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Abstract— In this paper, we consider the problem of
optimal Linear Quadratic Gaussian control of a system
in which communication between the sensor and the
controller occurs across a packet-dropping link. We first
prove a separation principle that allows us to solve this
problem using a standard LQR state-feedback design,
along with an optimal algorithm for propagating and using
the information across the unreliable link. Then we present
one such optimal algorithm, which consists of a Kalman
filter at the sensor side of the link, and a switched linear
filter at the controller side. Our design does not assume
any statistical model of the packet drop events, and is thus
optimal for any arbitrary packet drop pattern. Further,
the solution is appealing from a practical point of view
because it can be implemented as a small modification of
an existing LQG control design.

I. INTRODUCTION

Recently, much attention has been directed toward
systems which are controlled over a communication
link (see, e.g., [1] and the references therein). In such
systems, the control performance can be severely af-
fected by the properties of the network or the channel.
Communication links introduce many potentially detri-
mental phenomena, such as quantization error, random
delays, data corruption and packet drops to name a
few. In extreme cases, poor network performance can
even destabilize a nominally stable control loop. Un-
derstanding and counter-acting these effects will be-
come increasingly important as emerging applications
of decentralized control mature. These applications will
require the exchange of critical pieces of information
over unreliable communication media.

The above issues have motivated much of the study of
networked systems. Beginning with the seminal paper of
Delchamps [5], quantization effects have been studied
by Tatikonda [28], Elia and Mitter [6], Brockett and
Liberzon [4], Hespanha et al. [12], Ishii and Francis [14],
Nair and Evans [23], and many others. The effects of de-
layed packet delivery have also been considered in many
works, such as Nilsson [24], Blair and Sworder [3], Luck
and Ray [22], Tsai and Ray [29], and Zhang et al. [31],
using various models for the network delay.
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Fig. 1. The architecture of a packet-based control loop. The link is
unreliable and unpredictably drops packets.

In this work, we are specifically interested in systems
communicating over links that randomly drop packets.
The nominal system is shown in Figure 1 where the
link randomly drops packets being communicated from
the plant to the controller. Preliminary work in this area
studied stability of systems utilizing lossy packet-based
communication, as in [10], [25], [31]. Performance of
such systems as a function of packet loss rate was
analyzed by Seiler in [25] and by Ling and Lemmon
in [18] assuming certain statistical dropout models.
Nilsson [24] proposed two approaches for compensation
for data loss in the link by the controller, namely keeping
the old control or generating a new control by estimating
the lost data, and presented an analysis of the stability
and performance of these approaches. Hadjicostis and
Touri [9] analyzed the performance when lost data is re-
placed by zeros. Ling and Lemmon, in a series of papers
[18], [19], [20], [17] proposed compensators for specific
statistical data loss models. In [19], [17] they posed
the problem of optimal compensator design for the case
when data loss is independent and identically distributed
(i.i.d.) as a nonlinear optimization. Azimi-Sadjadi [2]
took an alternative approach and proposed a sub-optimal
estimator and regulator to minimize a quadratic cost.
Sinopoli et al. [27] and Imer et al. [13] extended this
approach further to obtain optimal controllers when the
packet drops were i.i.d. The related problem of optimal
estimation across a packet-dropping link was considered
by Sinopoli et. al in [26] and extended by Liu and
Goldsmith in [21].

Most of the designs proposed in these references aim
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Fig. 2. A common design for control over packet-based links. The
compensator aims at mitigating the effects of packet losses.
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Fig. 3. The structure of our optimal LQG control solution.

at designing a packet-loss compensator, as shown in
Figure 2. The compensator accepts those packets that
the link successfully transmits and comes up with an
estimate for the time steps when data is lost. This
estimate is then used by the controller. Our work takes
a more general approach by seeking the LQG optimal
control for this packet-based problem. In particular, our
architecture is as shown in Figure 3. We aim to jointly
design the controller, the encoder and the decoder to
solve the optimal LQG problem.

The remainder of this paper is organized as follows.
In the next section, we present our mathematical model
and pose the LQG problem in a packet-based setting. We
then discuss a separation between control and estimation
costs, and present an optimal solution to the estimation
problem. We analyze the stability of our system and
compare its performance with some other approaches in
the literature. We finish by pointing out some directions
for future research.

II. PROBLEM FORMULATION

Consider a discrete-time linear system evolving ac-
cording to

xk+1 = Axk + Buk + wk, (1)

where xk ∈ R
n is the process state, uk ∈ R

m is
the control input and wk is random noise entering the
system. The noise process is assumed white, Gaussian,

and zero mean with covariance matrix Qw. 1 The initial
condition x0 is assumed to be independent of wk and
to have mean zero and covariance matrix Q0. The state
of the plant is measured by a sensor according to the
equation

yk = Cxk + vk. (2)

Here vk is the measurement noise, again assumed white,
zero-mean, Gaussian (with covariance matrix Qv) and
independent of the plant noise wk. The sensor com-
municates these measurements (or some function of
the measurements) to the controller. We impose the
constraint that the function communicated should be a
finite vector, whose size does not increase with time. The
communication is done over a channel that randomly
drops packets. For the moment we ignore delays and
packet reordering; it will be shown that these effects
can be accounted for with time-stamping and a slight
modification to our design. Thus, at each time-step k,

• A packet containing some function of the measure-
ments is created at the sensor side of the link. We
do not specify in advance what data these packets
will contain.

• The packet is sent across the link.
• The packet is either received instantaneously, or

dropped, probabilistically.

The packet dropping is a random process. We refer to
individual (i.e. deterministic) realizations of this random
process as packet drop sequences. A packet drop se-
quence is a binary sequence {λk}

∞
k=0

in which λk takes
the value “received” if the link delivers the packet at
time step k, and “dropped” if the packet is dropped.

We assume sufficient bits per packet and a high
enough data rate so that quantization error is negligible.
We also assume that enough error-correction coding is
done within the packets so that the packets are either
dropped or received without error. Finally, we assume no
coding is done across packets; that is, no packet contains
information about any other packet. We impose this
constraint because Coding across packets can induce a
large encoding and decoding delay which is undesirable
for control applications.

The packetized communication link described above
warrants some discussion regarding the class of con-
trollers we will allow. The absolutely optimal LQG per-
formance achievable is obviously given by the classical
LQR controller/Kalman estimator pair. However, this
design does not respect the packetized nature of the
communication. Specifically, the controller requires con-
tinual access to the Kalman filter output, which in turn
requires continual access to the sensor measurements.

1The results continue to hold for time-varying systems, but we
consider the time-invariant case to simplify the presentation.



This access might not be always possible because of
data loss in the communication link. In order to make
the class of controllers that are allowed more precise, we
introduce the following terminology. Denote by sk the
finite vector transmitted from the sensor to the controller
at time step k. By causality, sk can depend (possible
in a time-varying manner) on y0, y1, · · · , yk, i.e.,
sk = fk (y0, y1, · · · , yk) . The information set available
to the controller at time k is

Ik = {sk|∀k s.t. λk = received}.

Also denote by tl(k) ≤ k the last time-step at which
a packet was delivered. The maximal information set at
time-step k is defined as follows:

Imax
k = {yi | 0 ≤ i ≤ tl(k)}.

The maximal information set is the largest set of output
measurements on which the control at time-step k can
depend. In general, the set of output measurements on
which the control depends will be less than this set,
since earlier packets, and hence measurements, may
have been dropped. The information contained in Imax

k

upper bounds the information contained in Ik. We do
not yet specify how the encoder designs or the controller
uses Ik. As stated earlier, the only restriction we impose
is that the vector sk not increase in size as k increases.
We will call the set of fk’s which fulfill this requirement
as F. 2 Without loss of generality, we will only consider
information-set feedback controllers, i.e. controllers of
the form uk = u(Ik, k). Thus, we allow the control to
depend on the information set, and on the current time-
index. Clearly, this is the broadest class of controllers
one can sensibly consider for this problem since we have
not assumed anything about the functional form of the
control. Moreover, it is impossible for a physical realiza-
tion of the controller to have more feedback information
than is contained in the information set. We shall assume
perfect knowledge of the system parameters A, B, C,
Qw and Qv at the controller. Moreover we assume that
the controller has access to the previous control signals
u0, u1, · · · , uk−1 while calculating the control uk at
time k. For notational convenience, we denote the set of
control laws allowed by U .

2The information set is reminiscent of the ‘information pattern’
introduced by Witsenhausen [30]. We assume that the controller at
time step k has access to all the previous controls u0, u1, · · · , uk−1.
Thus the ‘information pattern’ of the controller consists of the set Ik

and all the previous controls.

We can now pose the packetized LQG problem as
follows:

min
u∈U,f∈F

JK(u, f, P ) = E

[

K
∑

k=0

uT
k Qcuk

]

+ E

[

K
∑

k=0

xT
k Rcxk

]

+ E
[

xT
K+1P

c
K+1xK+1

]

. (3)

Here K is the horizon on which the plant is operated and
the expectation is taken over the uncorrelated variables
x0, {wi} and {vi}. Note that the cost functional J

above depends on the packet-drop sequence P . However,
we do not average across packet-drop processes; the
solution we will present is optimal for an arbitrary real-
ization of the packet dropping process. That is, for any
given packet-drop sequence P , the controller, encoder
and decoder we propose will minimize J(u, f, P ) over
the set of allowable controllers U and allowable func-
tions F. Because of this, we will occasionally suppress
the packet-drop dependence in the cost functional, and
merely write J(u, f) or just J . We now present our
solution to this problem.

Note that the usual addition and scalar multiplication
operations make U a vector space. For a given f and P ,
J(u, f, P ) is a convex cost functional, and so existence
of optima follows immediately. We make no claim
regarding uniqueness of optimal control in this problem.

Our goal, then, is to solve the standard LQG problem
with the additional complication of the packet-dropping
link. While this may appear a small modification, it is
unclear a priori, what the structure of the optimal control
algorithm should be, and in what way the packetized link
should be used through the design of the encoder and the
decoder. We will show that one optimal algorithm is to
utilize an LQR state-feedback design at the controller
side, and to use the link to send the state estimates
from a Kalman filter at the sensor side. The technical
presentation closely mirrors the one given in [8].

III. SEPARATION OF CONTROL AND ESTIMATION

In this section we briefly revisit the LQG separation
principle in the packet-based setting. This will mo-
tivate the structure of our optimal controller/encoder
design. Thus, consider the K-horizon cost functional
given in (3). We need to choose u0, u1, · · · , uK that
minimize JK(u, f, P ). Following [11], we gather terms
that depend on the choice of uK and xK and write them



as

TK = E
[

uT
KQcuK + xT

KRcxK

]

+E
[

xT
K+1P

c
K+1xK+1

]

= E

[

[

uT
K xT

K

]

∆

[

uK

xK

]]

+E
[

wT
KP c

K+1wK

]

= SK + OK

where

∆ =

[

Qc + BT P c
K+1

B BT P c
K+1

A

AT P c
K+1

B Rc + AT P c
K+1

A

]

SK = E

[

[

uT
K xT

K

]

∆

[

uK

xK

]]

OK = E
[

wT
KP c

K+1wK

]

.

In the above equation, we have used the system dynam-
ics given in (1) and the fact that the plant noise is zero
mean. Thus we can write

JK(u, f, P ) = E

[

K−1
∑

k=0

uT
k Qcuk +

K−1
∑

k=0

xT
k Rcxk

]

+ SK + OK . (4)

We aim to choose uK to minimize JK(u, f, P ) for a
given f . From (4), it is clear that the only term where
the choice of uK can make a difference is SK . SK can
be written as

SK = E
[

(uK − ūK)
T

Rc
e,K (uK − ūK)

]

+ E
[

xT
KP c

KxK

]

where
Rc

e,K = Qc + BT P c
K+1B

P c
K = Rc + AT P c

K+1A

− AT P c
K+1B

(

Qc + BT P c
K+1B

)−1
BT P c

K+1A

and ūK is the standard optimal LQ control, ūK =

−
(

Rc
e,K

)−1
BT P c

K+1
AxK . In the absence of the pack-

etized link, the controller could simply use the standard
optimal control ūK . However, as discussed before, this
control law does not lie in the set of allowable solutions
U because it is not realizable for any non-trivial packet-
dropping sequence. Instead, we will calculate uK based
on the information set IK (and the previous controls u0,
u1, · · · , uK−1 that are assumed known to the controller)
and choose it so as to minimize SK . The control problem
thus reduces to an optimal estimation problem. Given
the information set at time k, Ik, we denote the linear
least mean square (llms) estimate of a random variable

Γ based on this information as Γ̂|Ik

3 Then we can write
the optimal control at time step K as

uK = ˆ̄uK|IK
= −

(

Rc
e,K

)−1
BT P c

K+1Ax̂K|IK
. (5)

Thus, we only need to find the llms estimate of xK ,
given the information IK available to the controller.
Note that since the information content in Ik is upper
bounded by the information contained in Imax

k , the error
in x̂K|IK

is lower bounded by the error in calculating
x̂K|Imax

K
. In the next section, we will provide a way to

design the functions fk’s that will, surprisingly, allow
the errors to actually coincide.

Denote the estimation error incurred due to the min-
imizing choice of uK by ΛK . We have

SK = ΛK + E
[

xT
KP c

KxK

]

.

Note that ΛK is independent of the previous control
inputs u0, · · · , uK−1 since these are assumed known to
the controller when it calculates uK in (5). We can thus
write the cost function as

JK(u, f, P ) = E

[

K−1
∑

k=0

uT
k Qcuk +

K−1
∑

k=0

xT
k Rcxk

]

+SK + OK

= E

[

K−1
∑

k=0

uT
k Qcuk +

K−1
∑

k=0

xT
k Rcxk

]

+ΛK + E
[

xT
KP c

KxK

]

+ OK

= JK−1(u, f, P ) + ΛK + OK .

Thus we now need to choose control inputs for time
steps 0 to K−1 to minimize JK−1, independently of the
associated estimation cost at time step K (the terms OK

and ΛK do not involve these control inputs). However,
our argument so far was independent of the time index
K. Thus we can recursively apply this argument for time
steps K−1, K−2 and so on. We have thus obtained the
familiar separation result, in the packet-based setting:

Proposition 1 (Separation). Consider the packet-based
optimal control problem defined in section II. For an op-
timizing choice of the control, the control and estimation
costs decouple. Specifically, The optimal control input at
time k is calculated by using the relation

uk = ˆ̄uk|Ik
= −

(

Rc
e,k

)−1
BT P c

k+1Ax̂k|Ik
,

where ūk is the optimal LQ control law while ˆ̄uk|Ik
and

x̂k|Ik
are the llms estimate of ūk and xk respectively,

3This notation is a bit misleading in that it suppresses the fact that
the previous controls are known to the controller and are also used
for the purpose of estimation. However we adopt it for simplicity and
because it makes explicit the notion that the information quantity we
aim to optimize over is contained in the set IK . Also note that since
all the random variables are Gaussian, and the cost function to be
optimized is quadratic, the optimal estimator is linear.



given the information set Ik and the previous control
laws u0, u1, · · · , uk−1.

This result must be viewed in light of the limited
information available to the controller. At every time
step, the controller tries to estimate the optimal control
input based on the information set Ik, and uses this
estimate in the optimal LQR control law. Thus, the
state-feedback portion of an LQG controller need not
be reworked for a packet-based implementation. The
packet-based LQG question reduces to choosing what
information should be sent from the sensor so that the
optimal estimate can be formed at the controller, given
that some of the packets might be lost. We address this
issue in the next section.

IV. OPTIMAL ENCODER AND DECODER DESIGN

In this section we present an algorithm for encoding
and transmitting sensor measurements so as to achieve
optimal estimation performance. Recall that we wish to
construct the optimal estimate based on the information
set Imax

k , but we have not yet specified how to design
fk’s that will allow the controller to compute that. For
a link which does not drop packets, sending the current
measurement yk in the current packet is sufficient. How-
ever, it is not clear that just sending the measurements
can achieve optimality when packets are dropped. In
particular, the Kalman filter input will be interrupted by
the packet dropping. A naı́ve solution would be to send
the entire history of the output variables at each time
step. However, as mentioned earlier, this is not allowed
since it requires increasing data transmission as time
increases. Surprisingly, we can achieve performance
equivalent to the naı́ve solution using a constant amount
of transmission, and a constant amount of memory at
the receiver end. We propose the following algorithm.

• The encoder (at the sensor end) receives as input
the measurement yi. It runs a Kalman filter that
provides the llms estimate of xk based on all the
measurements until time step k, denoted by x̂k|k

and transmits this vector across the link.
• The decoder (at the controller end) maintains a

local variable x̂dec
k . It is updated as follows:

– If λk = received, the decoder receives x̂k|k,
and sets x̂dec

k = x̂k|k.
– If λk = dropped, then the decoder implements

the following linear predictor:

x̂dec
k = Ax̂dec

k−1 + Buk−1. (6)

It is easy to see that if λk = received, then x̂dec
k

is precisely the Kalman filter output, and thus is the
optimal least-squares estimate of the state xk. On the
other hand if λk = dropped, then (6) carries out the time
update step of the Kalman filter and thus results in the

optimal l.l.m.s. estimate given the sensor measurements
till time tl(k). Thus we can state the following.

Proposition 2 (Optimal Estimation). In the algorithm
described above, x̂dec

k = x̂|Imax

k
.

This, combined with our Proposition 1, allows us to
state our main result.

Proposition 3 (Optimal Packet-Based LQG Control).
For the packet-based optimal control problem stated in
section II, an LQR state feedback design together with
the optimal transmission-estimation algorithm described
above achieves the minimum of J(u, f, P ) for any P .

Thus we have solved the packet-based LQG control
problem posed in Section II. Note that we have made
no assumption about the packet dropping behavior. The
algorithm described above provides the optimal estimate
based on Imax

k for an arbitrary packet drop sequence,
irrespective of whether the packet drop can be modeled
as an i.i.d. process (or a more sophisticated model like
a Markov chain) or whether its statistics are known to
the plant and the controller. Also note that the solution
can be extended to the case when the channel applies
a random delay to the packet so that packets might
arrive at the decoder delayed or even out-of-order, if
we assume that there is a provision for time-stamping
the packets sent by the encoder. At each time step,
the decoder will face one of four possibilities, and will
update its estimate as described below:

• It receives x̂k|k. It uses this as its estimate.
• It does not receive anything. It uses the predictor

equation (6) on x̂dec
k−1

as before.
• It receives x̂m|m while at a previous time step, it

has already received x̂n|n, where n > m. It discards
x̂m|m and uses the predictor equation (6) on x̂dec

k−1
.

• It receives x̂m|m and at no previous time step has it
received x̂n|n, where n > m. It uses x̂m|m as x̂dec

m

and uses the predictor equation until time step k to
obtain x̂dec

k .

V. ANALYSIS OF THE PROPOSED ALGORITHM

In this section, we make some assumptions about the
packet dropping random process and provide stronger
results on the stability and performance of our algorithm.
We model the channel erasures as occurring according to
a Markov chain, which includes the case of independent
packet drops as a special case. The model of Markov
jump system is a popular way to deal with communi-
cation channels and networks. Thus the channel exists
in either of two states, state 1 corresponding to a
packet drop and state 2 corresponding to no packet drop
and it transitions probabilistically between these states
according to the transition probability matrix Q. We



also assume strict causality in the Kalman filter used
by the encoder. Thus to calculate the estimate of xk,
only the measurements till time step k−1 are used. The
analysis can be easily extended to the case when strict
causality is replaced by causality. Finally we assume that
(A,B) is stabilizable and the pair (A,C) is detectable.
We will denote the Kronecker product of matrices A and
B by A⊗B, while vec(A) will represent the vectorizing
operation that results in a vector formed by stacking the
columns of A (see [16] for more details).

A. Stability Analysis

The plant evolves as in (1), the Kalman filter at the
encoder according to

x̂k+1 = Ax̂k + Buk + Kk (yk − Cxk)

and the estimator at the decoder according to the relation

x̂dec
k+1 =

{

Ax̂dec
k + Buk channel in state 1

x̂k+1 channel in state 2.

Denote ek = xk − x̂k and tk = x̂k − x̂dec
k . Since uk =

Fkx̂dec
k , (1) can be rewritten as

xk+1 = (A + BFk) xk + wk − BFk (tk + ek) .

If (A,B) is stabilizable, by construction Fk is the op-
timum control law and hence it stabilizes the system as
long as the disturbances wk, tk and ek remain bounded.
We assume the noise wk has bounded covariance matrix.
Also ek has bounded covariance matrices by assumption
of detectability of (A,C). Finally for tk, we see that it
evolves according to

tk+1 =

{

Atk + Kvk − KCek channel in state 1

0 channel in state 2.

(7)
Again note that vk and ek have bounded covariance.
For tk to be of bounded variance, the Markov jump
system of (7) needs to be stable. Further note that since
our controller and encoder/decoder design is optimal, if
the closed loop is unstable with our design, it is not
stabilizable by any other design. Following [24], we can
write the stability condition as follows.

Proposition 4 (Stability Condition). Consider the
packet-based control problem defined in Section II in
which the packet erasure channel is modeled as a
Markov chain with transition probability matrix Q. Let
the matrix pair (A,B) be stabilizable and the matrix
pair (A,C) be detectable. The system is stabilizable, in
the sense that the variance of the state is bounded, if
and only if the matrix

(

QT ⊗ I
)

[

0 0
0 A ⊗ A

]

has eigenvalues strictly less than unity in magnitude,
where I is identity matrix and 0 is the zero matrix of
suitable dimensions. Further, if the system is stabiliz-
able, one controller and encoder/decoder design that
stabilizes the system is given in Proposition 3.

As a simple example, suppose the channel has two
states between which it jumps independently. With a
probability p at each time step, the channel drops the
packet. Also assume that the plant is scalar with the
system matrix given by a. Then the above condition
reduces to the condition pa2 < 1.

B. Performance Analysis

We now calculate the total quadratic cost incurred by
the system for the infinite-horizon case (the case when
K → ∞ in (3)). We will make the additional assumption
that the Markov chain is stationary and regular (see [7])
and that the stationary probability of channel being in
state i is given by π(i). For the infinite horizon case,
we consider the cost

J∞ = lim
K→∞

E
[

xT
KRcxK + uT

KQcuK

]

= trace (P∞
x Rc) + trace (P∞

u Qc) , (8)

where P∞
x = limK→∞ E

[

xKxT
K

]

and P∞
u =

limK→∞ E
[

uKuT
K

]

. With the assumptions of stability
and detectability, the control law matrix Fk and the
Kalman gain matrix Kk can be considered as constant
matrices F and K respectively. From the discussion
given in section V-A, we can write the evolution of
the system in the following manner. Denote zk =
[

xT
k eT

k tTk
]T

and ek =
[

wT
k vT

k

]T
. Then,

zk+1 =

{

A1zk + B1ek channel in state 1

A2zk + B2ek channel in state 1,

where

A1 =





A + BF −BF −BF

A − KC 0 0
0 −KC A





A2 =





A + BF −BF −BF

A − KC 0 0
0 0 0





B1 =





I 0
I −K

0 −K





B2 =





I 0
I −K

0 0





while 0 denotes the zero matrix and I the identity matrix
of suitable dimensions. Define the stationary covariance
P∞ = limk→∞ E

[

zkzT
k

]

. Also denote A1 = A1⊗A1,



A2 = A2 ⊗ A2, G1 = B1RB
T
1 , G2 = B2RB

T
2 , R =

E
[

ekeT
k

]

and G =
[

vec(G1)
T vec(G2)

T
]T

. Finally
define the conditional state covariance as

P̃i = πi lim
k→∞

E
[

zkzT
k | channel in state i

]

so that P∞ = P̃1 + P̃2. Then we can use the results
of [24] to obtain the following result.

Proposition 5 (Performance Analysis). Define P̃ =
[

vec(P̃1)
T vec(P̃2)

T
]T

. Then P̃ is the unique solu-
tion to the linear equation

P̃ =
(

QT ⊗ I
)

[

A1 0
0 A2

]

P̃

+
(

QT ⊗ I
)

([

π1 0
0 π2

]

⊗ I

)

G,

where I is the identity matrix, 0 is the zero matrix and
other quantities have been defined above.

Once we calculate P̃ , we can readily evaluate the cost
in (8) by using the relations

P∞
x =

[

I 0 0
]

P∞





I

0
0





P∞
u = F

[

I −I −I
]

P∞





I

−I

−I



 FT .

C. Example

In this section, we consider an example to illustrate
the performance of our algorithm. We consider the ex-
ample system considered by Ling and Lemmon in [17].
The plant transfer function is

H(z) =
z−1 + 0.8z−2

1 + z−1 + 1.7z−2
,

so that the system evolves as

xk+1 =

[

0 −1.7
1 −1

]

xk +

[

0.8
1

]

uk +

[

2
1

]

wk

yk =
[

0 1
]

xk.

The process noise wk is zero mean with unit variance
and the packet drop process is i.i.d. The cost consid-
ered is the steady state output error limK→∞ y2

K . [17]
assumes unity feedback when packets are delivered and
gives an optimal compensator design when packets are
being lost.

On analyzing the system with our algorithm, we
observe that our algorithm allows the system to be stable
up to a packet drop probability of 0.59 while the optimal
compensator in [17] is stable only if the probability is
less than 0.3. Figure 4 shows the stability margin of our
algorithm as a function of the packet drop probability.
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Fig. 4. Stability margin of our algorithm as a function of packet drop
probability.
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Fig. 5. Comparison of performance for the two algorithms assuming
optimal controller for our algorithm.

It shows the maximum absolute value of the eigenvalue
of the matrix given in Proposition 4. Also if we analyze
the performance we obtain the plot given in Figure 5.
The performance is much better throughout the range
of operation for our algorithm. The performance of the
two algorithms is not the same even at zero probability
of packet drop since the optimal compensator presented
in [17] assumes unity feedback when no packets are
being dropped. Thus we see that the algorithm proposed
in this paper performs better throughout the range of
proportion than similar approaches proposed in the lit-
erature.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we considered the problem of optimal
LQG control when the sensor and controller are commu-



nicating across a channel or a network. We modeled the
link as a switch that drops packets randomly and proved
that a separation exists between the optimal estimate and
the optimal control law. For the optimal estimate, we
identified the information that the sensor should provide
to the controller. This can be viewed as constructing an
encoder for the channel. We also designed the decoder
that uses the information it receives across the link
to construct an estimate of the state of the plant. The
proposed algorithm is optimal irrespective of the packet
drop pattern. For the case of packet drops occurring
according to a Markov chain, we carried out stability
and performance analysis of our algorithm.

The work can potentially be extended in many ways.
One possible direction is to consider a channel between
the controller and the actuator. Another intriguing pos-
sibility is considering the effect of allowing only finite
number of bits in the packet. Ishwar et al. [15] have
showed that if the optimal vector to send in the infinite
rate case is the state estimate, even for the finite rate
case, the quantized version of state estimate remains as
the optimal thing to send. However, from the view of
optimal control, this issue has to be examined in greater
detail. Extensions to decentralized control are another
exciting avenue of research.
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