0). And that is equivalent to say that: 
 1I ILCK I−Ψ − <  (39) 
 

This kind of norm inequality appears in the ILC 
literature [1-5]. 
 

The “dead beat” convergence for MIMO systems is 
equivalent to the “dead beat” convergence in the SISO case 
if the Ψ  matrix is diagonal when the gain matrix I ILCK −  is 
also diagonal. For the case of non-diagonal Ψ  matrix, 
“dead beat” convergence is not achievable with a diagonal 
gain matrix I ILCK − . 

 
A variant of terminal I-ILC control can be defined by 

relaxing the diagonal positive definite constraint on I ILCK − .  
And then, a good choice for the matrix gain is 

1
I ILCK −

− = Ψ . With this choice of matrix gain we can 
achieve “dead beat” control and have the MIMO system 
converge in only one cycle. 
 
Proposition 5: Assume a constant initial state vector 

0 ( )x k 0χ=  and the desired terminal output vector dy γ= . 

Assume also we have defined . The MIMO 
terminal I-ILC control will converge to the desired terminal 
value in only one cycle. 

1
I ILCK −

− = Ψ

 
Proof: Using an approach similar to the proof of 
proposition 3, we can rewrite (31) as: 
  (40) ( )1 1

0ˆ ˆ ˆ( ) ( ) 1 ( )T dy z z y z z x z− −= + − Γ

 
since 1

I ILCK −
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Using the inverse z-transform, one can write: 
 ( )0 0( ) ( 1) ( ) ( 1)T dy k y k x k x k= − + Γ − − . (41) 

 
So at the second cycle (k=1), we have directly the 

desired terminal value at each output and we stay on it for 
all subsequent cycles like in the SISO case. 
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On the next section, simulation results will show the 

effectiveness of the I-ILC algorithm on MIMO system. 
 

V. SIMULATION RESULTS 
To show the effectiveness of the control, we will take as 

example the following MIMO system obtained by 
discretizing a continuous time system with a sampling 
period h = 1 s: 
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The initial state of the system is  

( ) and the initial input applied is . We 

want to reach the desired terminal value  at 
t = 10 s. 

[ ](0) 0 0 0 0 T
kx =

k +∀ ∈ [ ]0 0 0 Tu =

[ ]2 3 T
dy =

 
To design a terminal I-ILC control, we need to calculate: 

 . (43) 
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Case 1: Design with a diagonal gain matrix I ILCK − . 

 
In this case, the terminal I-ILC control will be (in the z-
domain): 
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The gains are adjusted to have the roots of the 

characteristic equation: 
 ( ){ } ( ){ }1 2( ) 4.75 1 3.2222 1I Iz z k z k∆ = + − + −  (45) 

 
strictly inside the unit circle. Then the gains must be in the 
following ranges 10 0.4211Ik< <  and 20 0.6206Ik< <   
for stability (convergence). Here, we select 1 0.2105Ik =  
and 2 0.3103Ik =  to have a characteristic equation with two 
poles at 0. 

 
Figure 1 show the convergence of the inputs based on 

cycle simulation results. Convergence is achieved in two 
cycles and is not “dead beat” since I ILCK −  is diagonal but 
Ψ  is not. 
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Figure 1: Applied input from cycle to cycle for Case 1. 

 
Case 2: Design with a gain matrix 1

I ILCK −
− = Ψ . 

 
This is the MIMO “dead beat” convergence design.  Now 
the terminal I-ILC control is: 
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Therefore, we have: 

 1 0.2105 0.2105
0 0.3103I ILCK −

−

−⎡ ⎤
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⎣ ⎦
 (47) 

 
Figure 2 shows the “dead beat” convergence of the 

inputs based on cycle simulation results. As one can see, 
the inputs converged in only one step. 

 
Note that, since we have perfect knowledge of the 

system, we can calculate directly the optimal input with: 



 
 

 

 . (48) ( )(* 1
0du y x−= Ψ − Γ )k

]

 
With the value defined earlier one can obtain this optimal 
input vector . As we can see from 
Figures 1 and 2, the applied inputs have converged to this 
optimal input vector. 

[* 0.2105 0.9310 Tu = −
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Figure 2: Applied input from cycle to cycle for Case 2. 

 
Case 3: Effect of error in the evaluation of  Ψ . 
 

We will repeat Case 2, but we assume we have a wrong 
estimate of . Suppose we have evaluated: Ψ

 , (49) 
6 2
0 5

⎡
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but the real system matrix  stays as show in (43). Ψ
 
Then, the gain matrix I ILCK −  will be: 

  (50) 
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and we use this matrix for the cycle-to-cycle control on the 
real system. 
 

Figure 3 shows the effect of the error in estimation of  
. The convergence is slower than the two other cases 

because our value of  is not exact. The robustness of our 
approach has to be evaluated in further work. But certainly 
if the error on  is too large, it is possible to have a non 
converging cycle-to-cycle control. 

Ψ
Ψ

Ψ

VI. CONCLUSION 
We used an approach different from the usual one to 

analyze the convergence of terminal I-ILC algorithm of 

SISO and MIMO systems. This novel approach reduces 
convergence analysis of terminal ILC to stability analysis 
on the z-domain transfer function built from an equivalent 
system in cycle domain. The simulation results show how 
effective the controller can be. 
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Figure 3: Applied input from cycle to cycle for Case 3. 

 
Future work will address the robustness of the proposed 

approach to the uncertainty in  and to changes in initial 
conditions. We will also conduct the same kind of analysis 
with robust control theory applied in the cycle domain to 
improve cycle-to-cycle control in the time domain. 

Ψ
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